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Abstract: In this paper we analyze two subclasses of ABS class of methods which produce 

orthogonal projection vectors. We theoretically prove that the “twice is enough” selective 

reorthogonalization criterion of Parlett-Kahan [14] and of Hegedüs [8] can be used in the 

various ABS classes. Here we also provide a detailed numerical analysis of these ABS-

based algorithms. We revealed that the ABS-based algorithm combined with the modified 

Parlett-Kahan criterion by Hegedüs provided more accurate results in the three considered 

cases (the rank of the coefficient matrix, the determination of the orthogonal bases, and the 

QR factorization) than the built-in rank and qr MATLAB functions. 
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1 Introduction 

Orthogonalization is an important step of matrix calculation and produces matrices 

that are much easier to work with. Let ),...,( 1 naaA   be a nm  matrix 

( nm  ) with full column rank ( nArank )( ). Orthogonalization yields an 

orthogonal basis ),...,( 1 nqqQ   of )(Aspan  such that QRA  , where R  is 

an upper triangular matrix. There are several approaches and algorithms for the 

orthogonalization of a matrix, including the Gram-Schmidt (GS) orthogonalization 

algorithm, as well as conceptually different approaches such as Householder 

transformations or Givens rotations [2], [5], [9], [10], [11]. 
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Though the above approaches provide a theoretical foundation of 

orthogonalization, the calculation of the actual orthogonal basis can be 

problematic. Indeed, while it is critical that the computed vector 

),...,( 1 nqqQ  is as close to the theoretical vector ),...,( 1 nqqQ   as possible, 

this is often limited by the precision level of the computer used. The issue of 

limited accuracy of computing Q  is known as the orthogonal basis problem [11]. 

Several investigators have also proposed to perform the orthogonalization several 

times (called “reorthogonalization”), though the benefit of repeated 

reorthogonalization is questionable and it seems that one reorthogonalization (i. e. 

two consecutive orthogonalization steps) is sufficient to ensure the orthogonality 

of the computed vectors at high accuracy [14], [3], and [4]. 

Reorthogonalization can also be performed as an optional step, depending on a 

certain criterion applied during the execution of the algorithm. This situation is 

called “selective reorthogonalization” and is based on a criterion dependent on the 

quality of the computed vector. A further assessment of this selective step is 

provided by Parlett [14] who analyzed the use of two vectors attributed to Kahan 

(Parlett-Kahan algorithm). Parlett showed that while two consecutive 

orthogonalization steps improved the accuracy of the computation, further 

orthogonalization steps failed to provide additional benefit, establishing the 

principle of “twice is enough”. Recently, Hegedüs [8] provided a new theoretical 

basis for Parlett-Kahan's "twice is enough" algorithm and a modified 

reorthogonalization criterion. 

In this paper we apply the classical Parlett-Kahan (PK) criterion and its 

modification by Hegedüs (referred to as the modified Parlett-Kahan or MPK 

criterion) on the ABS class of methods [1]. We considered the S1 and S4 

subclasses of ABS, which generate orthogonal directions. Here we also summarize 

the characteristics of these ABS-based algorithms, and describe their 

implementation using Matlab R2007b. The numerical experiments revealed that 

the calculations of the rank of a matrix and of the orthogonal vectors, as well as 

the QR factorization are more accurate with the usage of our ABS based 

algorithms than the functions implemented in Matlab. 

Finally we should emphasize that the ABS-based algorithms are easy to 

parallelize. This feature expands the practical usefulness of our algorithms. The 

results presented in this paper may provide important novel aspects of the efficient 

parallel implementation of matrix calculations. 



Acta Polytechnica Hungarica Vol. 12, No. 6, 2015 

 – 25 – 

2 The Parlett-Kahan and Modified Parlett-Kahan 

Algorithms 

The twice-is-enough algorithm of Parlett and Kahan is based on the following 

orthogonalization step. Let z  be the vector to be orthogonalized. The equation 

),orth(
2

zyz
y

yy
Ip

T















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is the exact orthogonalization of .z  An undesirable feature of the Gram-Schmidt 

method is that in the presence of rounding errors the vector p  can be far from 

orthogonal to .y This loss of orthogonality is signaled by cancellation, which 

magnifies previous rounding errors, which in turn will generally contain 

components in y . A solution for this problem is to repeat the procedure on the 

vector p . 

It has been observed that one reorthogonalization is usually sufficient to produce a 

vector that is orthogonal to working accuracy - i.e., “twice is enough”. 

