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Abstract: This paper proposes approaches for adapting chromosome-based evolutionary 

methods to the Permutation Flow Shop Problem. Two types of individual representation 

(i.e. encoding methods) are proposed, which are applied on three different chromosome 

based evolutionary techniques, namely the Genetic Algorithm, the Bacterial Evolutionary 

Algorithm and the Particle Swarm Optimization method. Both representations are applied 

on the two former methods, whereas one of them is used for the latter optimization 

technique. Each mentioned algorithm is involved without and with local search steps as 

one of its evolutionary operators. Since the evolutionary operators of each technique are 

established according to the applied representation, this paper deals with a total number of 

ten different chromosome-based evolutionary methods. The obtained techniques are 

evaluated via simulation runs carried out on the well-known Taillard's benchmark problem 

set. Based on the experimental results the approaches for adapting chromosome based 

evolutionary methods are compared to each other. 

Keywords: Chromosome-based evolutionary methods; Memetic algorithms; Combinatorial 

optimization; Permutation Flow Shop Problem 

1 Introduction 

One of the most intensively studied combinatorial optimization problems is the 

Permutation Flow Shop Problem (PFSP) [1]. In this problem, there are given n 

jobs and m machines. All the jobs should be processed by all the machines one 

after another. The machines are deployed in a line and a machine can handle one 
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single job at once, that is, the process of the jobs is pipeline-like. There is also 

given an n-by-m processing time matrix defining the necessary amount of time a 

job has to stay on a machine, for each job-machine pair. A job can be processed 

on any machine only if the machine is free (the preceding job has finished on the 

machine) and the job has already been processed on the preceding machine. 

The task is to find a permutation (a sequence) of the jobs, in case of which the 

total processing time of all the jobs on all the machines (i.e. the so-called 

makespan) is minimal. 

This problem is known to be NP-hard [2], thus there are no efficient algorithms to 

exactly solve this task (and there is not much hope of finding one). This means 

that every method guaranteeing optimal solutions has impractically long 

computational time for even moderate problem sizes. Hence, only heuristics 

resulting in so called quasi-optimal solutions are viable. Over the past few 

decades, a number of such heuristics have been invented and published (e.g. [3]-

[5]). 

Since due to the nature of the PFSP problem these heuristics cannot be evaluated 

analytically, their evaluation and their comparison to other techniques can be 

made experimentally, i.e. based on results of simulation runs carried out on 

standard reference tasks, called benchmark problems. Several such comparisons 

have been made involving a large part of the so far proposed methods (e.g. [3]-

[5]). These comparative studies are mostly based on the well-known Taillard's 

benchmark problem set [6]. 

This paper proposes approaches for adapting chromosome based evolutionary 

methods to the Permutation Flow Shop Problem. The proposal includes two types 

of individual representation (i.e. encoding method): a permutation and a real value 

based one. They are applied on three different chromosome based evolutionary 

techniques, namely the Genetic Algorithm [7], the Bacterial Evolutionary 

Algorithm [8] and the Particle Swarm Optimization [9] method. Both 

representations are applied on the two former methods, whereas the real value 

based one is used for the latter optimization technique. Each mentioned algorithm 

is involved without and with local search steps as one of its evolutionary 

operators. Since the evolutionary operators of each technique are established 

according to the applied representation, this paper deals with a total number of ten 

different chromosome-based evolutionary methods. 

The obtained techniques are evaluated via simulation runs carried out on the 

above mentioned Taillard's benchmark problem set. Based on these experimental 

results, the methods, and thus the chromosome-based evolutionary technique 

adapting approaches themselves, are compared to each other. 

The next section gives a formal definition to the PFSP problem. Within this, the 

search space and the makespan function as the objective function are defined. 
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Then, the third section gives a brief overview of the chromosome-based 

evolutionary techniques being adapted to the PFSP task. The basic concept and the 

main steps of the algorithms are also presented. The new encoding approaches for 

the PFSP problem are proposed in section four. After that, the evolutionary 

operators constructed based on the newly proposed individual representations are 

described. The sixth section enumerates the algorithms, which can be established 

by using the discussed approaches and which are compared via simulation runs. 

The experimental results and the observed characteristics are discussed in section 

seven. Finally, in the last section our work is summarized and some conclusions 

are drawn. 

2 The Permutation Flow Shop Problem 

As was described in the Introduction, in this problem there are given the number 

of jobs n, the number of machines m and an n-by-m processing time matrix P 

defining the necessary amount of time a job has to stay on a machine, for each 

job-machine pair. That is, the elements of the matrix are positive and an element 

pi,j denotes the time the i
th

 job stays on the j
th

 machine. 

All the jobs should be worked by all the machines one after another. The machines 

are deployed in a line and a machine can handle one single job at once. That is, the 

process of the jobs is pipeline-like. A job can be processed on a machine only if 

the machine is free (the preceding job has finished on the machine) and the job has 

already been processed on the preceding machine. 

The task is to find a permutation (an order) of the jobs, in case of which the total 

processing time of all the jobs on all the machines (i.e. the so called makespan) is 

minimal. 

For example, if there are three jobs the permutation (2,3,1) denotes the case when 

the second job goes first, the third goes next, and finally the first goes last. This 

should not be confused with another interpretation of a permutation, where the 

same permutation would mean a case when the first job goes second, the second 

one goes third and the last one goes first. In our interpretation this latter will be 

referred as the „inverse‟ of the permutation defined above. (It can be easily seen 

that this „inverse‟ is the algebraic inverse of the permutation; consequently, the 

inverse of the inverse of the permutation is the permutation itself.) 

