
Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 115 –

Different Chromosome-based Evolutionary

Approaches for the Permutation Flow Shop

Problem

Krisztián Balázs
1
, Zoltán Horváth

2
, László T. Kóczy

1,3

1
Department of Telecommunications and Media Informatics, Budapest University

of Technology and Economics, Budapest, Hungary, balazs@tmit.bme.hu

2
Department of Mathematics and Computational Sciences, Széchenyi István

University, Győr, Hungary, horvathz@sze.hu

3
Department of Automation, Széchenyi István University, Győr, Hungary,

koczy@sze.hu

Abstract: This paper proposes approaches for adapting chromosome-based evolutionary

methods to the Permutation Flow Shop Problem. Two types of individual representation

(i.e. encoding methods) are proposed, which are applied on three different chromosome

based evolutionary techniques, namely the Genetic Algorithm, the Bacterial Evolutionary

Algorithm and the Particle Swarm Optimization method. Both representations are applied

on the two former methods, whereas one of them is used for the latter optimization

technique. Each mentioned algorithm is involved without and with local search steps as

one of its evolutionary operators. Since the evolutionary operators of each technique are

established according to the applied representation, this paper deals with a total number of

ten different chromosome-based evolutionary methods. The obtained techniques are

evaluated via simulation runs carried out on the well-known Taillard's benchmark problem

set. Based on the experimental results the approaches for adapting chromosome based

evolutionary methods are compared to each other.

Keywords: Chromosome-based evolutionary methods; Memetic algorithms; Combinatorial

optimization; Permutation Flow Shop Problem

1 Introduction

One of the most intensively studied combinatorial optimization problems is the

Permutation Flow Shop Problem (PFSP) [1]. In this problem, there are given n

jobs and m machines. All the jobs should be processed by all the machines one

after another. The machines are deployed in a line and a machine can handle one

mailto:balazs@tmit.bme.hu
mailto:horvathz@sze.hu
mailto:koczy@sze.hu

K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem

 – 116 –

single job at once, that is, the process of the jobs is pipeline-like. There is also

given an n-by-m processing time matrix defining the necessary amount of time a

job has to stay on a machine, for each job-machine pair. A job can be processed

on any machine only if the machine is free (the preceding job has finished on the

machine) and the job has already been processed on the preceding machine.

The task is to find a permutation (a sequence) of the jobs, in case of which the

total processing time of all the jobs on all the machines (i.e. the so-called

makespan) is minimal.

This problem is known to be NP-hard [2], thus there are no efficient algorithms to

exactly solve this task (and there is not much hope of finding one). This means

that every method guaranteeing optimal solutions has impractically long

computational time for even moderate problem sizes. Hence, only heuristics

resulting in so called quasi-optimal solutions are viable. Over the past few

decades, a number of such heuristics have been invented and published (e.g. [3]-

[5]).

Since due to the nature of the PFSP problem these heuristics cannot be evaluated

analytically, their evaluation and their comparison to other techniques can be

made experimentally, i.e. based on results of simulation runs carried out on

standard reference tasks, called benchmark problems. Several such comparisons

have been made involving a large part of the so far proposed methods (e.g. [3]-

[5]). These comparative studies are mostly based on the well-known Taillard's

benchmark problem set [6].

This paper proposes approaches for adapting chromosome based evolutionary

methods to the Permutation Flow Shop Problem. The proposal includes two types

of individual representation (i.e. encoding method): a permutation and a real value

based one. They are applied on three different chromosome based evolutionary

techniques, namely the Genetic Algorithm [7], the Bacterial Evolutionary

Algorithm [8] and the Particle Swarm Optimization [9] method. Both

representations are applied on the two former methods, whereas the real value

based one is used for the latter optimization technique. Each mentioned algorithm

is involved without and with local search steps as one of its evolutionary

operators. Since the evolutionary operators of each technique are established

according to the applied representation, this paper deals with a total number of ten

different chromosome-based evolutionary methods.

The obtained techniques are evaluated via simulation runs carried out on the

above mentioned Taillard's benchmark problem set. Based on these experimental

results, the methods, and thus the chromosome-based evolutionary technique

adapting approaches themselves, are compared to each other.

The next section gives a formal definition to the PFSP problem. Within this, the

search space and the makespan function as the objective function are defined.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 117 –

Then, the third section gives a brief overview of the chromosome-based

evolutionary techniques being adapted to the PFSP task. The basic concept and the

main steps of the algorithms are also presented. The new encoding approaches for

the PFSP problem are proposed in section four. After that, the evolutionary

operators constructed based on the newly proposed individual representations are

described. The sixth section enumerates the algorithms, which can be established

by using the discussed approaches and which are compared via simulation runs.

The experimental results and the observed characteristics are discussed in section

seven. Finally, in the last section our work is summarized and some conclusions

are drawn.

2 The Permutation Flow Shop Problem

As was described in the Introduction, in this problem there are given the number

of jobs n, the number of machines m and an n-by-m processing time matrix P

defining the necessary amount of time a job has to stay on a machine, for each

job-machine pair. That is, the elements of the matrix are positive and an element

pi,j denotes the time the i
th

 job stays on the j
th

 machine.

All the jobs should be worked by all the machines one after another. The machines

are deployed in a line and a machine can handle one single job at once. That is, the

process of the jobs is pipeline-like. A job can be processed on a machine only if

the machine is free (the preceding job has finished on the machine) and the job has

already been processed on the preceding machine.

The task is to find a permutation (an order) of the jobs, in case of which the total

processing time of all the jobs on all the machines (i.e. the so called makespan) is

minimal.

For example, if there are three jobs the permutation (2,3,1) denotes the case when

the second job goes first, the third goes next, and finally the first goes last. This

should not be confused with another interpretation of a permutation, where the

same permutation would mean a case when the first job goes second, the second

one goes third and the last one goes first. In our interpretation this latter will be

referred as the „inverse‟ of the permutation defined above. (It can be easily seen

that this „inverse‟ is the algebraic inverse of the permutation; consequently, the

inverse of the inverse of the permutation is the permutation itself.)

