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Abstract: Cerebral blood flow (CBF) oscillation is a common feature of several 
physiological and pathophysiological states of the brains. In this study the characterization 
of the temporal pattern of the cerebral circulation has been analyzed. The classification of 
CBF signals has been carried out by two different classification methods – neural network 
and support vector machine – employing spectral and wavelet analysis as feature 
extraction techniques. The efficiency of these classification and feature extraction methods 
are evaluated and compared. Computations were carried out with Mathematica and its 
Wavelet as well as Neural Networks Applications. 
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1 Introduction 

Low frequency spontaneous oscillations in cerebral hemodynamics have been 
observed – and linked to certain physiological and patophysiological states [1], 
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such as epilepsy [2]. Therefore it is worthwhile to investigate the possibilities of 
classification of the temporal patterns of this vasomotion. Three classes of CBF 
signals have been distinguished experimentally [3, 4, 5] in relation to consecutive 
administration of two different drugs (see Figure 1): 

1 Normal blood flow signals before applying any drugs, that does not exhibit low 
frequency oscillations (LFO-s), referenced as class A; 

2 Slight oscillation after the administration of L-NAME, a NO synthase inhibitor 
reportedly evoking CBF oscillations, referenced as class B; 

3 More pronounced oscillation observed after the administration of U-46619 for 
stimulating thromboxane receptors, having the effect of also inducing LFO, 
referenced as class C. 

 
Figure 1 

Measured blood flow series of the three states 



Acta Polytechnica Hungarica Vol. 3, No. 1, 2006 

 – 161 – 

Recently, to identify different states of CBF oscillation, different classification 
methods, based on a two-dimensional feature vector – the maximum amplitude 
and its frequency of the Fourier transform of the time signals – have been 
employed, using neural network and support vector machine classifiers (SVMC) 
[6, 7]. However, these approaches were only partly successful because the two-
dimensional feature vector could not characterize all the features of the time 
series. Even the most promising technique, the SVMC suffered from overlearning 
[8]. The separation of the first class from the two latter has been carried out 
successfully using two feature vector elements derived from the measured signal. 
However, the second and third classes cannot be effectively distinguished due to 
the highly overlapping regions (stars and squares), as seen on the feature map 
Figure 2. Hence the discrimination of the mentioned classes, or cerebral blood 
flow states, is the subject of this paper. Two different feature extraction methods 
have been applied to characterize the given time signals, based on spectral and 
wavelet subband analysis. 

 
Figure 2 

Normalized dimensionless feature map of cerebral blood flow: normal blood flow, class A (triangle), 
before administration of U-46619, class B (square) and after administration of U-46619, class C (star) 

from [4] 
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2 Feature Extraction 

2.1 Using Spectral Analysis 

In this case, the characterization of the signals to be classified is based on the 
eigenvalue of the spectral matrix of the signal [9]. In order to obtain the singular 
values being characteristic of the different states, a matrix has to be derived from 
the time signal. This is obtained by creating a spectral matrix. Given the time 
series of data id , where ]000.701[ …=i  are the sample points, we pick a 

window size of 000.70<<n  and form n−000.70  window vectors, which we 
apply to a given range of data points: 
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The matrix is built from these window vectors as columns: 
T T T
1 2 jA [u u u ]= "  (2) 

then our spectral matrix can be computed as AAS T= . In order to find the 
optimal window size and range, a series of decompositions have been completed, 
and the reconstructed signals have been compared to the original recordings. A 
sample of the maximal reconstruction errors can be seen in Figure 3, showing the 
local minimum and maximum. There is a few percent difference between the local 
minimum and maximum, therefore for the feature extraction, a window size of 50 
and a window range of 5000 samples has been selected. 
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Figure 3 

Approximation error in function of window size and range 

Employing these window parameters, the eigenvalues of the spectral matrix can be 
computed. As it can be seen, in the case of a class C signal on Figure 4, the first 
six values are good candidates to be the elements of the feature vector describing a 
given signal. 

   
Figure 4 

Eigenvalues of the spectral matrix of a class C signal, on a logarithmic scale 

2.2 Feature Extraction via Wavelet Transformation 

In recent years, feature extraction methods were developed based on wavelet 
transformation to recognize acoustic signals. They are applicable to the 
recognition of ships from sonar signatures, cardiopulmonary diagnostics from 
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heart sounds, safety warnings and noise suppression in factories, and recognition 
of different types of bearing faults in the wheels of railroad cars and so on [10]. 