Clearly, the search space is the set of the n-order permutations Sn, and the 

objective function is defined over this search space and its range is the set of 

positive numbers R
+
. 

Formally, the objective or makespan function f can be defined as follows (see e.g. 

[1]): 
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where pσ(i),j and t(i,j,σ) denote the processing and the completion times of the i
th

 

job of the σ permutation on the j
th

 machine, respectively. 

The task is to find a σ permutation for which the makespan is optimal (i.e. 

minimal). 

3 Overview of the Evolutionary Techniques Applied 

A famous, frequently studied and applied family of iterative stochastic 

optimization techniques is called chromosome based evolutionary algorithms. 

These methods, like the Genetic Algorithm (GA) [7] or the Bacterial Evolutionary 

Algorithm (BEA) [8], imitate the abstract model of the evolution of populations 

observed in nature. Their aim is to change the individuals in the population (set of 

individuals) by the evolutionary operators to obtain better and better ones. The 

goodness of an individual can be measured by its „fitness‟. If an individual 

represents a candidate solution for a given problem, the algorithms try to find the 

optimal solution for the problem. Thus, in the case of optimization problems, the 

individuals represent elements of the search space and the fitness function is a 

transformation of the objective function. If an evolutionary algorithm uses an 

elitist strategy, it means that the best ever individual will always survive and 

appear in the next generation. As a result, at the end of the algorithm the best 

individual will represent the (quasi-) optimal element of the search space. 

The individuals are usually represented by chromosomes (this is why these 

methods are called chromosome-based evolutionary algorithms), which are most 

often vectors holding numbers in their components (i.e. in their genes). The 

manner in which the individuals are represented as chromosomes is the encoding 

method. 

The steps of the algorithms changing the chromosomes, and thus the candidate 

solutions, are called evolutionary operators. The evolutionary operators are in 

strong connections with the encoding technique, since the encoding determines the 

form of the chromosomes the operators work with. 
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It is quite obvious that besides the formation of the skeleton of the evolutionary 

algorithm, the design of the encoding method and the evolutionary operators also 

play key roles in the efficient government of the evolution process. 

There are a huge number of chromosome based evolutionary algorithms. Some of 

them will be presented below; these are the ones that were investigated in our 

work. 

3.1 Genetic Algorithm 

One of the most (if not the most) widely applied chromosome based evolutionary 

techniques is the Genetic Algorithm (GA) [7]. It comprises the following steps: 

1 Initialization:  

An initial population is created by selecting random elements of the 

search space according to some distribution, or by using an initial 

heuristic. 

2 Selection:  

Individuals are selected according to their fitness values. The higher 

fitness value an individual has, the bigger its probability to be selected. 

There are a number of selection methods, e.g. roulette wheel technique, 

or stochastic universal sampling.  

The selected individuals are called parents. 

3 Crossover:  

Pairs are formed from the set of parents and a random point of the 

chromosome is selected for each pair. Then the parents change the 

sequence of their genes between each other after the selected point. The 

resulting individuals are called offspring. 

4 Mutation:  

The genes of each offspring are mutated with a certain probability and 

take new random values. 

5 Substitution:  

The offspring are substituted in the population, i.e. they overwrite 

individuals in it. The individuals to overwrite are selected according to 

their fitness values. However, unlike in the selection step, in this case the 

higher fitness value an individual has, the smaller its probability to be 

selected. If the above mentioned elitist strategy is applied, the best 

individual will not be overwritten. With minor modifications, the same 

algorithms can be used for the selection of individuals to overwrite as in 

the selection step. 

The main iteration loop of the algorithm contains steps 2 – 5. A single iteration is 

called generation. The algorithm stops if at the end of a generation one of the 

termination criteria fulfills (generation limit reached, time limit exceeded, etc.). 

After termination the best individual represents the quasi-optimal solution. 



K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem 

 – 120 – 

3.2 Bacterial Evolutionary Algorithm 

Compared to GA, a somewhat different evolutionary technique is called the 

Bacterial Evolutionary Algorithm (BEA). This algorithm was introduced by Nawa 

and Furuhashi in [8]. The first version of this algorithm was called the Pseudo-

Bacterial Genetic Algorithm (PBGA) [10], which proposed a modified mutation 

operator called bacterial mutation, based on the natural phenomenon of microbial 

evolution. The Bacterial Evolutionary Algorithm introduced a new operator called 

the gene transfer operator. While PBGA incorporates bacterial mutation and 

crossover operator, the BEA substitutes the classical crossover with the gene 

transfer operation. Both of these new operators were inspired by bacterial 

evolution. Bacteria can transfer genes to other bacteria, and thus gene transfer 

allows the bacteria to directly transfer information to the other individuals in the 

population. 

BEA comprises the following steps: 

1 Initialization:  

An initial population is created by selecting random elements of the 

search space according to some distribution, or by using an initial 

heuristic. 

2 Bacterial mutation:  

All bacteria are mutated in all their genes multiple times in random 

orders. In case of each mutation step, if the original value was better, 

then it is restored; if the new one makes the individual have higher fitness 

value, then it is kept. 

3 Gene transfer:  

The population is divided into two parts according to the fitness values. 

The individuals possessing higher fitness values form the superior and 

the ones having lower values form the inferior part of the population.  