Clearly, the search space is the set of the n-order permutations Sn, and the

objective function is defined over this search space and its range is the set of

positive numbers R
+
.

Formally, the objective or makespan function f can be defined as follows (see e.g.

[1]):

K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem

 – 118 –

),,()(

:

 mntf

RSf n

jipjitjitjit

it

jt

),()),,1(),,1,(max(),,(

0),0,(

0),,0(

 (1)

where pσ(i),j and t(i,j,σ) denote the processing and the completion times of the i
th

job of the σ permutation on the j
th

 machine, respectively.

The task is to find a σ permutation for which the makespan is optimal (i.e.

minimal).

3 Overview of the Evolutionary Techniques Applied

A famous, frequently studied and applied family of iterative stochastic

optimization techniques is called chromosome based evolutionary algorithms.

These methods, like the Genetic Algorithm (GA) [7] or the Bacterial Evolutionary

Algorithm (BEA) [8], imitate the abstract model of the evolution of populations

observed in nature. Their aim is to change the individuals in the population (set of

individuals) by the evolutionary operators to obtain better and better ones. The

goodness of an individual can be measured by its „fitness‟. If an individual

represents a candidate solution for a given problem, the algorithms try to find the

optimal solution for the problem. Thus, in the case of optimization problems, the

individuals represent elements of the search space and the fitness function is a

transformation of the objective function. If an evolutionary algorithm uses an

elitist strategy, it means that the best ever individual will always survive and

appear in the next generation. As a result, at the end of the algorithm the best

individual will represent the (quasi-) optimal element of the search space.

The individuals are usually represented by chromosomes (this is why these

methods are called chromosome-based evolutionary algorithms), which are most

often vectors holding numbers in their components (i.e. in their genes). The

manner in which the individuals are represented as chromosomes is the encoding

method.

The steps of the algorithms changing the chromosomes, and thus the candidate

solutions, are called evolutionary operators. The evolutionary operators are in

strong connections with the encoding technique, since the encoding determines the

form of the chromosomes the operators work with.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 119 –

It is quite obvious that besides the formation of the skeleton of the evolutionary

algorithm, the design of the encoding method and the evolutionary operators also

play key roles in the efficient government of the evolution process.

There are a huge number of chromosome based evolutionary algorithms. Some of

them will be presented below; these are the ones that were investigated in our

work.

3.1 Genetic Algorithm

One of the most (if not the most) widely applied chromosome based evolutionary

techniques is the Genetic Algorithm (GA) [7]. It comprises the following steps:

1 Initialization:

An initial population is created by selecting random elements of the

search space according to some distribution, or by using an initial

heuristic.

2 Selection:

Individuals are selected according to their fitness values. The higher

fitness value an individual has, the bigger its probability to be selected.

There are a number of selection methods, e.g. roulette wheel technique,

or stochastic universal sampling.

The selected individuals are called parents.

3 Crossover:

Pairs are formed from the set of parents and a random point of the

chromosome is selected for each pair. Then the parents change the

sequence of their genes between each other after the selected point. The

resulting individuals are called offspring.

4 Mutation:

The genes of each offspring are mutated with a certain probability and

take new random values.

5 Substitution:

The offspring are substituted in the population, i.e. they overwrite

individuals in it. The individuals to overwrite are selected according to

their fitness values. However, unlike in the selection step, in this case the

higher fitness value an individual has, the smaller its probability to be

selected. If the above mentioned elitist strategy is applied, the best

individual will not be overwritten. With minor modifications, the same

algorithms can be used for the selection of individuals to overwrite as in

the selection step.

The main iteration loop of the algorithm contains steps 2 – 5. A single iteration is

called generation. The algorithm stops if at the end of a generation one of the

termination criteria fulfills (generation limit reached, time limit exceeded, etc.).

After termination the best individual represents the quasi-optimal solution.

K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem

 – 120 –

3.2 Bacterial Evolutionary Algorithm

Compared to GA, a somewhat different evolutionary technique is called the

Bacterial Evolutionary Algorithm (BEA). This algorithm was introduced by Nawa

and Furuhashi in [8]. The first version of this algorithm was called the Pseudo-

Bacterial Genetic Algorithm (PBGA) [10], which proposed a modified mutation

operator called bacterial mutation, based on the natural phenomenon of microbial

evolution. The Bacterial Evolutionary Algorithm introduced a new operator called

the gene transfer operator. While PBGA incorporates bacterial mutation and

crossover operator, the BEA substitutes the classical crossover with the gene

transfer operation. Both of these new operators were inspired by bacterial

evolution. Bacteria can transfer genes to other bacteria, and thus gene transfer

allows the bacteria to directly transfer information to the other individuals in the

population.

BEA comprises the following steps:

1 Initialization:

An initial population is created by selecting random elements of the

search space according to some distribution, or by using an initial

heuristic.

2 Bacterial mutation:

All bacteria are mutated in all their genes multiple times in random

orders. In case of each mutation step, if the original value was better,

then it is restored; if the new one makes the individual have higher fitness

value, then it is kept.

3 Gene transfer:

The population is divided into two parts according to the fitness values.

The individuals possessing higher fitness values form the superior and

the ones having lower values form the inferior part of the population.

Then pairs are formed, where the first members of the pairs are from the

superior part (superior individuals) and the second members come from

the inferior part (inferior individuals). For each pair a random point of the

chromosome is selected. Then the value of the gene at the selected point

in the inferior bacterium is overwritten with the value of the gene at the

selected point in the superior bacterium.

The main iteration loop of the algorithm contains steps 2 and 3. The algorithm

stops if at the end of a generation one of the termination criteria fulfils (generation

limit reached, time limit exceeded, etc.). After termination the best individual

represents the quasi-optimal solution.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 121 –

3.3 Particle Swarm Optimization

Another type of iterative methods is called swarm intelligence techniques. These

algorithms, like the nowadays famous Particle Swarm Optimization (PSO) [9], are

inspired by social behavior observed in nature, e.g. bird flocking or fish schooling.