Wavelet-based analysis is similar to the Fourier analysis where sinusoids are 
chosen as the basis function. The Wavelet analysis is also based on a 
decomposition of a signal using an orthogonal family of basis functions. Because 
of the used basis function the wavelets are well suited for the analysis of transient, 
time-varying signals. The wavelet expansion is defined by a two-parameter family 
of functions: 

∑∑ Ψ=
k

kjkj tatf )()( ,,  (3) 

where j  and k  are integers, the )(, tkjΨ  are the wavelet expansion functions. 

The wavelet expansion (or basis) functions based on the mother wavelet of the 
formula 

)2(2)( 2/
, ktt jj
kj −Ψ=Ψ  (4) 

where j  is the translation parameter and k is the dilation parameter. 

The expansion coefficients kja ,  are called the discrete wavelet transform (DWT) 

coefficients of )(tf . The coefficients are given by the following equation 

∫ Ψ= dtttfa kjkj )()( ,,  (5) 

The DFT and the DWT are the two most commonly used techniques for the signal 
transformation to the frequency domain. More details of the transforms can be 
found in [11, 12]. 

Let us illustrate this classical technique applying it to a CBF signal. Before the 
DWT of the time signal can be computed, we drop the beginning and the end of 
this raw signal, getting a signal of 162  length of samples. This transformation 
decomposes the data into a set of coefficients in the wavelet basis. There are 16  
sublists containing the wavelet coefficients in the orthogonal basis of the 
orthogonal subspaces. The contributions of the coefficients to the signal at 
different scales are represented by the phase space plot, see Figure 5. Each 
rectangle is shaded according to the value of the corresponding coefficient: the 
bigger the absolute value of the coefficient, the darker the area. The time unit is 5  
msec. 
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Figure 5 

The phase space plot of the DWT of the time signal 

Normally, from the wavelet coefficients of each of the 16  resolution levels 
(subbands) and from sample values of the original time signal, one computes the 
average energy content of the coefficients at each resolution. There are a total of 
17  subbands (16  wavelet subbands and one approximation subband represented 
by the original signal) from which features are extracted. The thi  element of the 
feature vector is given by, 
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16

2
321 2,,2,2,2 ==== nnnn …  and 16

17 2=n , where jiw , is the 
thj  coefficient of the thi subband. In this way, from a time signal having 
k2 samples or dimensions, one can extract a feature vector of 1+k  dimensions. 

This technique has been extended for two dimensional signals, for digital images 
[13]. In order to study the effect of the dimension of the input space on the quality 
of the classification as well as to save the morphology of DWT, here we employ a 
different approach. We consider the wavelet coefficients belonging to a given 
subband as a feature vector based on this given resolution. It can be a reasonable 
approach, because the approximated signal representation in the orthogonal 
subspace corresponding to this subband is given by these coefficients [14]. In our 
case, there are two sets of time signals, representing two classes of CBF states and 
only 40  patterns ( 202× ) are at our disposal. Intuitively, it is possible to shatter 
two points by any linear manner in the one-dimensional space and three points in 
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two-dimensional space. By analogy, it is possible to shatter N 1+  points in the 
N -dimensional space with the probability of 1. If the patterns to be classified are 
independent and identical distributed, then in the 2 N  patterns are linearly 
separable in the N -dimensional space [15]. The coefficients of the subbands from 

22 =n  up to 3225
6 ==n  as different feature vector components will be 

employed. The magnitudes of the wavelet coefficients at these subbands are 
shown in Figure 6. 

To carry out the computations, a second order Daubechies filter has been 
employed, see Figure 7. 

According to [6], the two greatest components of a wavelet decomposition do not 
represent adequately the signals derived from drug induced oscillations. This 
means that the very small coefficients belonging to the higher resolutions, 

161 nn −  and the very big coefficients of the lowest resolution, ( 1n ) are not taken 
into consideration. The previous ones have no contributions; the latest one would 
suppress all of the others (see Figure 5). With other words, we consider the 
"measurable" fine structure of the subband coefficients. Figure 8 shows the 
maximums of the magnitude of the wavelet coefficients of different resolutions, 
except of those belonging to the first (lowest) one. The omitted first wavelet 
coefficient has a magnitude of about 74276, being significantly larger than the 
other wavelet coefficients. 