Then pairs are formed, where the first members of the pairs are from the 

superior part (superior individuals) and the second members come from 

the inferior part (inferior individuals). For each pair a random point of the 

chromosome is selected. Then the value of the gene at the selected point 

in the inferior bacterium is overwritten with the value of the gene at the 

selected point in the superior bacterium. 

The main iteration loop of the algorithm contains steps 2 and 3. The algorithm 

stops if at the end of a generation one of the termination criteria fulfils (generation 

limit reached, time limit exceeded, etc.). After termination the best individual 

represents the quasi-optimal solution. 
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3.3 Particle Swarm Optimization 

Another type of iterative methods is called swarm intelligence techniques. These 

algorithms, like the nowadays famous Particle Swarm Optimization (PSO) [9], are 

inspired by social behavior observed in nature, e.g. bird flocking or fish schooling. 

In these methods a number of individuals try to find better and better places by 

exploring their environment, led by their own experiences and the experiences of 

the whole community. Since these methods are also based on processes of the 

nature, like GA or BEA, and since there is also a type of evolution in them („social 

evolution‟), they can be categorized amongst the evolutionary algorithms. 

Similarly, as was mentioned above, these techniques can also be applied as 

optimization methods if the individuals represent candidate solutions. 

PSO comprises the following steps: 

1 Initialization:  

An initial population is created by selecting random elements of the 

search space according to some distribution, or by using an initial 

heuristic.  

In the case of each individual, their current place is considered as its local 

best place (see its reason below). Moreover, the place of the best 

individual is stored as the global best place in the search space. 

2 Moving the individuals:  

The individuals are moved (their position within the search space xi is 

changed) based on their local best place li and on the global best place gi 

(the subscript i denotes the number of the current iteration). The new 

position xi is determined by the following equations:  
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where φv,  φl  and φg are parameters of the algorithm, rl and rg are random 

values. 

3 Updating local and global best places:  

The individuals are evaluated and if an individual is at a better position 

than its local best place, the local best place is set to the current position. 

If the currently best individual in the population has higher fitness value 

than the fitness value of the global best place, then the global best place 

is set to the position of the currently best individual. 

The main iteration loop of the algorithm contains steps 2 and 3. The algorithm 

stops if at the end of a generation one of the termination criteria fulfils (generation 

limit reached, time limit exceeded, etc.). After termination the global best place 

represents the quasi-optimal solution. 
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3.4 Memetic Algorithms 

The techniques causing minor modifications to the candidate solutions iteration by 

iteration and thus exploring only the „neighborhood‟ of particular elements of the 

search space are called local search methods. 

After a proper amount of iterations, as a result of these minor modification steps, 

the local search algorithms find the „nearest‟ local minimum quite accurately. 

However, these techniques are very sensible to the location of the starting point. In 

order to find the global optimum, the starting point must be located close enough 

to it, in the sense that no local optima separate the two points. 

Evolutionary computation techniques explore the whole objective function, 

because of their characteristic, so they find the global optimum, but they approach 

it slowly. Local search based algorithms, meanwhile, find only the nearest local 

optimum; however, they converge to it faster. 

Avoiding the disadvantages of the two different technique types, evolutionary 

algorithms (including swarm intelligence techniques) and local search methods 

may be combined [11], for example, if in each iteration for each individual one or 

more local search steps are applied. Expectedly, this way the advantages of both 

local search and evolutionary techniques can be exploited: the local optima can be 

found quite accurately on the whole objective function, i.e. the global optimum 

can be obtained quite accurately. 

There are several results in the literature confirming this expectation in the 

following aspect. Usually, the more difficult the applied local search step is, the 

higher convergence speed the algorithm has in terms of number of generations. It 

must be emphasized that most often these results discuss the convergence speed in 

terms of number of generations. However, the more difficult an algorithm is, the 

greater computational demand it has, i.e. each iteration takes longer. 

Therefore the question arises: how does the speed of the convergence change in 

terms of time if the local search based technique applied in the method is 

changed? 

Apparently, this is a very important question of applicability, because in real 

world applications time as a resource is a very important and expensive factor, but 

the number of generations the algorithm executes does not really matter. 

This is the reason why the efficiency in terms of time was chosen to be 

investigated in this paper. 
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4 Proposed Encoding Methods 

Two types of individual representation (i.e. two encoding methods) are proposed 

in this paper for the evolutionary techniques. 

The first one is based on the permutations themselves, thus the evolutionary 

operators modify the elements of the permutations directly. 

The second encoding method is an indirect, real value based encoding approach, 

which is an obvious extension of those representations applied for numerical 

optimization problems. Although the operators modify the values of real valued 

vectors (arrays) – since the objective function is defined over permutations, the 

chromosomes represent permutations actually – there is a need to convert the real 

valued vectors to permutations somehow. 

In order to reduce time complexity costs, the chromosomes can be „mirrored‟ 

within the individuals in a manner which makes the modifications caused by the 

evolutionary operators and the evaluation of the individual more simply 

performable. 

4.1 Permutation-based Encoding 

This representation is based on the permutations themselves. Each chromosome 

holds one single permutation, where the genes represent the jobs and each gene 

holds an element of the permutation. That is, the chromosome is an integer vector, 

where the values of the genes are between 1 and n (where n is the number of jobs), 

additionally, every integer appears once in the chromosome. 

Actually, this permutation is not the permutation the objective function gets, i.e. it 

is not the one defined in Section 2, but its inverse (as was explained by a simple 

example before). Thus, hereafter this will be called the „inverse permutation‟. 