Obviously in reality we have only a numerical approximation of p , say x . Let 

the error pxe 


 satisfy ze M


, where M  is the machine precision 

unit and let   be any fixed value in the range  
MM 
83.0

83.0
1 ,


[14]. 

Algorithm-1 Parlett-Kahan algorithm - (PK) [14] 

Calculate ),orth( zyx 


 , where )orth(  is given in (1). 

Case 1: If /zx 


 then accept 


 xx  and 


 ee , 

otherwise compute ),orth(


 xyx  with error 
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satisfying 


 xe M  and go to Case 2. 

Case 2: If /


 xx  then accept 


 xx  and ." pee   
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Case 3: If /


 xx  then accept 0x  and .pe   

Remark 2.1 The vector x  computed by the algorithm ensures that 

ze M )1( 1  and xyxy M

T    [14]. 

Hegedüs [8] reformulated the original Parlett-Kahan algorithm and proved the 

improvement of orthogonality and gave new criteria for the cancellation due to 

calculation and estimation for the accuracy of computation. 

Algorithm-2 modified Parlett-Kahan algorithm - (MPK) [8] 

Here we consider one step of Gram-Schmidt orthogonalization with respect to 

cancellation. 

Let   )1(

121 ,,, 

  kn

kqqqQ   and 
na   be known and accurate. 

Vector a  is orthogonalized to the subspace spanned by the orthonormal columns 

of matrix Q  with one Gram-Schmidt step 

,)( aQQIq T

kk   (2) 

where k  is the norm of a . Compute 

a

k  . 

If  min  then linear dependency has been detected, i.e. vectors  

121 ,,,, kqqqa   are linearly dependent at least computationally 

If max   then kq  is accepted, otherwise perform a reorthogonalization step. 

k

T

kk qQQIq )(ˆ   

where k  is the norm of kq . The vector kq̂  is accepted, and update 

k

TqQmin . 

Remark 2.2 The initial value for min  is M4  and Hegedüs proved that 

min10log   is the number of accurate digits. 

Remark 2.3 Hegedüs showed that when the incoming vectors are exact and there 

are accurate digits in the computation, then one may expect the fulfillment of 

condition  max  after the second orthogonalization step at most. The largest 
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choice of max  is 2/1  to fulfill the condition. Hence the resulting vector kq̂  

can be considered orthogonal to 121 ,,, kqqq   up to computational accuracy 

[8]. 

3 The Symmetric Scaled ABS Algorithm with 

Reorthogonalization 

In this section, we briefly present the scaled symmetric ABS algorithm [1] and we 

apply reorthogonalization on the projection vectors ( ip ) of these subclasses. The 

ABS algorithm was developed to solve systems of linear and non-linear equations. 

However, the ABS-based algorithms can be used for many other purposes, for 

example we can use these algorithms to compute an orthogonal basis of 

)(Aspan . 

Instead of the original equation bAx  , where A  
nmnm xb  ,,,

, 

consider the scaled equations 

bVAxV TT   (3) 

where, 
mm

mvvV ,

1 ),,(   ,is a nonsingular matrix. The set of the solutions 

of the equations (3) is the same as the set of the solution of bAx  . Applying 

the non-scaled basic symmetric ABS algorithm for solving (3), we can obtain the 

symmetric scaled ABS algorithm. Denote the residual vector by bAxxr )( . 

We remark here that not all orthogonalization processes need the residual vector. 

Algorithm-3 Symmetric scaled ABS algorithm with reprojection 

Step1 - Initialization 

Let 
nx 1  arbitrary ,  

nnIH ,

1  , where I  is the unit matrix, 1i  , and 

0iflag . 

Step2 

Let 
m

iv   be arbitrary provided that ivv ,,1   are linearly independent. 

Compute the residual error vector ir . 

If 0ir  then stop; ix  solves the equations 

otherwise compute 
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Step3 - Linear dependency check 

If 0is  then go to Step4. 

If 0is  and 0i  then set 

1

1

1











iflagiflag

HH

xx

ii

ii

 

and if mi   then go to Step2 otherwise stop; ix  solves the equations. 

If 0is  and 0i  , stop set .iiflag  (Incompatibility). 

Step4 - Compute the search direction 
ip  by  

i

T

ii zHp   

where 
n

iz   is arbitrary saving for 0i

T

i

T

i vAHz . Compute the 

reorthogonalization step 

i

T

ii pHp  . 

Step5 - Update the approximate solution by  

iiii pxx 1  

where the step size i   is given by .
i

T
i

i

Apvi

   

If mi   then stop; 1mx  is the solution of the equations. 