 
Figure 6 

The magnitude of the wavelet coefficients at resolution from (at the bottom) up to (at the top) 
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Figure 7 

Daubechies filter with )(tψ  

  
Figure 8 

The maximal magnitudes of the wavelet coefficients of different resolutions 
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3 Classification 

3.1 Using Radial Basis Function with Artificial Neural 
Networks 

Figure 9 illustrates an RBF network with inputs nxx ,,1 …  and output ŷ . The 
arrows in the figure symbolize parameters in the network. The RBF network 
consists of one hiddenlayer of basis functions, or neurons. At the input of each 
neuron, the distance between the neuron centre and the input vector is calculated. 
The output of the neuron is then formed by applying the basisfunction to this 
distance. The RBF network output is formed by a weighted sum of the neuron 
outputs and the unity bias shown. 

 
Figure 9 

Illustration of an RBF network 

The RBF network in Figure 9 is often complemented with a linear part. This 
corresponds to additional direct connections from the inputs to the output neuron. 

Mathematically, the RBF network, including a linear part, produces an output 
given by 

∑
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−− ++++==
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),()(ˆ χχθθ λ …  (7) 

where nb  is the number of neurons, each containing a basis function. The 
parameters of the RBF network consist of the positions of the basis function 1

iw , 

the inverse of the width of the basis functions iλ , the weights in output sum 
2
iw and the parameters of the linear part nn xx χχ ++…11 . In most cases of 

function approximation, it is advantageous to have the additional linear part but it 
can be excluded when not necessary. 
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Considering N  patterns of measured CBF signals representing the two 
overlapping classes, we have 

M
i Rx ∈  (8) 

feature vectors derived from time series samples, where Ni …1=  are the 
samples, and M  is the dimension of the feature vectors, consisting of first 
M dominant eigenvalues. In our case the number of the measurements were 

40=N . In order to obtain the minimum size of the feature vector which is 
required to produce reliable results, up to six eigenvalues were used. The goal of 
the classification problem is to assign new, previously unseen patterns to their 
respective classes based on previously known examples: in our case to assign 
input signals to class B or class C. Therefore the output of our unsupervised 
learning algorithm is a set of discrete class labels corresponding to the different 
CBF states. The labelled patterns corresponding to classes B and C, were to be 
classified. This means, that we are looking for a decision function; the output of 
this estimating function is interpreted as being proportional to the probability that 
the input belongs to the corresponding class. To carry out the systematic 
classification of CBF signals, an RBF was used. Radial basis function has the 
characteristic feature, that the response increases or decreases monotonically 
according to the distance from a central point. The Gaussian RBF function is used 
in a single layer network, consisting of two input nodes in the input layer, seven 
nodes in the hidden layer, and two nodes in the output layer. Several lengths of 
feature vectors have been fed to the classifier – producing fewer misclassifications 
as the number of components of the input feature vector increased. The output of 
the classifier was accepted, if the rounded value of the output nodes corresponded 
to the proper class, correctly classifying the input pattern, otherwise the 
classification of that particular input signal was registered as a misclassification. 
Because the number of the samples are limited ( 40=N ), the dimension of the 
feature vectors, as well as the number of nodes of the network should be 
constrained, in order to ensure a reliable teaching process of the network. 

3.2 Support Vector Machine (SVM) Classifier 

To study the effects of higher dimensional feature vectors on the classification 
process, an SVM classifier, having no restrictions regarding input vector 
dimensions, has also been applied. 

Let us consider a set of training samples, 

)),(,),,(( 11 mm yxyxS …=  (9) 
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with labels 1=iy  or 1− , respectively and use the feature space implicitly 

defined by the kernel ),( zxK . We suppose that the parameters are the solutions 
of the following quadratic optimization problem, 

maximize ⎟
⎠
⎞
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where *b  is chosen so that 
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for any i  with 

0* ≠iα  (14) 

Then the decision rule given by ))(( xfsign  is equivalent to the hyperplane in 
the feature space implicitly defined by the kernel ),( zxK , which solves the 
optimization problem, where the geometric margin is 
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and the set sv  corresponds to indexes i , for which  0* ≠iα , 

}1;0:{ * miisv i …=≠= α  (16) 

Training samples, ix , for which svi∈  are called support vectors contributing to 

the definition of )(xf . The geometric margin, γ  can indicate the quality of the 
classification [16], greater the γ , more reliable the classification is. 