4.2 Real Value-based Encoding 

Most often in the case of numerical optimization problems, the individuals have 

binary or real representations. This means that the chromosomes are binary or real 

valued vectors (arrays) representing points in the search space, i.e. candidate 

solutions. 

In those most frequent cases when the objective function is defined over R
n
 (or 

over a subset of R
n
), it is a natural way to encode the individuals in real valued 

vectors. 

This representation can be extended to PFSP tasks easily as follows. 
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If the number of jobs is n, then the chromosomes are real valued vectors with 

length of n. Since in the case of PFSP tasks the objective function is defined over 

permutations, the real valued vectors must be converted to permutations. This can 

be done by ordering the genes according to the values they have. Because there is 

exactly one permutation in Sn corresponding to every gene order, the new gene 

order is equivalent to a permutation. 

There seems to be an unnecessary „overhead‟ in the previous encoding technique, 

because one could say that the chromosome should hold the permutation and the 

operators should modify the permutations directly, instead of changing a real 

valued vector and the permutation via this vector. 

However, despite the computational overhead, this encoding manner is more 

useful, as will be presented in the next sections. 

4.3 Mirroring the Chromosomes 

Performing the effects of the evolutionary operators on the individuals can be 

made computationally cheaper in the following way. 

The individuals do not comprise only one single chromosome as usual, but two 

chromosomes being similar to each other: an original and a mirrored one. The 

original chromosome contains a vector of real numbers and the inverse 

permutation or only the inverse permutation (based on the base of the encoding) as 

discussed above. The mirrored chromosome contains the inverse of the inverse 

permutation (i.e. the permutation used by the objective function) and in the case of 

real value based encoding, the adequate permutated order of the real numbers (i.e. 

the real numbers in an ascending order). 

The chromosome and the mirrored chromosome are updated simultaneously in 

every step during the application of the evolutionary operators. Thus, they are 

always equivalent in the sense that they always represent the same candidate 

solution for the problem. 

The reasons why this mirroring technique causes the reduction of computational 

costs will be explained in the next section during the discussion of the certain 

operators. 

5 Established Evolutionary Operators 

The different evolutionary operators used by the algorithms are derived back to 

three „atomic operators‟: mutation, gene transfer and local search. 

Mutation in GA and bacterial mutation in BEA can be obviously constructed by 

using the atomic operator mutation, and gene transfer in BEA can be done by 

using the atomic operator gene transfer. 
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Crossover in GA can be considered as a sequence of gene transfers from a given 

position to a given position in a random order. 

The atomic operator local search is exactly the same as the local search operator in 

all three evolutionary techniques. 

It is easy to see that if all the atomic operators are defined so that their results are 

valid individuals (i.e. individuals representing permutations), the constructed 

operators also results in valid individuals. 

The atomic operators are the following. 

5.1 Mutation 

5.1.1 Permutation-based Encoding 

In the permutation-based case, the mutation of a gene means that the value of the 

gene is set to a random integer value from 1 to n (where n is the number of jobs). 

This modification would lead out from the search space, because the resulting 

integer vector would not be a permutation, hence a „compensation step‟ is made, 

i.e. the gene whose value is taken by the mutated gene changes its value to the 

previous value of the mutated gene. That is, during mutation, the mutated gene 

changes its value with a random gene. In this way the mutation operator is closed 

with respect to the search space. 

The change is committed both in the chromosome and in the mirrored 

chromosome. 

Since the permutation-based mutation modifies only two values in the 

permutation, it makes „local‟ changes within the chromosome. 

5.1.2 Real Value-based Encoding 

When a real value based gene is mutated, it is set to a random real value. Thus, the 

permutation represented by the chromosome changes. 

It would be computationally expensive to compute the new corresponding inverse 

permutation by reordering the whole chromosome. Instead of this, the mirrored 

chromosome can be applied, where the place of the new value can be found easily 

by a computationally cheap binary search (since the real values are ordered in the 

mirrored chromosome). Then, in the mirrored chromosome, the sub-chromosome 

(i.e. the gene-sequence) between the original and the new place of the mutated 

gene is shifted one place left (if the new value is higher than the old one) or one 

place right (if the new value is lower than the old one). 
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During the shift, the corresponding elements of the inverse permutation are also 

updated in the chromosome. 

Actually, the real value-based mutation means a random direction shift of a 

random length part of the mirrored chromosome. Thus, it causes not only local 

effects unlike the permutation based mutation. 

After the previous description of the real value-based mutation, one could ask 

whether an equivalent operator could not be constructed based on only the 

permutations; i.e. is it possible that there is no difference between the strength of 

the two different encoding manners? 

The answer is no, an equivalent operator could not be constructed based on only 

the permutations, because although the shift of random length gene-sequences 

could easily be made, in the case of real value based representation, the 

distribution of random variables determining the lengths and positions are also 

developing (implicitly) while the real values are changing. Therefore, the diversity 

of the real value based encoding is higher. 

It was mentioned in the previous section that this representation has a 

computational overhead, but as it discussed now, it may give higher diversity to 

the mutation. Thus, certainly there is a difference between the strength of the two 

different encoding manners; however, it is an open question which one is more 

efficient, and by how much. 

This will also be investigated in Section 6. 

5.2 Gene Transfer 

5.2.1 Permutation-based Encoding 

During gene transfer in the case of permutation based encoding the inverse 

permutation value of the selected gene in the target individual is set to the inverse 

permutation value of the corresponding gene of the source individual. Hereafter, a 

compensation step is made similarly as in the case of mutation. 