In these methods a number of individuals try to find better and better places by

exploring their environment, led by their own experiences and the experiences of

the whole community. Since these methods are also based on processes of the

nature, like GA or BEA, and since there is also a type of evolution in them („social

evolution‟), they can be categorized amongst the evolutionary algorithms.

Similarly, as was mentioned above, these techniques can also be applied as

optimization methods if the individuals represent candidate solutions.

PSO comprises the following steps:

1 Initialization:

An initial population is created by selecting random elements of the

search space according to some distribution, or by using an initial

heuristic.

In the case of each individual, their current place is considered as its local

best place (see its reason below). Moreover, the place of the best

individual is stored as the global best place in the search space.

2 Moving the individuals:

The individuals are moved (their position within the search space xi is

changed) based on their local best place li and on the global best place gi

(the subscript i denotes the number of the current iteration). The new

position xi is determined by the following equations:

11

1

0

)()(

0

iii

iiggiillivi

vxx

xgrxlrvv

v

 (2)

where φv, φl and φg are parameters of the algorithm, rl and rg are random

values.

3 Updating local and global best places:

The individuals are evaluated and if an individual is at a better position

than its local best place, the local best place is set to the current position.

If the currently best individual in the population has higher fitness value

than the fitness value of the global best place, then the global best place

is set to the position of the currently best individual.

The main iteration loop of the algorithm contains steps 2 and 3. The algorithm

stops if at the end of a generation one of the termination criteria fulfils (generation

limit reached, time limit exceeded, etc.). After termination the global best place

represents the quasi-optimal solution.

K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem

 – 122 –

3.4 Memetic Algorithms

The techniques causing minor modifications to the candidate solutions iteration by

iteration and thus exploring only the „neighborhood‟ of particular elements of the

search space are called local search methods.

After a proper amount of iterations, as a result of these minor modification steps,

the local search algorithms find the „nearest‟ local minimum quite accurately.

However, these techniques are very sensible to the location of the starting point. In

order to find the global optimum, the starting point must be located close enough

to it, in the sense that no local optima separate the two points.

Evolutionary computation techniques explore the whole objective function,

because of their characteristic, so they find the global optimum, but they approach

it slowly. Local search based algorithms, meanwhile, find only the nearest local

optimum; however, they converge to it faster.

Avoiding the disadvantages of the two different technique types, evolutionary

algorithms (including swarm intelligence techniques) and local search methods

may be combined [11], for example, if in each iteration for each individual one or

more local search steps are applied. Expectedly, this way the advantages of both

local search and evolutionary techniques can be exploited: the local optima can be

found quite accurately on the whole objective function, i.e. the global optimum

can be obtained quite accurately.

There are several results in the literature confirming this expectation in the

following aspect. Usually, the more difficult the applied local search step is, the

higher convergence speed the algorithm has in terms of number of generations. It

must be emphasized that most often these results discuss the convergence speed in

terms of number of generations. However, the more difficult an algorithm is, the

greater computational demand it has, i.e. each iteration takes longer.

Therefore the question arises: how does the speed of the convergence change in

terms of time if the local search based technique applied in the method is

changed?

Apparently, this is a very important question of applicability, because in real

world applications time as a resource is a very important and expensive factor, but

the number of generations the algorithm executes does not really matter.

This is the reason why the efficiency in terms of time was chosen to be

investigated in this paper.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 123 –

4 Proposed Encoding Methods

Two types of individual representation (i.e. two encoding methods) are proposed

in this paper for the evolutionary techniques.

The first one is based on the permutations themselves, thus the evolutionary

operators modify the elements of the permutations directly.

The second encoding method is an indirect, real value based encoding approach,

which is an obvious extension of those representations applied for numerical

optimization problems. Although the operators modify the values of real valued

vectors (arrays) – since the objective function is defined over permutations, the

chromosomes represent permutations actually – there is a need to convert the real

valued vectors to permutations somehow.

In order to reduce time complexity costs, the chromosomes can be „mirrored‟

within the individuals in a manner which makes the modifications caused by the

evolutionary operators and the evaluation of the individual more simply

performable.

4.1 Permutation-based Encoding

This representation is based on the permutations themselves. Each chromosome

holds one single permutation, where the genes represent the jobs and each gene

holds an element of the permutation. That is, the chromosome is an integer vector,

where the values of the genes are between 1 and n (where n is the number of jobs),

additionally, every integer appears once in the chromosome.

Actually, this permutation is not the permutation the objective function gets, i.e. it

is not the one defined in Section 2, but its inverse (as was explained by a simple

example before). Thus, hereafter this will be called the „inverse permutation‟.

4.2 Real Value-based Encoding

Most often in the case of numerical optimization problems, the individuals have

binary or real representations. This means that the chromosomes are binary or real

valued vectors (arrays) representing points in the search space, i.e. candidate

solutions.

In those most frequent cases when the objective function is defined over R
n
 (or

over a subset of R
n
), it is a natural way to encode the individuals in real valued

vectors.

This representation can be extended to PFSP tasks easily as follows.

K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem

 – 124 –

If the number of jobs is n, then the chromosomes are real valued vectors with

length of n. Since in the case of PFSP tasks the objective function is defined over

permutations, the real valued vectors must be converted to permutations. This can

be done by ordering the genes according to the values they have. Because there is

exactly one permutation in Sn corresponding to every gene order, the new gene

order is equivalent to a permutation.

There seems to be an unnecessary „overhead‟ in the previous encoding technique,

because one could say that the chromosome should hold the permutation and the

operators should modify the permutations directly, instead of changing a real

valued vector and the permutation via this vector.

However, despite the computational overhead, this encoding manner is more

useful, as will be presented in the next sections.

