
Acta Polytechnica Hungarica Vol. 4, No. 4, 2007 

 – 97 – 

Detecting Renamings in Three-Way Merging 

László Angyal, László Lengyel, Hassan Charaf 
Department of Automation and Applied Informatics 
Budapest University of Technology and Economics 
Goldmann György tér 3, H-1111 Budapest, Hungary 
{angyal, lengyel, hassan}@aut.bme.hu 

Abstract: Teamwork is the typical characteristic of software development, because the tasks 
can be splitted and parallelized. The independently working developers use Software 
Configuration Management (SCM) systems to apply version control to their files and to 
keep them consistent. Several SCM systems allow working on the same files concurrently, 
and attempt to auto-merge the files in order to facilitate the reconciliation of the parallel 
modifications. The merge should produce syntactically and semantically correct source 
code files, therefore, developers are often involved into the resolution of the conflicts. 
However, when a general textual-based approach reports a successful merge, the output 
can still be failed in compile time, because semantic correctness cannot be ensured 
trivially. Renaming an identifier consists of many changes, and can cause semantic errors 
in the output of the merge, which subsequently have to be corrected manually. This paper 
introduces that matching the identifier declarations, e.g. class, field, method, local 
variables, with their corresponding references in the abstract syntax trees of the revisions, 
and considering the detected renamings during the merge takes closer to semantic 
correctness. The problem is illustrated and a solution is elaborated in this work. 

Keywords: Three-way Merge, Abstract Syntax Tree, Refactoring, Renaming Identifiers, 
Semantic Errors 

1 Introduction 

There are two traditional concurrency models among the source code management 
(SCM) systems: lock and merge models. The lock model prevents the concurrent 
modification on the same files, but the merge model allows the parallel editing, 
and performs a merge to reconcile the changes. A three-way merge engine is a 
usual part of SCM systems, and some of them attempt to auto-merge the files, but 
they often fail due to textual-based approaches or semantic conflicts. The best 
methods should treat modifications as semantic changes in high abstraction level, 
rather than atomic changes. The atomic changes do not reflect the intentions of the 
developers at all, therefore, discovering those intentions can significantly improve 
merge approaches. 



L. Angyal et al. Detecting Renamings in Three-Way Merging 

 – 98 – 

Refactoring [1] means restructuring the code of a system without modifying its 
run-time behaviour. Refactorings are composite changes in higher abstraction 
level. In contrast to simple low-level atomic changes, they aim at improving 
several characteristics of the software source code e.g. understandability, 
maintainability. For instance, renaming an identifier to a better name, can help the 
understability, while this renaming activity consist of numerous atomic changes in 
the code. 

The reconcilation of two modified revisions of a source code file is referred to as 
merge. Merge includes (i) finding the last incorporated changes by differencing, 
(ii) conflict detection and resolution, and finally (iii) the propagation of changes in 
order to produce the reconciled version. The differencing matches the 
corresponding elements (e.g. lines, syntax elements) of the original and the altered 
file. The modifications are derived from the non-matched elements. The output of 
the differencing is the list of edit operations that are applied to the original file 
provides the modified one. The three-way merge approach (illustrated in [2]) is an 
unambiguous way of detecting the modifications in the altered revisions, and 
where the original file is also taken into account. Change propagation is performed 
by replaying the detected edit operations. 

The granularity of the merge means the size of the smallest indivisible changes 
that can be detected and then propagated. Obviously, the fine-grained methods 
have slower execution time over coarse-grained ones, but better conflict resolution 
can be achived by a fine-grained merge. For example, the widespread line-based 
textual algorithm [3] detects even the smallest change as the line changed. More 
changes within the same line became invisible and the source of further merge 
conflicts. Usually, there are relations among the independent changes, which 
involve certain semantic meanings as well. These relations should be considered 
while merging revisions of files. The refactorings affect many lines of the file. The 
typical merge engines handle the composite changes as set of independent atomic 
changes. This makes them unfeasible for merging files after refactoring. 