5.2.2 Real Value-based Encoding 

Applying real value-based encoding, the gene transfer is not much different. The 

real value of the selected gene in the target individual is set to the real value of the 

corresponding gene of the source individual. Hereafter, a similar shifting in the 

mirrored chromosome followed by the update of the chromosome is made as in 

the case of mutation. 
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5.3 Local Search 

The local search is performed the same way in the case of both representations. 

One iteration cycle of the local search is as follows. 

First of all, a random order of the elements of the permutation from the first to the 

last but one is selected. Then, following this order, the neighboring elements 

within the mirrored chromosome try to change their values with each other so that 

if according to the random order the current element is the i
th

, then it tries to 

change its value with the (i+1)
th

. After each change between the neighbors, if the 

resulting permutation is better (i.e. it has a higher fitness value), the change is kept 

and both the chromosome and the mirrored chromosome are updated according to 

the modification made. Otherwise, the change is rolled back. 

6 Optimization Algorithms Investigated in this Paper 

Based on the previous sections ten different evolutionary optimization techniques 

were constructed and evaluated. These are the following: 

 Genetic Algorithm based techniques: 

o GAr: Genetic Algorithm without local search using real value 

based encoding 

o GAp: Genetic Algorithm without local search using permutation 

based encoding 

o GMAr: Genetic Algorithm with local search (Memetic 

Algorithm) using real value based encoding 

o GMAr: Genetic Algorithm with local search (Memetic 

Algorithm) using permutation based encoding 

 Bacterial Evolutionary Algorithm based techniques: 

o BEAr: Bacterial Evolutionary Algorithm without local search 

using real value based encoding 

o BEAp: Bacterial Evolutionary Algorithm without local search 

using permutation based encoding 

o  BMAr: Bacterial Evolutionary Algorithm with local search 

(Bacterial Memetic Algorithm) using real value based encoding 

o BMAp: Bacterial Evolutionary Algorithm with local search 

(Bacterial Memetic Algorithm) using permutation based 

encoding 

 Particle Swarm Optimization based techniques: 

o PSO: Particle Swarm Optimization without local search using 

real value based encoding 



K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem 

 – 128 – 

o PMO: Particle Swarm Optimization with local search using real 

value based encoding 

In the remaining part of the paper GAr, GAp, GMAr and GMAp will be referred 

to as „genetic‟ techniques, BEAr, BEAp, BMAr and BMAp will be labeled as 

„bacterial‟ methods, and finally PSO and PMO will be referred to as „particle 

swarm‟ algorithms. 

7 Evaluation of the Obtained Techniques 

Simulation runs were carried out in order to evaluate and to compare the 

efficiency of the proposed approaches and the established algorithms. First, the 

new methods are compared to each other, then the best one is compared to two 

other heuristics: the well-known Iterated Greedy technique (IG) [12] and a genetic 

algorithm based memetic method (MA) [13], which is e.g. used in combination 

with IG in multi-processor systems. 

For these purposes, a dozen problems were applied from the well-known 

Taillard‟s benchmark set. Exactly one problem from each available problem sizes. 

In the simulations, the parameters of the newly proposed methods had the 

following values, because after a number of test runs these values seemed to be 

the most suitable. 

The number of individuals in a generation was 14 in genetic and 8 in bacterial 

algorithms, whereas it was 80 in particle swarm methods. In the case of genetic 

techniques the selection rate was 0.5 and the mutation rate was 0.3; in the case of 

bacterial techniques, the number of clones was 2 and 1 gene transfer was carried 

out in each generation. The genetic methods applied the elitist strategy. 

In the iterated greedy methods, 4 jobs were selected to remove in each generation 

and the temperature parameter was 5 (see [12]). The MA technique used 13 

individuals as in [13]. 

The simulation was carried out on a PC with E8500 3.16 GHz Intel Core 2 Duo 

CPU and using Windows Vista Business 64-bit operating system. 

In the case of all ten new algorithms for all benchmark problems  runs were 

carried out. Then the means of the obtained values were taken. 

The means of the objective function values of the best individuals during the runs 

of the new techniques are presented in figures (Figures 1-12) to get a better 

overview. The horizontal axes show the elapsed computation time in seconds and 

the vertical axes show the makespan values of the best individuals at the current 

time. 
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In the figures, dotted lines show the results of the pure evolutionary algorithms 

applying permutation based encoding (GAp and BEAp); dashed-dotted lines 

denote the memetic techniques using permutation-based encoding (GMAp and 

BMAp); solid lines present the graphs of the pure evolutionary methods applying 

real value-based encoding (GAr, BEAr and PSO); and dashed lines show the 

memetic techniques using real value based encoding (GMAr, BMAr and PMO). In 

each case a dashed horizontal line shows the best known makespan value 

according to [6]. 

The means of the resulting values were collected in tables (Tables I-VI). In the 

tables under the „Problem‟ label the „ID‟ columns show the identifier of the tasks 

in Taillard‟s benchmark problem set [6] and „Size‟ denotes the size of the 

benchmark problem (in the form of “number of jobs times number of machines”). 

The best known makespan values according to [6] are collected in columns 

labeled by „Best known value‟. „Time limit‟ shows the length of the simulation 

runs in seconds. The time limits were chosen according to test runs to values, after 

which the techniques did not show significant improvements (cf. Figures 1-12). 