4.3 Mirroring the Chromosomes

Performing the effects of the evolutionary operators on the individuals can be

made computationally cheaper in the following way.

The individuals do not comprise only one single chromosome as usual, but two

chromosomes being similar to each other: an original and a mirrored one. The

original chromosome contains a vector of real numbers and the inverse

permutation or only the inverse permutation (based on the base of the encoding) as

discussed above. The mirrored chromosome contains the inverse of the inverse

permutation (i.e. the permutation used by the objective function) and in the case of

real value based encoding, the adequate permutated order of the real numbers (i.e.

the real numbers in an ascending order).

The chromosome and the mirrored chromosome are updated simultaneously in

every step during the application of the evolutionary operators. Thus, they are

always equivalent in the sense that they always represent the same candidate

solution for the problem.

The reasons why this mirroring technique causes the reduction of computational

costs will be explained in the next section during the discussion of the certain

operators.

5 Established Evolutionary Operators

The different evolutionary operators used by the algorithms are derived back to

three „atomic operators‟: mutation, gene transfer and local search.

Mutation in GA and bacterial mutation in BEA can be obviously constructed by

using the atomic operator mutation, and gene transfer in BEA can be done by

using the atomic operator gene transfer.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 125 –

Crossover in GA can be considered as a sequence of gene transfers from a given

position to a given position in a random order.

The atomic operator local search is exactly the same as the local search operator in

all three evolutionary techniques.

It is easy to see that if all the atomic operators are defined so that their results are

valid individuals (i.e. individuals representing permutations), the constructed

operators also results in valid individuals.

The atomic operators are the following.

5.1 Mutation

5.1.1 Permutation-based Encoding

In the permutation-based case, the mutation of a gene means that the value of the

gene is set to a random integer value from 1 to n (where n is the number of jobs).

This modification would lead out from the search space, because the resulting

integer vector would not be a permutation, hence a „compensation step‟ is made,

i.e. the gene whose value is taken by the mutated gene changes its value to the

previous value of the mutated gene. That is, during mutation, the mutated gene

changes its value with a random gene. In this way the mutation operator is closed

with respect to the search space.

The change is committed both in the chromosome and in the mirrored

chromosome.

Since the permutation-based mutation modifies only two values in the

permutation, it makes „local‟ changes within the chromosome.

5.1.2 Real Value-based Encoding

When a real value based gene is mutated, it is set to a random real value. Thus, the

permutation represented by the chromosome changes.

It would be computationally expensive to compute the new corresponding inverse

permutation by reordering the whole chromosome. Instead of this, the mirrored

chromosome can be applied, where the place of the new value can be found easily

by a computationally cheap binary search (since the real values are ordered in the

mirrored chromosome). Then, in the mirrored chromosome, the sub-chromosome

(i.e. the gene-sequence) between the original and the new place of the mutated

gene is shifted one place left (if the new value is higher than the old one) or one

place right (if the new value is lower than the old one).

K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem

 – 126 –

During the shift, the corresponding elements of the inverse permutation are also

updated in the chromosome.

Actually, the real value-based mutation means a random direction shift of a

random length part of the mirrored chromosome. Thus, it causes not only local

effects unlike the permutation based mutation.

After the previous description of the real value-based mutation, one could ask

whether an equivalent operator could not be constructed based on only the

permutations; i.e. is it possible that there is no difference between the strength of

the two different encoding manners?

The answer is no, an equivalent operator could not be constructed based on only

the permutations, because although the shift of random length gene-sequences

could easily be made, in the case of real value based representation, the

distribution of random variables determining the lengths and positions are also

developing (implicitly) while the real values are changing. Therefore, the diversity

of the real value based encoding is higher.

It was mentioned in the previous section that this representation has a

computational overhead, but as it discussed now, it may give higher diversity to

the mutation. Thus, certainly there is a difference between the strength of the two

different encoding manners; however, it is an open question which one is more

efficient, and by how much.

This will also be investigated in Section 6.

5.2 Gene Transfer

5.2.1 Permutation-based Encoding

During gene transfer in the case of permutation based encoding the inverse

permutation value of the selected gene in the target individual is set to the inverse

permutation value of the corresponding gene of the source individual. Hereafter, a

compensation step is made similarly as in the case of mutation.

5.2.2 Real Value-based Encoding

Applying real value-based encoding, the gene transfer is not much different. The

real value of the selected gene in the target individual is set to the real value of the

corresponding gene of the source individual. Hereafter, a similar shifting in the

mirrored chromosome followed by the update of the chromosome is made as in

the case of mutation.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 127 –

5.3 Local Search

The local search is performed the same way in the case of both representations.

One iteration cycle of the local search is as follows.

First of all, a random order of the elements of the permutation from the first to the

last but one is selected. Then, following this order, the neighboring elements

within the mirrored chromosome try to change their values with each other so that

if according to the random order the current element is the i
th

, then it tries to

change its value with the (i+1)
th

. After each change between the neighbors, if the

resulting permutation is better (i.e. it has a higher fitness value), the change is kept

and both the chromosome and the mirrored chromosome are updated according to

the modification made. Otherwise, the change is rolled back.

6 Optimization Algorithms Investigated in this Paper

Based on the previous sections ten different evolutionary optimization techniques

were constructed and evaluated. These are the following:

 Genetic Algorithm based techniques:

o GAr: Genetic Algorithm without local search using real value

based encoding

o GAp: Genetic Algorithm without local search using permutation

based encoding

o GMAr: Genetic Algorithm with local search (Memetic

Algorithm) using real value based encoding

o GMAr: Genetic Algorithm with local search (Memetic

Algorithm) using permutation based encoding

 Bacterial Evolutionary Algorithm based techniques:

o BEAr: Bacterial Evolutionary Algorithm without local search

using real value based encoding

o BEAp: Bacterial Evolutionary Algorithm without local search

using permutation based encoding

o BMAr: Bacterial Evolutionary Algorithm with local search

(Bacterial Memetic Algorithm) using real value based encoding

o BMAp: Bacterial Evolutionary Algorithm with local search

(Bacterial Memetic Algorithm) using permutation based

encoding

 Particle Swarm Optimization based techniques:

o PSO: Particle Swarm Optimization without local search using

real value based encoding

K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem

 – 128 –

o PMO: Particle Swarm Optimization with local search using real

value based encoding

In the remaining part of the paper GAr, GAp, GMAr and GMAp will be referred

to as „genetic‟ techniques, BEAr, BEAp, BMAr and BMAp will be labeled as

„bacterial‟ methods, and finally PSO and PMO will be referred to as „particle

swarm‟ algorithms.