Fine-grained approaches like abstract syntax tree (AST)-based approaches (e.g. 
[4], [5]) are more suitable for source code differencing and merging, because, with 
the knowledge of the language’s syntax, they always produce syntactically correct 
output contrary to line-based textual approaches e.g. the diff3 tool [6]. However, 
semantic correctness is not ensured at all by considering the syntax. Furthermore, 
after the merge, the reconciled AST has to be serialized. The technique that visits 
all the nodes of the tree to emits source code is called pretty-printing [7]. An AST-
based merge is language dependent and works with lower performance, therefore, 
it is rarely used in general versioning systems. 



Acta Polytechnica Hungarica Vol. 4, No. 4, 2007 

 – 99 – 

Main branch

Mickey’s branch

Mallory’s branch

Check-in
(synchronization)

Mickey’s branch

Mallory’s branch

Check-out Check-in
(synchronization)

Check-out

 
Figure 1 

Developing process of the running example 

Consider the evolution of a software, which is developed by two users, Mickey 
and Mallory. They use a versioning system that supports the merge concurrency 
model. A part of the development process can be followed in Figure 1. After 
checking-out the files, both of them can modify the same files. Mickey renames a 
class without telling Malory to do the same. Mallory uses a reference to that class 
in her inserted lines. After a successful merge performed by the versioning system, 
they found that the merged file contains some semantic errors. The inserted class 
references were not corrected with the new name of that class. This paper 
discusses a solution for these problems. 

The renamings should be detected before the merge and should be considered 
while reconciling the changes. The identifier declarations and their corresponding 
reference nodes have to be collected by traversing the ASTs of the files. Using the 
matches from the differencing, a mapping has to be found between the identifiers 
in different ASTs, which can be used to the correction of the renamed identifiers. 

The remainder of the paper is organized as follows. We discuss the semantic 
conflict related to identifier renaming in Section 2. A solution for that problem is 
described in Section 3. This is followed by the introduction of the existing 
approaches and tools, and finally conclusions and future work are elaborated. 

2 Problem Statement 

Consider the situation, where the developers checked-out a source file to modify 
independently at the same time. The used file versioning system performs an 
AST-based three-way merge on the concurrently altered files after file check-ins. 
Figure 2 depicts the original file and both modified revisions by Mickey and 
Mallory as well. The merge first compares the revisions to the original file, to 
detect changes. The difference analysis of the Mickey’s version produces the 
following differences as atomic AST node operations. 



L. Angyal et al. Detecting Renamings in Three-Way Merging 

 – 100 – 

using System.Drawing; 
 
public interface Widget { 
   void Paint(Graphics g); 
   void SetLocation(Point p); 
   void SetSize(Size s); 
} 
 
public class Label : Widget { 
 
   string label; 
   Point location; 
   Size size; 
 
   public void Paint(Graphics g) { 
      g.DrawString(this.label, this.location); 
   } 
    
   public void SetLocation(Point p) { 
      this.location = p; 
   } 
    
   … 
 
   public override string ToString() { 
      string str; 
      str = this.label; 
      return str; 
   } 
} 

                       Original file 

            Mickey’s revision        Mallory’s revision 
using System.Drawing; 
 
public interface Control { 
   … 
} 
 
public class StaticText : Control { 
   … 
   public void Paint(Graphics 
graph) { 
      graph.DrawString(…); 
   } 
    
   … 
 
   public override string 
ToString() { 
      string value; 
      value = this.label; 
      return value; 
   } 
} 

using System.Drawing; 
 
   … 
 
public class Label : Widget { 
   … 
   public override string 
ToString() { 
      string str; 
      str = this.label; 
      return "[" + str + "]"; 
   } 
} 
 
public class Button : Widget { 
   Label label; 
 
   public void Paint(Graphics g) { 
      g.DrawRectangle(…); 
      this.label.Paint(g); 
   } 
   … 
} 

Figure 2 
The original and the modified files 



Acta Polytechnica Hungarica Vol. 4, No. 4, 2007 

 – 101 – 

OP Name Type of the AST node Name of the parent node New value 
UPD Widget TypeDeclaration Global_Types Control 
UPD Label TypeDeclaration Global_Types StaticText 
UPD g ParameterDeclarationExpression Paint_Parameters graph 
UPD g VariableReferenceExpression DrawString graph 
UPD str VariableDeclarationStatement CodeStatementCollection value 
UPD str VariableReferenceExpression Assign (str=label) value 
UPD str VariableReferenceExpression return str value 