Under the algorithm labels the „Results‟ columns present the mean of the 

makespan values produced by the techniques, „Rel. diff.‟ shows the mean of the 

relative difference of these makespan values compared to the known best ones 

,eknown valuBest /)eknown valuBest Result(
5

1
5

1






i

i  (3) 

whereas „No. of gen.‟ denotes the mean of the number of executed generations. 

The best makespan values for each benchmark problem are bold underlined 

numbers and the best values of a particular evolutionary algorithm family 

(genetic, bacterial and particle swarm) for each benchmark problem not being the 

totally best values are italic underlined numbers. 

The results of the runs of the new algorithms and their short explanations follow 

in the next subsection. After that, the results of the comparison with IG and MA 

are analyzed. In Subsection 7.3 conclusions will be drawn about the main 

characteristics of the behavior of the methods. 

7.1 Experimental Results for the Established Techniques 

The following observations could be made based on the obtained values (see 

Figures 1-12 and Tables I-V). 

Considering the figures and tables probably the most obvious tendency of the 

results is that bacterial techniques gave better performance in each case than 

genetic and particle swarm based ones, as they were never outperformed by other 

methods. Such an unambiguous observation cannot be made between the latter 

two algorithm families. The superiority of the bacterial algorithms is growing in 
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terms of the difficulty (i.e. the size) of the optimization task. In the case of easier 

problems, the difference in efficiency between the algorithm families is not so 

significant (see Figures 1, 2, 4 and 7); however as the problem size increases, the 

significance grows (see Figures 3, 5, 6, 8, 9 and 10). Finally, in the case of the 

most difficult tasks (i.e. the biggest problem sizes) the difference is more than 

significant. 

By looking at Table IV it is clear to see that BMAr performed best during the 

simulation runs, because in half of the cases it produced better results than the 

other algorithms, whereas in three more cases it found the known best values for 

the benchmark problems. This means that BMAr was outperformed by other 

techniques only in a quarter of the problems. 

As can also be observed, memetic algorithms (the methods integrating local 

search steps) had higher efficiency in most of the cases. Among the genetic 

techniques, GMAr was the best in 8 problems, whereas GAr was the best in its 

family only 4 times out of 12 (see Tables I-II). In the case of the bacterial 

methods, the pure evolutionary techniques gave better results only in two cases, 

whereas the memetic ones had higher performance in seven cases. PMO was 

outperformed by PSO only once (see Table V). 

One more very important feature is characterized by the results. Except for two 

cases („ta011‟ in Table II and „ta071‟ in Table IV) out of 48, the real value based 

methods were never worse than the corresponding permutation based ones. 

Moreover, even in those exceptional cases, the differences are insignificantly tiny. 

 

 Figure 1 Figure 2 

 Results for the 20x5 size problem (ta001) Results for the 20x10 size problem (ta011) 
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 Figure 3 Figure 4 

 Results for the 20x20 size problem (ta021) Results for the 50x5 size problem (ta031) 

 

 Figure 5 Figure 6 

 Results for the 50x10 size problem (ta041) Results for the 50x20 size problem (ta051) 

 

 Figure 7 Figure 8 

 Results for the 100x5 size problem (ta061) Results for the 100x10 size problem (ta071) 
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 Figure 9 Figure 10 

 Results for the 100x20 size problem (ta081) Results for the 200x10 size problem (ta091) 

 

 Figure 11 Figure 12 

 Results for the 200x20 size problem (ta101) Results for the 500x20 size problem (ta111) 

 

Table I 

Results of the pure evolutionary genetic methods 

Problem GAp GAr 

ID Size Best known value Time limit Result Rel. diff. No. of gen. Result Rel. diff. Num. of gen. 

ta001 20x5 1278 10 1297 1.49% 115751.8 1297 1.49% 99583.6 

ta011 20x10 1582 10 1650.4 4.32% 85947.4 1619.8 2.39% 76262 

ta021 20x20 2297 10 2392.6 4.16% 53249.6 2370 3.18% 49463.4 

ta031 50x5 2724 50 2745 0.77% 229461.6 2744.4 0.75% 174902.8 

ta041 50x10 2991 50 3304.6 10.48% 172645.8 3255.8 8.85% 137602.4 

ta051 50x20 3847 50 4298.6 11.74% 111569.2 4254.2 10.58% 96096 

ta061 100x5 5493 200 5537.8 0.82% 486640 5519 0.47% 301985.4 

ta071 100x10 5770 200 6197 7.40% 348813.6 6142.2 6.45% 241455.6 

ta081 100x20 6202 200 7077.8 14.12% 224934 7000.4 12.87% 174915.6 

ta091 200x10 10862 1000 11336.2 4.37% 858038.4 11254.4 3.61% 482466.8 

ta101 200x20 11181 1000 12577.6 12.49% 527048.8 12551.2 12.25% 346630.6 

ta111 500x20 26059 5000 28827.6 10.62% 1033591.6 28614.6 9.81% 490406.2 
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Table II 

Results of the genetic algorithm based memetic techniques 

Problem GMAp GMAr 

ID Size Best known value Time limit Result Rel. diff. No. of gen. Result Rel. diff. No. of gen. 