Step6 - Update the projection matrix iH  

i

T

ii

T

i

i

T

ii

T

i
ii

vAHAHv

AHvvAH
HH




1 . (4) 

Step7 - Set 1 ii  and go to Step2. 

Remark 3.1 The projection vectors ip are orthogonal [1]. 
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Remark 3.2 Observe that Step5 is not always needed if we only wish to solve the 

linear system of equations. 

Remark 3.3 Note that the denominator of the projection matrix ( iH ) is non-zero 

because of Step3. 

Theorem 3.1 Define 
i

A  as 

.,...,
11

11
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A  (5) 

The 
i

A  matrices are full rank. Moreover, if IH 1 , then the columns of 
i

A  are 

mutually orthogonal [1]. 

Remark 3.4 Using the notation of (5) we have the following alternative formula 

for (4) 

iTi

i AAIH 1 . (6) 

Remark 3.5 Note that the choices of the 
n

iz   and the 
m

iv   are arbitrary 

saving for 0i

T

i

T

i vAHz . We considered two subclasses of the symmetric, 

scaled ABS algorithm, designated the S1 and S4 subclasses where the search 

vectors ip  are orthogonal. 

3.1 Reorthogonalization in Symmetric, Scaled ABS Algorithm 

using the Idea of the PK and Modified PK Algorithms 

In this section we use the original Parlett-Kahan and the modified Parlett-Kahan 

algorithms in the scaled symmetric ABS algorithms. We only describe the Step4 

of symmetric scaled ABS algorithm where we determine the searching vectors as 

the other steps correspond to the steps of the original algorithm. 

The ABS Parlett-Kahan algorithm is based on the following orthogonalization 

step. 

Let z  be a vector to be orthogonalized. Then 

z
p

pp
Hp

T













 


20  (7) 

where p  is the accurate vector computed at the ith  step and 0p  is the exact 
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orthogonalization of .z  Obviously we can have an approximation of 0p  only, 

say x . Let the error 0pxe 


 satisfy ze 1


 [16]. 

Algorithm-4 Reorthogonalization in ABS with the Parlett-Kahan algorithm 

(ABS-PK) 

Step4-PK Compute the search direction ip  by 

i

T

ii zHp   

where 
n

iz   is arbitrary saving for .0i

T

i

T

i vAHz  

If 


i

i

z
p  then accept ip  and using the notation of the original Parlett-Kahan 

ipx    

otherwise compute 

i

T

ii pHp ˆ  

If 


i

i

p
p ˆ  

then accept ip̂   i.e. ii pp ˆ  and using the notation of the original 

Parlett-Kahan ii ppx ˆ  

otherwise linear dependency is detected 

1

0

1

1













iflagiflag

HH

xx

p

ii

ii

i

 

go to Step2. 

Lemma 3.1.1 The vector x  computed by the algorithm ensures that 

ze M)/11(   and .xpxp M

T    

Proof We recall Parlett's proof for the case of our orthogonalization algorithm. 

Differences are only in those steps where the orthogonalization expression is 

explicitly used. We consider the two cases: 
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Case 1: 

zee 1


 

xpzpepepxpxp TTT

11  


 

because 00 ppT
 and it follows xxz  



 

Case 2: 

xpxpepepxpxp TTT

22

"""

 


 

by the definition of 


x . Now 

0

2"" )/( pxpppHepxe T 


 

where we used the definition of 
"x  From this we get using the definition of 



x  and 

that 00 ppT
 that 

00

2" ))(/( ppepppIHee T 


 



 epppIx T )/(
2

2  

therefore 

zzxex )/11)(,(max 21122  


 

because the reorthogonalization has to be performed when ./zx 


 ■ 

Theorem 3.1.2 The oo pxpx 
"

, where 0p  is the exact 

orthogonalization of .z  

Proof Using the definition of 
"x  we get 

  o

T

o pxpppIHpx 
2" /  
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  )()(/
2

oo

T pxpxpppIH 


 

where we used the orthogonality of p  and op  and 

  .1//
22
 pppIHpppIH TT

■ 

Theorem 3.1.3 pxpx 
"

 where p  is the accurate orthogonal vector 

of the Parlett-Kahan algorithm. 

Proof If IH   and yp   of ABS Parlett-Kahan algorithm, then the theorem 

follows from the Parlett-Kahan algorithm. ■ 

Remark 3.1.1 It is worthwhile to emphasize that the ABS-Parlett-Kahan 

algorithm is different from the original one, because of the existence of the 

projection matrix H . The projection matrix ensures the new orthogonal vector 

ip  is orthogonal for all previous orthogonal vectors 1p , ..., 1ip . 