Table 1 
Mickey’s version contains some updates 

There are relations among the identified edit operations (Table 1): (i) parameter 
declaration of g has been changed to graph, and consequently, the reference to g 
has also been changed to graph, (ii) local variable str has been changed to value 
and their corresponding references as well. From the high abstraction level 
semantical point of view, these are two composite changes, not a list of 
independent atomic changes. 

Mallory has not updated anything existing (Table 2), but she has inserted a new 
class Button and reused the existing interface Widget and the class Label. She has 
changed an expression with a previously declared local variable str. 

OP Name Type of the AST node Index Name of the parent 
INS Button TypeDeclaration 2 Global_Types 
INS label_0_Label MemberField 0 Button 
INS Paint_Public_Graphics MemberMethod 1 Button 
INS Add BinaryOperatorExpression 0 return 
INS Add BinaryOperatorExpression 0 Add (left side) 
INS “[“ PrimitiveExpression 0 Add (left side) 
INS “]“ PrimitiveExpression 1 Add (right side) 

MOV str VariableReferenceExpr 1 Add (right side) 
… 

Table 2 
Mallory’s version contains inserts 

The merge does not detect any conflicts between the two list of operations. 
Executing the edit operations of Mickey’s file on Mallory’s version, without any 
semantic considerations, produces the output depicted in Figure 3. The file is still 
syntactically correct, but contains several semantic errors, which have to be 
corrected manually after the merge. 

 

 



L. Angyal et al. Detecting Renamings in Three-Way Merging 

 – 102 – 

using System.Drawing; 
 
public interface Control { 
   … 
} 
     
public class StaticText : Control { 
   … 
         
   public override string ToString() { 
       string value; 
       value = this.label; 
       return ("[" + str + "]"); 
   } 
} 
     
public class Button : Widget { 
   Label label; 
         
   public void Paint(Graphics g) { 
       g.DrawRectangle(this.location, this.size); 
       this.label.Paint(g); 
   } 
   …         
} 

Figure 3 
Merged version with certain semantic errors 

The variable str has been renamed to value, class Label has been renamed to 
StaticText and interface Widget to Control, according to the edit operations. 
However, the newly inserted reference to str remains str and the class Button tries 
to implement the already renamed interface Widget. A merge relies only on the 
detected edit operations and replays them without sense, this can easily produce 
compile time errors. The merge should correct the errors by detecting the renames 
and applying the new names in the newly inserted references. 

3 A Renaming-Aware Extension 

The purpose of this extension is to extend a three-way merge approach with the 
ability to be renaming-aware. When reconciling two source files with a renaming 
that has been performed in one of them, then the newly inserted references with 
the old identifier names must be renamed as well in order to ensure the semantic 
correctness. Previous section has shown that merge engines should take the 
identifier renaming into account and this section proposes a solution, that is 
illustrated via AST nodes of Microsoft’s .NET i.e. CodeDOM [8] nodes. 

The two major points of our approach are 



Acta Polytechnica Hungarica Vol. 4, No. 4, 2007 

 – 103 – 

(i) discovering the identifier dependencies and building a lookup table 
of the identifier declarations and the corresponding references with 
fully qualified names, 

(ii) while executing the edit operations, the identifier dependencies are 
taken into account. 

Before describing point (i), we take a closer look at the different types of identifier 
declaration nodes and their dependencies. 

Declaration node Place of the declaration References node 
VariableDeclaration In method bodies with unique name VariableReferenceExpression 
ParameterVariable-
Declaration 

In method signatures: method 
parameter block 

VariableReferenceExpression 

Table 3 
Local variable declaration nodes 

The union of the visibility scope of local variables with the same name is 
prohibited within a method body, and a variable (Table 3) with the name of a 
parameter variable in the method signature cannot be declared, since Java or C# 
compilers report error. A global lookup table with fully qualified variable names is 
enough to unambiguously select a certain identifier declaration node. 