ta001 20x5 1278 10 1293.2 1.19% 13525.8 1289.4 0.89% 13220.6 

ta011 20x10 1582 10 1641 3.73% 9520.8 1641.6 3.77% 9422.4 

ta021 20x20 2297 10 2378 3.53% 5648.6 2363.2 2.88% 5598.2 

ta031 50x5 2724 50 2746.2 0.81% 11376.4 2742 0.66% 11203.8 

ta041 50x10 2991 50 3297.2 10.24% 7934.6 3228.6 7.94% 7930.8 

ta051 50x20 3847 50 4246.6 10.39% 4911 4183.6 8.75% 4831.6 

ta061 100x5 5493 200 5537.2 0.80% 11758.4 5522 0.53% 11543.4 

ta071 100x10 5770 200 6220.6 7.81% 8079.4 6136.2 6.35% 8048 

ta081 100x20 6202 200 7040.8 13.52% 5057.4 6967.8 12.35% 5014.2 

ta091 200x10 10862 1000 11369.6 4.67% 10104.4 11298.4 4.02% 10109.8 

ta101 200x20 11181 1000 12532.4 12.09% 5787.8 12514.4 11.93% 5857.2 

ta111 500x20 26059 5000 28793.6 10.49% 4725.8 28715 10.19% 4642 

Table III 

Results of the pure evolutionary bacterial methods 

Problem BEAp BEAr 

ID Size Best known value Time limit Result Rel. diff. No. of gen. Result Rel. diff. No. of gen. 

ta001 20x5 1278 10 1278 0.00% 5943.4 1278 0.00% 5495 

ta011 20x10 1582 10 1591.6 0.61% 4320.4 1585.2 0.20% 4048.8 

ta021 20x20 2297 10 2316 0.83% 2549 2305 0.35% 2452.8 

ta031 50x5 2724 50 2724 0.00% 5050 2724 0.00% 4720 

ta041 50x10 2991 50 3067 2.54% 3684 3055.2 2.15% 3508.4 

ta051 50x20 3847 50 3983.2 3.54% 2190 3951.6 2.72% 2140 

ta061 100x5 5493 200 5493.4 0.01% 4998 5493 0.00% 4759 

ta071 100x10 5770 200 5804.8 0.60% 3695.6 5791 0.36% 3597.6 

ta081 100x20 6202 200 6436 3.77% 2205 6411 3.37% 2199 

ta091 200x10 10862 1000 10923.4 0.57% 4497.8 10905.4 0.40% 4274.4 

ta101 200x20 11181 1000 11491.4 2.78% 2698 11448.8 2.40% 2597 

ta111 500x20 26059 5000 26516.4 1.76% 2159.8 26440 1.46% 2097.4 

Table IV 

Results of the bacterial evolutionary algorithm based memetic techniques 

Problem BMAp BMAr 

ID Size Best known value Time limit Result Rel. diff. No. of gen. Result Rel. diff. No. of gen. 

ta001 20x5 1278 10 1278 0.00% 4030.4 1278 0.00% 3818 

ta011 20x10 1582 10 1591 0.57% 2944.4 1586.4 0.28% 2770.2 

ta021 20x20 2297 10 2314.4 0.76% 1728.8 2303.8 0.30% 1685.8 

ta031 50x5 2724 50 2724 0.00% 3340 2724 0.00% 3200 

ta041 50x10 2991 50 3055.6 2.16% 2455 3045.6 1.83% 2365.8 

ta051 50x20 3847 50 3970.2 3.20% 1460 3945.6 2.56% 1440 

ta061 100x5 5493 200 5493 0.00% 3332.6 5493 0.00% 3194 

ta071 100x10 5770 200 5787.6 0.31% 2427.4 5788.2 0.32% 2379.6 

ta081 100x20 6202 200 6438.6 3.81% 1482.6 6392.4 3.07% 1464 

ta091 200x10 10862 1000 10897.6 0.33% 2994.6 10882.2 0.19% 2884.6 

ta101 200x20 11181 1000 11466.2 2.55% 1774.8 11432.4 2.25% 1733.6 

ta111 500x20 26059 5000 26516.4 1.76% 1393.8 26476.4 1.60% 1377.8 
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Table V 

Results of the particle swarm methods 

Problem PSO PMO 

ID Size Best known value Time limit Result Rel. diff. No. of gen. Result Rel. diff. No. of gen. 

ta001 20x5 1278 10 1302.8 1.94% 12817.4 1297 1.49% 1250.6 

ta011 20x10 1582 10 1661.6 5.03% 10142.4 1622.2 2.54% 904.4 

ta021 20x20 2297 10 2413.4 5.07% 7750.6 2372.8 3.30% 563.6 

ta031 50x5 2724 50 2756.6 1.20% 22930 2741.6 0.65% 1070 

ta041 50x10 2991 50 3271.2 9.37% 18066 3205.4 7.17% 766 

ta051 50x20 3847 50 4240.8 10.24% 13640 4164.6 8.26% 470 

ta061 100x5 5493 200 5530.4 0.68% 35867.4 5538.6 0.83% 1053.6 

ta071 100x10 5770 200 6104.8 5.80% 31259 6031 4.52% 776.2 

ta081 100x20 6202 200 6972 12.42% 24472.4 6819 9.95% 478 

ta091 200x10 10862 1000 11255.6 3.62% 57462.2 11222.4 3.32% 959 

ta101 200x20 11181 1000 12409.6 10.99% 47035 12240 9.47% 569.8 

ta111 500x20 26059 5000 28578 9.67% 58591.6 28274.2 8.50% 436.4 

Now, the question that arose in Section 5 is answered: it is worth applying real 

value based representation, because despite the computational overhead, the 

methods based on it are more efficient than the ones using permutation based 

encoding. 

The observed behavior of the different algorithms matches with the results of our 

previous works comparing evolutionary algorithms on general optimization 

benchmark problems, and particularly on fuzzy rule based supervised machine 

learning problems (cf. e.g. [14], [15]). 