For this algorithm the same lemma is valid as for the original Parlett-Kahan 

algorithm. It is enough to note that the Euclidean norm of the iH  projection 

matrices is equal to one. Therefore we recall only the lemma of the algorithm (see 

[14]) without proof. 

Lemma 3.1.4 The vector x  computed by the algorithm ensures that 

ze )/11(   and .xpxpT   

Algorithm-5 Reorthogonalization in ABS with the modified Parlett-Kahan 

algorithm (ABS-MPK) 

Step4-MPK Compute the search direction ip  by 

i

T

iii zHp   

where 
n

iz   is arbitrary provided that 0i

T

i

T

i vAHz  and i

T

ii zH . 

Compute 

i

i

z


   

and 
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i

i

i

p

pA
min  

If 
min   

then linear dependency is detected 

1

0

1

1













iflagiflag

HH

xx

p

ii

ii

i

 

go to Step2. 

If max   

then ip  is accepted 

otherwise a reorthogonalization is needed 

i

T

iii pHp   

where i

T

ii pH . 

Remark 3.1.2 We should emphasize that the computational demands of checking 

the computational linear dependency is very low. It is sufficient to check the value 

of the computed   and min . 

4 Numerical Experiments 

Next we were interested in numerical features of the different ABS algorithms. To 

this end, two variants of the scaled symmetric ABS class of algorithms were 

implemented in MATLAB version R2007b [12]. 

S1 (Subclass-S1 of ABS): iz  is selected such that 

runit vecto   the  where, ithevvAz iii

T

i  . 

S4 (Subclass-S4 of ABS): 
iz  is selected such that 

 vectorresidual   theis   where, ithrrz iii  . 
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As we did not want to check the accuracy of the solution we defined it for the sake 

of minimizing the error of the residual vector calculation in the S4 subclass as 

 .1,...1,1  

The below experiments were performed on a Toshiba personal computer with 

Intel i7-2620M CPU with integrated graphics, 8 GB RAM and 450 GB hard disk 

drive, running Microsoft Windows 7 Professional and MATLAB version R2007b. 

No software other than the operating system tasks, MATLAB and ESET NOD32 

antivirus were running during the experiments. 

The experiments testing the calculated rank of the coefficient matrix A , the 

orthogonal deviation  

( ))))((max(max(log10

TQQIabs  ), and the error of QR  factorization  

( ))((max(max(log10 QRAabs  ) were performed. 

First we tested the different ABS based algorithms on randomly generated dense, 

symmetric, positive definite, full rank matrices (SPD). The random matrices were 

generated using MATLAB. 

We use the following annotations: 

ABS-S1 (AREO): symmetric scaled ABS algorithm with S1 selection, 

reprojection in every step, linear dependency check according to Hegedüs. 

ABS-S1 (PK): symmetric scaled ABS algorithm with S1 selection and 

reorthogonalization using the Parlett-Kahan algorithm. 

ABS-S1 (MPK): symmetric scaled ABS algorithm with S1 selection and 

reorthogonalization using the modified Parlett-Kahan algorithm. 

ABS-S4 (AREO): symmetric scaled ABS algorithm with S4 selection, 

reprojection in every step, linear dependency check according Hegedüs. 

ABS-S4 (PK): symmetric scaled ABS algorithm with S4 selection and 

reorthogonalization using the Parlett-Kahan algorithm. 

ABS-S4 (MPK): symmetric scaled ABS algorithm with S4 selection and 

reorthogonalization using the modified Parlett-Kahan algorithm. 

As shown in Fig. 1, there were no significant differences between the accuracy of 

the calculations for S1 and S4 variants of ABS algorithms. This was in contrast to 

our expectations based on the fact that the iz  vectors in the selection S4 were 

calculated as a function of the row vectors of the matrix .A  The likely reason for 

the discrepancy is that the well-chosen solution vector minimizes the rounding 

error even if the approximation of the solution in step i  is not exact. The 

difference between the variants of ABS based algorithms is in the calculated rank. 
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Figure 1 

Comparison of different ABS-based algorithms on randomly generated, dense, symmetric, positive 

definite, full rank matrices 

All algorithms based on S4 selection detect incorrect linear dependency in the 

projection vectors because of the loss of accurate digits in the computation of 

orthogonal vectors. If the judgment is made on aspects of finding an orthogonal 

basis between the two subclasses of ABS based algorithms then algorithms with 

S1 selection outperform the subclass S4. We should note that the subclass S4 has 

many valuable numerical features [1] and further studies are needed to test them. 
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Next we compared our best-performing ABS-based algorithm (ABS-S1 (AREO)) 

with other well-known algorithms. We selected the built-in qr function of 

MATLAB and the classic Gram-Schmidt orthogonalization (CGS) algorithm [2]. 