Declaration node References nodes 
Namespace In fully qualified TypeReference or VariableReferenceExpression 
Class/Structure 
TypeDeclaration 

Base class in class declaration (TypeReferenceExpression) 
Static method invocation (VariableReferenceExpression) 
Static field reference (VariableReferenceExpression) 
Field type (TypeReference) 
Variable type (TypeReference) 
Object creation (ObjectCreateExpression) 
Array type (ArrayCreateExpression) 
Casting (CastExpression) 
Generics (TypeReference) 

MemberField FieldReferenceExpression 
MemberMethod Method invocation (MethodReferenceExpression) 
MemberEvent EventReferenceExpression 
MemberProperty PropertyReferenceExpression 

Table 4 
Identifiers with global visibility 

The full name comprises the namespace, the name of the class, the method that 
contains that local declaration, and finally, the variable name as well as the order 
of its declaration if there are more variables with the same name within a method. 



L. Angyal et al. Detecting Renamings in Three-Way Merging 

 – 104 – 

Table 4 summarizes the identifiers with global visibility beside some possible 
reference nodes that are offered by CodeDOM. 

Figure 4 illustrates the partial AST of the running example with its lookup table, 
and the relations between the nodes and the rows in the table. The identifier 
lookup table contains the identifiers with their fully qualified names, the link to 
the declaration node (red arrows), and the list of links to the correcponding 
reference nodes (blue arrows) as well. This lookup table can be built by traversing 
the AST before the merge. 

Global namespace

Global.Widget (interface)

Global.Label (class)

Global.Paint.g (paramvariable)

Global.ToString.str (variable)

Widget Label

Paint ToString

Parameters MethodBody

MethodInv

VarRef

Assign

FieldRefVarRef

MethodBody

MethodReturn

VarRef

VarDeclParamDecl

ThisRef  
Figure 4 

Partial AST of the original version of the code in the running example and its identifier lookup table 

According to item (ii), identifier dependencies are considered while doing the 
merge. We distinguish between two kinds of operation: (a) insert a new node and 
(b) update an existing node. 

First of all, we need a mapping between the lookup tables of the different ASTs. 
The common point of these different tables is that the difference analysis of the 
two ASTs matches the corresponding nodes in different trees. For instance, in 
Figure 4 variable declaration node str is matched with variable declaration node 
value in Figure 5, thus, even if their fully qualified name is different, there is a 
mapping between these nodes. This aim needs a differencing with an identifier 
name independent match. 



Acta Polytechnica Hungarica Vol. 4, No. 4, 2007 

 – 105 – 

Global namespace

Global.Control (interface)

Global.StaticText (class)

Global.Paint.graph (paramvar)

Global.ToString.value (variable)

Control StaticText

Paint ToString

Parameters MethodBody

MethodInv

VarRef

Assign

FieldRefVarRef

MethodBody

MethodReturn

VarRef

VarDeclParamDecl

ThisRefGlobal.Control (interface)

Global.StaticText (class)

Global.Paint.graph (paramvar)

Global.ToString.value (variable)

Global.Widget (interface)

Global.Label (class)

Global.Paint.g (paramvariable)

Global.ToString.str (variable)

Original version Modified version  
Figure 5 

Mickey’s version and the mapping between lookup tables 

In case (a) when inserting a new reference node, the dependency table should be 
looked at. If the reference name differs from its declaration name, then the 
reference name that is going to be inserted must be renamed. Figure 3 illustrates 
that a local variable str is inserted without checking its declaration name, which 
has been changed to value meanwhile, due to Mickey’s work. The mapping 
between the tables allows to look up the matching between the declaration node 
str and the declaration node value. Along these connections, we can found that the 
declaration name is different. Therefore, the algorithm should rename the new 
variable reference node that is to be inserted, and the new name has to be value. 

In case (b), when updating an indentifier declaration node, the corresponding 
references, which also store the name of the identifier have to be changed as well. 
These reference nodes can be looked up from the table. For example, if we want to 
execute the edit operations from Mickey’s version on Mallory’s file, updating the 
interface declaration Widget to Control should involve the change of the class 
reference in the declaration of Button from Widget to Control. 