7.2 Comparison to other Methods 

Since BMAr appeared to be the most efficient algorithm, this technique is 

involved in further investigations: this method is compared to the Iterated Greedy 

heuristic and to the genetic algorithm based memetic method. 

Table VI shows the results of the comparison of BMAr, IG and MA, where the 

heightened results are the best makespan values. 

Table VI 

Comparison of BMAr, IG and MA 

Problem BMAr IG MA 

ID Size Best known value Time limit Result Rel. diff. Result Rel. diff. Result Rel. diff. 

ta001 20x5 1278 10 1278 0,00% 1278 0,00% 1278 0,00% 

ta011 20x10 1582 10 1586,4 0,28% 1583,2 0,08% 1585,4 0,21% 

ta021 20x20 2297 10 2303,8 0,30% 2301,6 0,20% 2304,4 0,32% 

ta031 50x5 2724 50 2724 0,00% 2724 0,00% 2724 0,00% 

ta041 50x10 2991 50 3045,6 1,83% 3035,2 1,48% 3062,2 2,38% 

ta051 50x20 3847 50 3945,6 2,56% 3925 2,03% 3958,4 2,90% 

ta061 100x5 5493 200 5493 0,00% 5493 0,00% 5493 0,00% 

ta071 100x10 5770 200 5788,2 0,32% 5786,8 0,29% 5797,8 0,48% 

ta081 100x20 6202 200 6392,4 3,07% 6350 2,39% 6387,8 3,00% 

ta091 200x10 10862 1000 10882,2 0,19% 10888,6 0,24% 10885,2 0,21% 

ta101 200x20 11181 1000 11432,4 2,25% 11392,4 1,89% 11434,6 2,27% 
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As can be observed, BMAr was more efficient than MA, because 6 times out of 11 

BMAr gave lower makespan values, whereas MA was better only 2 times. 

However, the most obvious fact appearing in the table is that IG significantly 

outperformed both other methods. 

This result leads to two consequences. First, even the best established 

chromosome based technique cannot be a rival for one of the state-of-the-art 

methods, the Iterated Greedy heuristic. Second, although it cannot be a rival, it can 

be a “helpmate” of IG. In further research it would be worth constructing and 

evaluating hybrid methods based on BMAr and IG. A reason for this is that in the 

case of multi-processor systems, the combination of MA and IG resulted in a 

better technique than approaches applying only parallel IG threads [13]. 

However, such further investigations are beyond the scope of this paper. 

7.3 Summary of the Main Observations 

In short, the main observations made can be summarized as follows: 

 Generally, bacterial techniques clearly outperformed the genetic and 

particle swarm ones. 

 Usually, memetic methods (i.e. algorithms comprising local search steps 

as additional evolutionary operators) showed better performance than 

pure evolutionary approaches. 

 Except in 2 cases out of 48, the methods applying real value based 

encoding technique were better than the ones using permutation based 

individual representation. 

 BMAr seemed to be the overall best chromosome based evolutionary 

optimization heuristic for the PFSP problems. 

 Although, the best constructed method was more efficient than a genetic 

algorithm based memetic technique applied in multi-processor systems, it 

was outperformed by one of the state-of-the-art heuristics, the Iterated 

Greedy method. 

Conclusions 

Our work proposed approaches for adapting chromosome based evolutionary 

methods to the Permutation Flow Shop Problem. The proposal included two types 

of individual representation (i.e. encoding method): a permutation and a real value 

based one. They were applied on three different chromosome based evolutionary 

techniques, namely the Genetic Algorithm, the Bacterial Evolutionary Algorithm 

and the Particle Swarm Optimization method. Both representations were applied 

on the two former methods, whereas the real value-based one was used for the 

latter optimization technique. Each mentioned algorithm was involved without 

and with local search steps as one of its evolutionary operators. Since the 
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evolutionary operators of each technique were established according to the applied 

representation, this paper investigated a total number of ten different chromosome 

based evolutionary methods. 

The obtained techniques were evaluated via simulation runs carried out on the 

well-know Taillard‟s benchmark problem set. Based on the experiments the 

following observations could be made. 

The real value based representation seemed to be better than the permutation 

based encoding technique. The algorithms applying local search performed better 

than the corresponding pure evolutionary methods, whereas bacterial techniques 

outperformed both genetic and particle swarm algorithms overwhelmingly. 

Therefore, BMAr appeared to be the best established chromosome based 

evolutionary optimization method for the PFSP problem. 

Although, the best constructed method was more efficient than a genetic algorithm 

based memetic technique applied in multi-processor systems, it was outperformed 

by one of the state-of-the-art heuristics, the Iterated Greedy method. 

Ongoing research aims to combine the BMAr technique with IG and to establish 

new hybrid methods more efficient than either of them. That work considers 

single- as well as multi-threaded algorithms. 

Since among chromosome based evolutionary algorithms bacterial methods 

performed best, in further research, slightly modified bacterial techniques, such as 

the Bacterial Memetic Algorithm with Modified Operator Execution Order [16], 

might also be involved. 

Future work may also aim to compare the investigated techniques with other state-

of-the-art methods published for the PFSP task and to combine the best one 

among them with the chromosome based evolutionary techniques, thus 

establishing a promising hybrid algorithm. 

Finally, an additional research direction could be the extension of the proposed 

approaches to other scheduling tasks, such as scheduling problems considering 

setup times or involving concurrent processing of batches of jobs (see e.g. [17]). 
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