7 Evaluation of the Obtained Techniques

Simulation runs were carried out in order to evaluate and to compare the

efficiency of the proposed approaches and the established algorithms. First, the

new methods are compared to each other, then the best one is compared to two

other heuristics: the well-known Iterated Greedy technique (IG) [12] and a genetic

algorithm based memetic method (MA) [13], which is e.g. used in combination

with IG in multi-processor systems.

For these purposes, a dozen problems were applied from the well-known

Taillard‟s benchmark set. Exactly one problem from each available problem sizes.

In the simulations, the parameters of the newly proposed methods had the

following values, because after a number of test runs these values seemed to be

the most suitable.

The number of individuals in a generation was 14 in genetic and 8 in bacterial

algorithms, whereas it was 80 in particle swarm methods. In the case of genetic

techniques the selection rate was 0.5 and the mutation rate was 0.3; in the case of

bacterial techniques, the number of clones was 2 and 1 gene transfer was carried

out in each generation. The genetic methods applied the elitist strategy.

In the iterated greedy methods, 4 jobs were selected to remove in each generation

and the temperature parameter was 5 (see [12]). The MA technique used 13

individuals as in [13].

The simulation was carried out on a PC with E8500 3.16 GHz Intel Core 2 Duo

CPU and using Windows Vista Business 64-bit operating system.

In the case of all ten new algorithms for all benchmark problems runs were

carried out. Then the means of the obtained values were taken.

The means of the objective function values of the best individuals during the runs

of the new techniques are presented in figures (Figures 1-12) to get a better

overview. The horizontal axes show the elapsed computation time in seconds and

the vertical axes show the makespan values of the best individuals at the current

time.

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 129 –

In the figures, dotted lines show the results of the pure evolutionary algorithms

applying permutation based encoding (GAp and BEAp); dashed-dotted lines

denote the memetic techniques using permutation-based encoding (GMAp and

BMAp); solid lines present the graphs of the pure evolutionary methods applying

real value-based encoding (GAr, BEAr and PSO); and dashed lines show the

memetic techniques using real value based encoding (GMAr, BMAr and PMO). In

each case a dashed horizontal line shows the best known makespan value

according to [6].

The means of the resulting values were collected in tables (Tables I-VI). In the

tables under the „Problem‟ label the „ID‟ columns show the identifier of the tasks

in Taillard‟s benchmark problem set [6] and „Size‟ denotes the size of the

benchmark problem (in the form of “number of jobs times number of machines”).

The best known makespan values according to [6] are collected in columns

labeled by „Best known value‟. „Time limit‟ shows the length of the simulation

runs in seconds. The time limits were chosen according to test runs to values, after

which the techniques did not show significant improvements (cf. Figures 1-12).

Under the algorithm labels the „Results‟ columns present the mean of the

makespan values produced by the techniques, „Rel. diff.‟ shows the mean of the

relative difference of these makespan values compared to the known best ones

,eknown valuBest /)eknown valuBest Result(
5

1
5

1

i

i (3)

whereas „No. of gen.‟ denotes the mean of the number of executed generations.

The best makespan values for each benchmark problem are bold underlined

numbers and the best values of a particular evolutionary algorithm family

(genetic, bacterial and particle swarm) for each benchmark problem not being the

totally best values are italic underlined numbers.

The results of the runs of the new algorithms and their short explanations follow

in the next subsection. After that, the results of the comparison with IG and MA

are analyzed. In Subsection 7.3 conclusions will be drawn about the main

characteristics of the behavior of the methods.

7.1 Experimental Results for the Established Techniques

The following observations could be made based on the obtained values (see

Figures 1-12 and Tables I-V).

Considering the figures and tables probably the most obvious tendency of the

results is that bacterial techniques gave better performance in each case than

genetic and particle swarm based ones, as they were never outperformed by other

methods. Such an unambiguous observation cannot be made between the latter

two algorithm families. The superiority of the bacterial algorithms is growing in

K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem

 – 130 –

terms of the difficulty (i.e. the size) of the optimization task. In the case of easier

problems, the difference in efficiency between the algorithm families is not so

significant (see Figures 1, 2, 4 and 7); however as the problem size increases, the

significance grows (see Figures 3, 5, 6, 8, 9 and 10). Finally, in the case of the

most difficult tasks (i.e. the biggest problem sizes) the difference is more than

significant.

By looking at Table IV it is clear to see that BMAr performed best during the

simulation runs, because in half of the cases it produced better results than the

other algorithms, whereas in three more cases it found the known best values for

the benchmark problems. This means that BMAr was outperformed by other

techniques only in a quarter of the problems.

As can also be observed, memetic algorithms (the methods integrating local

search steps) had higher efficiency in most of the cases. Among the genetic

techniques, GMAr was the best in 8 problems, whereas GAr was the best in its

family only 4 times out of 12 (see Tables I-II). In the case of the bacterial

methods, the pure evolutionary techniques gave better results only in two cases,

whereas the memetic ones had higher performance in seven cases. PMO was

outperformed by PSO only once (see Table V).

One more very important feature is characterized by the results. Except for two

cases („ta011‟ in Table II and „ta071‟ in Table IV) out of 48, the real value based

methods were never worse than the corresponding permutation based ones.

Moreover, even in those exceptional cases, the differences are insignificantly tiny.