L. Angyal et al. Detecting Renamings in Three-Way Merging 

 – 106 – 

4 Existing Tools and Approaches 

This section introduces some of the most relevant tools and approaches that are 
related to our work. 

The well-known CVS [9] uses line-based textual merge. Due to its coarse-grained 
granularity, it detect atomic changes together with their context, for instance, 
renaming a variable in an expression indicated as the whole line has been changed. 
After a successful merge of files that were edited in parallel, syntactical and 
semantical errors can remain in the source code. These problems must be 
corrected manually after the merge, which was reported to be finished without 
conflicts. The errors that are revealed in compile time are better than run-time 
errors, because they are hidden e.g. unintended method overrides and can cause 
the malfunction of the software. 

A common characteristic of textual and AST-based differencing is that they detect 
several atomic changes without connection between them, abstraction of the 
changes should be extracted to guess the intentions of the developer. [10] 
presented that identifying the relations of the atomic changes is important to 
improve the comprehension of the source code evolution. Small changes can be 
grouped together into high-level abstract operations. Other advantage of the 
abstraction is that the changes become reusable on other files. 

The state-of-the-art approaches handle source code changes as semantic actions, 
because they present more information and reflect the intentions of the developers. 
The differencing techniques that detect changes in lines or in ASTs provide the list 
of atomic changes e.g. insertion or deletion of a node, but these changes have no 
abstract information value. The modern integrated development environments 
(IDE) have the ability to log the semantic changes in high abstraction level and the 
corresponding low-level details as well. For instance, Eclipse [11] has a 
refactoring engine that logs the changes performed by refactoring actions, like 
renaming a variable or a class, if they were done via that engine. These logs can be 
utilized further during the merge process. 

Molhado is a refactoring-aware SCM system, that includes an Eclipse plugin 
MolhadoRef [12], which captures and stores the performed refactorings on Java 
files. Its underlying data model is flexible and allows representing programs in 
any language. It performs only lightweight parsing due to performance reasons, 
the method bodies in string format are handled as attributes of methods. 
MolhadoRef use the Eclipse built-in differencer engine to perform textual 
difference analysis, the changed lines are examined if the changes were caused by 
the refactoring operations, and if so, they are removed from the change list. After 
that, Molhado can perform a textual merge by replaying the recorded refactorings 
together with other edit operations in order to propagate changes. Authors of 
MolhadoRef exhibits better merge results with less human intervention compared 
to CVS. 



Acta Polytechnica Hungarica Vol. 4, No. 4, 2007 

 – 107 – 

The merge based on previously saved logs is called operation-based merging. 
These logs recorded by the source code editor contain text edit operations and 
informations on other high level source code transformations. Operation-based 
approaches can be very precise in recording the changes and replaying them, but 
this technique heavily relies on the editor, and sometimes the log files are 
unavailable or inconsistent with the changes, because it cannot be ensured that 
every developer uses the predefined editor. RefactoringCrawler [13] is a tool that 
can reconstruct with good reliability some kinds of applied refactorings by 
comparing the original and the modified version of a Java file. It uses user 
adjustable parameters to match the method bodies of the classes. Its matching 
algorithm is based on an approach that uses fingerprints of the tokenized method 
bodies. After matching, it performs semantic analysis. RefactoringCrawler is 
limited to examine API interfaces, it does not deal with local variables and has 
some shortcomings with fields. 

In [14], a tool is presented that detects and reports the name and type changes in 
identifiers of different versions of a C program. The purpose of this tool is to 
improve the understanding of software evolution with higher level abstract 
information about the name and type changes. It uses a TypeMap for typedefs, 
structures and unions, a GlobalNameMap for global variables, and 
LocalNameMaps per function bodies to collect the matched identifiers. Types and 
functions are matched if they have the same name. The AST traversal within 
function bodies is performed by parallel and the local variables are mapped by 
their syntactical position. 