This kernel based classifier can be trained on any size of training set, while neural 
networks should have so many input nodes as the dimension of the input space 
and need definitely more training patterns than the number of these input nodes. 
Employing kernels, a classification problem can be transferred in a higher 
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dimensional space, where the linear separability is more likely. In addition, the 
quality of the classification in any dimension can be measured by the geometric 
margin of the SVM classifier [16]. Here we used the feature vectors produced by 
the wavelet subband analysis. Twenty of these vectors represent one CBF state, 
the other twenty represent the other state. As an example let us load the 
coefficients of the fifth subband, 1624

5 ==n , for all of the 40  patterns, giving 

us 40  feature vectors of dimension of 16 . First, these data should be 
standardized; to be transformed so that their mean is zero and their unbiased 
estimate of variance is unity. Let us employ Gaussian kernel, with parameter 

5=β , as seen on Figure 10. 

),()(),( vuvu T

evuK −−= β  (17) 
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Figure 10 

Gaussian RBF universal kernel with 5=β , in case of 
1, Ryx ∈  

Let the value for the control parameter of regularization be 100=c . To carry out 
the training of the support vector classifier, we shall employ the algorithm 
embedded into the function, SupportVectorClassifier developed for Mathematica 
[17]. A sample pattern can be considered as support vector, if its contribution (its 
weighting coefficient iα ) to the decision function is greater than 1% of the 
maximal contribution. 

These computations were carried out for different feature vectors based on the 
coefficients of the different subbands. 
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4 Results 

4.1 Result of the SVM Classification 

Table 1 shows, that by decreasing the number of the wavelet coefficients, the 
Gram matrix is getting ill-conditioned, the geometric margin is becoming 
narrower and probability of the misclassification of patterns is increasing, 
although the classification with four wavelet coefficients is just acceptable. Let us 
employ the traditional feature extraction method, when the elements of the feature 
vector are computed as the average of squares of the wavelet coefficients 
belonging to the same subband, plus the same contribution of the original signal as 
additional subband. Consequently, the dimension of the feature vector is 
16 1 17+ = . Table 2 shows the result for this case. These results correspond with 
the results of the classification carried out with the eight dimensional feature 
vectors based on subband level 4 , however now the dimension of the feature 
vectors is 17  instead of 8 . The robustness of the SVM classifier has been also 
proved by successful classification of noisy samples. 

Table 1 
The results of the SVM classification with different feature vectors 

Subband 
level 

Number of 
wavelet 

coefficirnts 

Determinant 
of Gram 
matrix 

Condition 
number of 

Gram 
matrix 

Number 
of 

support 
vectors 

Geometric 
margin 

Number of 
misclassified 

patterns 

6 32 1. 1. 40 0.159695 0 

5 16 1. 1. 40 0.159695 0 

4 8 0.999 1.040 40 0.159701 0 

3 4 0.005 69.374 40 0.113922 0 

2 2 1.9310-39 1.15107 25 0.083355 4 

Table 2 
The results of the SVM classification employing traditional feature extraction technique 

Determinant of 
Gram matrix 

Condition 
number of 

Gram matrix 

Number of 
support 
vectors 

Geometric 
margin 

Number of 
misclassified 

patterns 
0.994 1.170 40 0.159374 0 
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4.2 Result of the ANN Classification 

Columns 1 and 2 of Table 3 show the result of the ANN classification results 
using eigenvalue-based feature extraction. It can be clearly seen from the numbers, 
that it makes no sense to use more than 6 eigenvalues. Comparing different feature 
extraction methods and classification algorithms by taking different numbers of 
eigenvalues as feature vectors, the results are very close to that obtained when 
using wavelet decomposition, see columns 3 and 4 of Table 3. In any case, it is 
clear, that a merely two element feature vector is insufficient for reliable results; at 
least a five element feature vector was needed to differentiate class B from class C 
in the case of ANN classification with eigenvalue-based feature extraction, while 
in the case of the SVM classification with wavelet-based feature extraction, at 
least 8-dimensional feature vector should be used. 

Table 3 
Misclassification rate 

Wavelet 
coefficient 
(subband 

level) 

Number of 
eigenvalues 

Wavelet feature extraction 
& SVM classification, 

misclassification number 

Eigenvalue feature 
extraction & ANN 

classification, 
misclassification number 

16 (5) 6 0 0 

8 (4) 5 0 0 

4 (3) 4 0 3 

- 3 - 3 

2 (2) 2 4 6 

Conclusions 

Two feature extraction and classification methods are presented. First an Artificial 
Neural Network using a radial based function, combined with a spectral matrix 
based feature extraction was shown. Secondly, a Support Vector Machine 
Classifier with wavelet subband analysis as feature extraction method was 
employed. The two methods can successfully differentiate cerebral blood flow 
classes B and C, and although the approaches described in this paper are very 
different, they still produced comparable results for this classification problem. 
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