We implemented the CGS algorithm with reorthogonalization in every step and 

the linear dependency check proposed by Hegedüs. 

We should mention that the formula (6) gives a connection between the CGS and 

the ABS-S1 methods. The ABS-based algorithm with S1 selection is practically 

the block version of the CGS method. Numerically we could not see a significant 

difference between the block and the original version of update of the projection 

matrix iH  (data not shown). However, it is worthwhile to do further such 

research in the future with alternative formulas of updating the projection 

matrices. 

We tested the algorithms on randomly generated dense, symmetric, positive 

definite, full rank matrices (SPD), Pascal (Pascal), normalized Pascal (normalized 

Pascal), Vandermonde (Vandermonde), and normalized Vandermonde 

(normalized Vandermonde) matrices. The matrices were generated using built-in 

MATLAB functions. 

It should be mentioned that the ABS-based algorithms use the row of the matrices 

in the ith step while the CGS and the qr algorithms use the columns of the A . To 

correct for that discrepancy, the transposed matrix A  has been applied on the 

latter two algorithms. 

As shown in Fig. 2, we compared the computed rank of the different matrices. 

Note that when the condition number of the coefficient matrix ( A ) is not 

extremely high, like for the SPD matrices, then all our algorithms calculated the 

same, exact rank of matrices (data not shown). However, we could see a 

significant difference on the computed rank of special (like Pascal, normalized 

Pascal) matrices, and we wanted to verify the actual rank of the matrices 

represented in double precision. We used the Multiprecision Computing Toolbox 

of MATLAB [13] and we recomputed the rank of the matrices originally 

represented in double precision into quadruple precision. We could not see any 

loss of the ranks because of the non-exact representations. 

After all, we conclude that the MATLAB rank function performed poorly on 

computing the rank of special matrices, and only the ABS-S1 algorithm gave the 

exact rank for the normalized matrices .A  Therefore, it would be worth using the 

ABS-S1 algorithm for calculating the rank of matrices. 
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Figure 2 

Comparison of the calculated rank of the coefficient matrices 

 

Then we compared the accuracy of the computed orthogonal basis with our 

algorithms. To describe the deviation of orthogonal deviation, we use the 

))))((max(max(log10

TQQIabs   formula where I  is the unit matrix 

and Q  is the orthogonal basis. Hegedüs proved [8] that this formula gives the 

number of accurate digits. Using double precision number presentation (IEEE 754 

standard [15]), the maximum value of the formula is less than 16. 

As shown in Fig. 3, the MATLAB qr function computed the orthogonal basis the 

least accurately for every test case. There is no significant difference between the 

ABS-S1 and the CGS algorithms for the difficult test problems (like Pascal, 

Vandermonde). However, the CGS algorithm surpasses the ABS-S1 on well-

conditioned matrices like our SPD matrices. 
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Figure 3 

Comparison of the orthogonal deviation 

Last we tested the accuracy of the QR  factorization. We used a formula 

( ))((max(max(log10 QRAabs  ) for describing the precision of QR  

factorization, which gives the number of accurate digits of the factorization. The 

maximum value of the accurate digits is less than 16 in floating point 

representation and larger values mean more precise results. 

As shown in Fig. 4 the CGS algorithm surpasses the ABS-S1 and the qr 

algorithms on every case, being the most salient on the normal test cases like SPD 

and normalized SPD matrices. No significant difference can be seen between the 

ABS-S1 algorithm and the MATLAB qr function. 
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Figure 4 

Comparison of the QR factorization 

However, we should mention that we compared the accuracy of QR  factorization 

in the range where neither of the tested algorithms found linear dependency. This 

strictly narrowed down the examined dimension of matrices. 

It should be noted that we did not test the algorithms with pivoting the coefficient 

matrices ( A ). The different pivoting strategies are numerically very expensive and 

the accuracy of the calculations (at least 
1410

) did not substantiate these efforts. 

However, further analyses will need to be performed for testing the effects of the 

pivoting strategies. 
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Discussion and Conclusions 

Here we presented new ABS based algorithms for creating orthogonal basis. We 

numerically verified that the modified Parlett-Kahan (MPK) reorthogonalization 

criterion by Hegedüs can be successfully used. Our numerical experiments 

revealed that the ABS-based algorithm combined with the modified Parlett-Kahan 

provided more accurate results in the three considered cases (the rank of the 

coefficient matrix, the determination of the orthogonal bases, and the QR 

factorization) than the built-in MATLAB functions. 
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