In our approach, there is AST-based differencing and execution of atomic node 
operations, where the related identifier declarations and references are connected 
together and taken into consideration while applying those detected operations on 
the other AST. If any of the identifier nodes are changed, it should also affect the 
others. If the name of a variable is changed in the declaration, we modify every 
references that have to be refreshed. If the code, which is taken as input is 
semantically correct i.e. can be compiled, the identifier references must be 
consistent with their corresponding declarations. The advantage of our method 
over other object-oriented tools is that we support local variables. 

Conclusions and Future Work 

The importance of the comprehension of the committed changes has been pointed 
out via an illustrative example. The detection of the renamings should be 
considered in any three-way merge systems, to avoid tedious and error-prone 
manual code reviews and fixing the code after merging. The presented approach 
takes us closer to a semantically correct merge. Although, there are several other 
semantic related problems that were not addressed, however, huge number of 
compile-time errors can be reduced by the presented approach, and it moves 
toward an automatic merge without human interaction. Our future work involves 
the reseach of the solutions to other semantic problems. 



L. Angyal et al. Detecting Renamings in Three-Way Merging 

 – 108 – 

The approach can work in merging generated code with manually written code, 
where refactorings are not explicitly intended by the developers, but caused by the 
code generator, because some parameters have changed. As future work, we also 
plan to improve the presented approach to create an efficient code generation tool 
with round-trip engineering support. The tool can be used in a visual designing 
environment, which applies bi-directional validated model to source 
transformations. Round-trip engineering of custom models lacks tool support due 
to the complexity and the difficulty of the generalization of all specific cases. 

Acknowledgement 

The fund of ‘Mobile Innovation Centre’ has partly supported the activities 
described in this paper. This paper was supported by the János Bolyai Research 
Scholarship of the Hungarian Academy of Sciences. 

References 

[1] Martin Fowler et al., Refactoring: Improving the Design of Existing Code. 
Addison-Wesley, 1999, ISBN 0201485672 

[2] Tom Mens, A State-of-the-Art Survey on Software Merging, IEEE 
Transactions on Software Engineering, 28(5), May 2002, pp. 449-462 

[3] Eugene W. Myers, An O(ND) Difference Algorithm and its Variations, 
Algorithmica, 1(2), 1986, pp. 251-266 

[4] Wuu Yang, How to Merge Program Texts, Journal of Systems and 
Software, Vol. 27, No. 2, 1994, pp. 129-135 

[5] Ulf Asklund, Identifying Conflicts During Structural Merge, Proceeding of 
the Nordic Workshop on Programming Environment Research '94, Lund 
University, 1994, pp. 231-242 

[6] Sanjeev Khanna, Keshav Kunal, and Benjamin C. Pierce. A Formal 
Investigation of Diff3, Manuscript, University of Pennsylvania, 2006 

[7] Derek C. Oppen, Prettyprinting ACM Transactions on Programming 
Languages and Systems, 2(4), 1980, pp. 465-483 

[8] Microsoft’s CodeDOM Web Site, http://msdn2.microsoft.com/en-
us/library/ system.codedom.aspx 

[9] CVS Wikipedia Web Site, http://ximbiot.com/cvs/wiki/ 

[10] Peter Ebraert, Jorge Antonio Vallejos Vargas, Pascal Costanza, Ellen Van 
Paesschen, Theo D'Hondt, Change-Oriented Software Engineering, 15th 
International Smalltalk Joint Conference, Lugano, Switzerland (to be 
published), 2007 

[11] Eclipse Web Site, http://www.eclipse.org 



Acta Polytechnica Hungarica Vol. 4, No. 4, 2007 

 – 109 – 

[12] Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N. Nguyen, 
Refactoring-Aware Configuration Management for Object-Oriented 
Programs. International Conference on Software Engineering. IEEE 
Computer Society, Washington, DC, pp. 427-436 

[13] Danny Dig, Can Comertoglu, Darko Marinov, Ralph Johnson, Automated 
Detection of refactorings in evolving components, European Conference on 
Object-Oriented Programming, Nantes, France, 2006, pp. 404-428 

[14] Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks, Understanding 
source code evolution using abstract syntax tree matching. ACM SIGSOFT 
Software Engineering Notes 30(4), July 2005, pp. 1-5 