 Figure 1 Figure 2

 Results for the 20x5 size problem (ta001) Results for the 20x10 size problem (ta011)

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 131 –

 Figure 3 Figure 4

 Results for the 20x20 size problem (ta021) Results for the 50x5 size problem (ta031)

 Figure 5 Figure 6

 Results for the 50x10 size problem (ta041) Results for the 50x20 size problem (ta051)

 Figure 7 Figure 8

 Results for the 100x5 size problem (ta061) Results for the 100x10 size problem (ta071)

K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem

 – 132 –

 Figure 9 Figure 10

 Results for the 100x20 size problem (ta081) Results for the 200x10 size problem (ta091)

 Figure 11 Figure 12

 Results for the 200x20 size problem (ta101) Results for the 500x20 size problem (ta111)

Table I

Results of the pure evolutionary genetic methods

Problem GAp GAr

ID Size Best known value Time limit Result Rel. diff. No. of gen. Result Rel. diff. Num. of gen.

ta001 20x5 1278 10 1297 1.49% 115751.8 1297 1.49% 99583.6

ta011 20x10 1582 10 1650.4 4.32% 85947.4 1619.8 2.39% 76262

ta021 20x20 2297 10 2392.6 4.16% 53249.6 2370 3.18% 49463.4

ta031 50x5 2724 50 2745 0.77% 229461.6 2744.4 0.75% 174902.8

ta041 50x10 2991 50 3304.6 10.48% 172645.8 3255.8 8.85% 137602.4

ta051 50x20 3847 50 4298.6 11.74% 111569.2 4254.2 10.58% 96096

ta061 100x5 5493 200 5537.8 0.82% 486640 5519 0.47% 301985.4

ta071 100x10 5770 200 6197 7.40% 348813.6 6142.2 6.45% 241455.6

ta081 100x20 6202 200 7077.8 14.12% 224934 7000.4 12.87% 174915.6

ta091 200x10 10862 1000 11336.2 4.37% 858038.4 11254.4 3.61% 482466.8

ta101 200x20 11181 1000 12577.6 12.49% 527048.8 12551.2 12.25% 346630.6

ta111 500x20 26059 5000 28827.6 10.62% 1033591.6 28614.6 9.81% 490406.2

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 133 –

Table II

Results of the genetic algorithm based memetic techniques

Problem GMAp GMAr

ID Size Best known value Time limit Result Rel. diff. No. of gen. Result Rel. diff. No. of gen.

ta001 20x5 1278 10 1293.2 1.19% 13525.8 1289.4 0.89% 13220.6

ta011 20x10 1582 10 1641 3.73% 9520.8 1641.6 3.77% 9422.4

ta021 20x20 2297 10 2378 3.53% 5648.6 2363.2 2.88% 5598.2

ta031 50x5 2724 50 2746.2 0.81% 11376.4 2742 0.66% 11203.8

ta041 50x10 2991 50 3297.2 10.24% 7934.6 3228.6 7.94% 7930.8

ta051 50x20 3847 50 4246.6 10.39% 4911 4183.6 8.75% 4831.6

ta061 100x5 5493 200 5537.2 0.80% 11758.4 5522 0.53% 11543.4

ta071 100x10 5770 200 6220.6 7.81% 8079.4 6136.2 6.35% 8048

ta081 100x20 6202 200 7040.8 13.52% 5057.4 6967.8 12.35% 5014.2

ta091 200x10 10862 1000 11369.6 4.67% 10104.4 11298.4 4.02% 10109.8

ta101 200x20 11181 1000 12532.4 12.09% 5787.8 12514.4 11.93% 5857.2

ta111 500x20 26059 5000 28793.6 10.49% 4725.8 28715 10.19% 4642

Table III

Results of the pure evolutionary bacterial methods

Problem BEAp BEAr

ID Size Best known value Time limit Result Rel. diff. No. of gen. Result Rel. diff. No. of gen.

ta001 20x5 1278 10 1278 0.00% 5943.4 1278 0.00% 5495

ta011 20x10 1582 10 1591.6 0.61% 4320.4 1585.2 0.20% 4048.8

ta021 20x20 2297 10 2316 0.83% 2549 2305 0.35% 2452.8

ta031 50x5 2724 50 2724 0.00% 5050 2724 0.00% 4720

ta041 50x10 2991 50 3067 2.54% 3684 3055.2 2.15% 3508.4

ta051 50x20 3847 50 3983.2 3.54% 2190 3951.6 2.72% 2140

ta061 100x5 5493 200 5493.4 0.01% 4998 5493 0.00% 4759

ta071 100x10 5770 200 5804.8 0.60% 3695.6 5791 0.36% 3597.6

ta081 100x20 6202 200 6436 3.77% 2205 6411 3.37% 2199

ta091 200x10 10862 1000 10923.4 0.57% 4497.8 10905.4 0.40% 4274.4

ta101 200x20 11181 1000 11491.4 2.78% 2698 11448.8 2.40% 2597

ta111 500x20 26059 5000 26516.4 1.76% 2159.8 26440 1.46% 2097.4

Table IV

Results of the bacterial evolutionary algorithm based memetic techniques

Problem BMAp BMAr

ID Size Best known value Time limit Result Rel. diff. No. of gen. Result Rel. diff. No. of gen.

ta001 20x5 1278 10 1278 0.00% 4030.4 1278 0.00% 3818

ta011 20x10 1582 10 1591 0.57% 2944.4 1586.4 0.28% 2770.2

ta021 20x20 2297 10 2314.4 0.76% 1728.8 2303.8 0.30% 1685.8

ta031 50x5 2724 50 2724 0.00% 3340 2724 0.00% 3200

ta041 50x10 2991 50 3055.6 2.16% 2455 3045.6 1.83% 2365.8

ta051 50x20 3847 50 3970.2 3.20% 1460 3945.6 2.56% 1440

ta061 100x5 5493 200 5493 0.00% 3332.6 5493 0.00% 3194

ta071 100x10 5770 200 5787.6 0.31% 2427.4 5788.2 0.32% 2379.6

ta081 100x20 6202 200 6438.6 3.81% 1482.6 6392.4 3.07% 1464

ta091 200x10 10862 1000 10897.6 0.33% 2994.6 10882.2 0.19% 2884.6

ta101 200x20 11181 1000 11466.2 2.55% 1774.8 11432.4 2.25% 1733.6

ta111 500x20 26059 5000 26516.4 1.76% 1393.8 26476.4 1.60% 1377.8

K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem

 – 134 –

Table V

Results of the particle swarm methods

Problem PSO PMO

ID Size Best known value Time limit Result Rel. diff. No. of gen. Result Rel. diff. No. of gen.

ta001 20x5 1278 10 1302.8 1.94% 12817.4 1297 1.49% 1250.6

ta011 20x10 1582 10 1661.6 5.03% 10142.4 1622.2 2.54% 904.4

ta021 20x20 2297 10 2413.4 5.07% 7750.6 2372.8 3.30% 563.6

ta031 50x5 2724 50 2756.6 1.20% 22930 2741.6 0.65% 1070

ta041 50x10 2991 50 3271.2 9.37% 18066 3205.4 7.17% 766

ta051 50x20 3847 50 4240.8 10.24% 13640 4164.6 8.26% 470

ta061 100x5 5493 200 5530.4 0.68% 35867.4 5538.6 0.83% 1053.6

ta071 100x10 5770 200 6104.8 5.80% 31259 6031 4.52% 776.2

ta081 100x20 6202 200 6972 12.42% 24472.4 6819 9.95% 478

ta091 200x10 10862 1000 11255.6 3.62% 57462.2 11222.4 3.32% 959

ta101 200x20 11181 1000 12409.6 10.99% 47035 12240 9.47% 569.8

ta111 500x20 26059 5000 28578 9.67% 58591.6 28274.2 8.50% 436.4

Now, the question that arose in Section 5 is answered: it is worth applying real

value based representation, because despite the computational overhead, the

methods based on it are more efficient than the ones using permutation based

encoding.

The observed behavior of the different algorithms matches with the results of our

previous works comparing evolutionary algorithms on general optimization

benchmark problems, and particularly on fuzzy rule based supervised machine

learning problems (cf. e.g. [14], [15]).

7.2 Comparison to other Methods

Since BMAr appeared to be the most efficient algorithm, this technique is

involved in further investigations: this method is compared to the Iterated Greedy

heuristic and to the genetic algorithm based memetic method.

Table VI shows the results of the comparison of BMAr, IG and MA, where the

heightened results are the best makespan values.

Table VI

Comparison of BMAr, IG and MA

Problem BMAr IG MA

ID Size Best known value Time limit Result Rel. diff. Result Rel. diff. Result Rel. diff.

ta001 20x5 1278 10 1278 0,00% 1278 0,00% 1278 0,00%

ta011 20x10 1582 10 1586,4 0,28% 1583,2 0,08% 1585,4 0,21%

ta021 20x20 2297 10 2303,8 0,30% 2301,6 0,20% 2304,4 0,32%

ta031 50x5 2724 50 2724 0,00% 2724 0,00% 2724 0,00%

ta041 50x10 2991 50 3045,6 1,83% 3035,2 1,48% 3062,2 2,38%

ta051 50x20 3847 50 3945,6 2,56% 3925 2,03% 3958,4 2,90%

ta061 100x5 5493 200 5493 0,00% 5493 0,00% 5493 0,00%

ta071 100x10 5770 200 5788,2 0,32% 5786,8 0,29% 5797,8 0,48%

ta081 100x20 6202 200 6392,4 3,07% 6350 2,39% 6387,8 3,00%

ta091 200x10 10862 1000 10882,2 0,19% 10888,6 0,24% 10885,2 0,21%

ta101 200x20 11181 1000 11432,4 2,25% 11392,4 1,89% 11434,6 2,27%

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 135 –

As can be observed, BMAr was more efficient than MA, because 6 times out of 11

BMAr gave lower makespan values, whereas MA was better only 2 times.

However, the most obvious fact appearing in the table is that IG significantly

outperformed both other methods.

This result leads to two consequences. First, even the best established

chromosome based technique cannot be a rival for one of the state-of-the-art

methods, the Iterated Greedy heuristic. Second, although it cannot be a rival, it can

be a “helpmate” of IG. In further research it would be worth constructing and

evaluating hybrid methods based on BMAr and IG. A reason for this is that in the

case of multi-processor systems, the combination of MA and IG resulted in a

better technique than approaches applying only parallel IG threads [13].

However, such further investigations are beyond the scope of this paper.

7.3 Summary of the Main Observations

In short, the main observations made can be summarized as follows:

 Generally, bacterial techniques clearly outperformed the genetic and

particle swarm ones.

 Usually, memetic methods (i.e. algorithms comprising local search steps

as additional evolutionary operators) showed better performance than

pure evolutionary approaches.

 Except in 2 cases out of 48, the methods applying real value based

encoding technique were better than the ones using permutation based

individual representation.

 BMAr seemed to be the overall best chromosome based evolutionary

optimization heuristic for the PFSP problems.

 Although, the best constructed method was more efficient than a genetic

algorithm based memetic technique applied in multi-processor systems, it

was outperformed by one of the state-of-the-art heuristics, the Iterated

Greedy method.

Conclusions

Our work proposed approaches for adapting chromosome based evolutionary

methods to the Permutation Flow Shop Problem. The proposal included two types

of individual representation (i.e. encoding method): a permutation and a real value

based one. They were applied on three different chromosome based evolutionary

techniques, namely the Genetic Algorithm, the Bacterial Evolutionary Algorithm

and the Particle Swarm Optimization method. Both representations were applied

on the two former methods, whereas the real value-based one was used for the

latter optimization technique. Each mentioned algorithm was involved without

and with local search steps as one of its evolutionary operators. Since the

K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem

 – 136 –

evolutionary operators of each technique were established according to the applied

representation, this paper investigated a total number of ten different chromosome

based evolutionary methods.

The obtained techniques were evaluated via simulation runs carried out on the

well-know Taillard‟s benchmark problem set. Based on the experiments the

following observations could be made.

The real value based representation seemed to be better than the permutation

based encoding technique. The algorithms applying local search performed better

than the corresponding pure evolutionary methods, whereas bacterial techniques

outperformed both genetic and particle swarm algorithms overwhelmingly.

Therefore, BMAr appeared to be the best established chromosome based

evolutionary optimization method for the PFSP problem.

Although, the best constructed method was more efficient than a genetic algorithm

based memetic technique applied in multi-processor systems, it was outperformed

by one of the state-of-the-art heuristics, the Iterated Greedy method.

Ongoing research aims to combine the BMAr technique with IG and to establish

new hybrid methods more efficient than either of them. That work considers

single- as well as multi-threaded algorithms.

Since among chromosome based evolutionary algorithms bacterial methods

performed best, in further research, slightly modified bacterial techniques, such as

the Bacterial Memetic Algorithm with Modified Operator Execution Order [16],

might also be involved.

Future work may also aim to compare the investigated techniques with other state-

of-the-art methods published for the PFSP task and to combine the best one

among them with the chromosome based evolutionary techniques, thus

establishing a promising hybrid algorithm.

Finally, an additional research direction could be the extension of the proposed

approaches to other scheduling tasks, such as scheduling problems considering

setup times or involving concurrent processing of batches of jobs (see e.g. [17]).

Acknowledgement

The research is supported by the National Development Agency and the European

Union within the frame of the project TÁMOP-4.2.2-08/1-2008-0021 at the

Széchenyi István University entitled “Simulation and Optimization – basic

research in numerical mathematics”.

References

[1] S. M. Johnson: Optimal Two- and Three-Stage Production Schedules with

Setup Times Included, Naval Research Logistics Quarterly 1, 1954, pp. 61-

68

Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

 – 137 –

[2] A. H. G. Rinnooy Kan: Machine Scheduling Problems: Classification,

Complexity and Computations, Martinus Nijhoff, The Hague, The

Netherlands, 1976

[3] E. Taillard: Some Efficient Heuristic Methods for the Flow Shop

Sequencing Problem, European Journal of Operational Research,

Amsterdam, 1990, pp. 65-74

[4] A. Juan, A. Guix, R. Ruiz, P. Fonseca, F. Adelantado: Using Simulation to

Provide Alternative Solutions to the Flowshop Sequencing Problem, 14
th

ASIM Dedicated Conf. on Simulation in Production and Logistic,

Karlsruhe, Germany, 2010, pp. 349-356

[5] Z. Horváth, P. Pusztai, T. Hajba, Ch. Kiss-Tóth: Mathematical Methods

and Parallel Codes for Production Line Optimization, Factory Automation

2011 Conference, Győr, Hungary, 2011

[6] E. Taillard, Benchmarks for Basic Scheduling Problems, European Journal

of Operational Research 64 (2), 1993, pp. 278-285

[7] J. H. Holland: Adaption in Natural and Artificial Systems, The MIT Press,

Cambridge, Massachusetts, 1992

[8] N. E. Nawa and T. Furuhashi: Fuzzy System Parameters Discovery by

Bacterial Evolutionary Algorithm, IEEE Transactions on Fuzzy Systems,

7(5), 1999, pp. 608-616

[9] J. Kennedy and R. Eberhart: Particle Swarm Optimization, Proceedings of

the IEEE International Conference on Neural Networks (ICNN '95), 4,

Perth, WA, Australia, 1995, pp. 1942-1948

[10] N. E. Nawa, T. Hashiyama, T. Furuhashi, and Y. Uchikawa: Fuzzy Logic

Controllers Generated by Pseudo-Bacterial Genetic Algorithm, Proceedings

of the IEEE International Conference on Neural Networks, ICNN‟97,

Houston, 1997, pp. 2408-2413

[11] P. Moscato: On Evolution, Search, Optimization, Genetic Algorithms and

Martial Arts: Towards Memetic Algorithms, Technical Report Caltech

Concurrent Computation Program, Report. 826, California Institute of

Technology, Pasadena, USA, 1989

[12] R. Ruiz, T. Stützle: A Simple and Effective Iterated Greedy Algorithm for

the Permutation Flowshop Scheduling Problem, European Journal of

Operational Research, 177, 2007, pp. 2033-2049

[13] M. G. Ravetti, C. Riveros, A. Mendes, M. G. C. Resende, and P. M.

Pardalos: Parallel Hybrid Heuristics for The Permutation Flow Shop

Problem, AT&T Labs Research Technical Report, 2010, p. 14

[14] K. Balázs, J. Botzheim, L. T. Kóczy: Comparison of Various Evolutionary

and Memetic Algorithms, Proceedings of the International Symposium on

K. Balázs et al. Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem

 – 138 –

Integrated Uncertainty Management and Applications, IUM 2010,

Ishikawa, Japan, 2010, pp. 431-442

[15] K. Balázs, J. Botzheim, L. T. Kóczy: Comparative Analysis of Interpolative

and Non-interpolative Fuzzy Rule-based Machine Learning Systems

Applying Various Numerical Optimization Methods, World Congress on

Computational Intelligence, WCCI 2010, Barcelona, Spain, 2010

[16] R. Lovassy, L. T. Kóczy, L. Gál: Function Approximation Performance of

Fuzzy Neural Networks, Acta Polytechnica Hungarica, Vol. 7, No. 4, 2010,

pp. 25-38

[17] E. Kodeekha: Case Studies for Improving FMS Scheduling by Lot

Streaming in Flow-Shop Systems, Acta Polytechnica Hungarica, Vol. 5,

No. 4, 2008, pp. 125-143

