
Acta Polytechnica Hungarica Vol. 16, No. 6, 2019

 – 73 –

Cognitive Aspects of Mathematics-aided

Computer Science Teaching

Katalin Bubnó1, Viktor László Takács2

1Doctoral School of Mathematical and Computational Sciences, University of

Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary, kbubno@lib.unideb.hu

2Department of Business Informatics, University of Debrecen, Böszörményi u.

138, 4032 Debrecen, Hungary, takacs.viktor@econ.unideb.hu

Abstract: Some years ago we started an experiment with teaching an algorithmic thinking

method, in an old-new approach and with a newly developed ecosystem. We planned our

method for the future, when students will use their own devices in schools, and computer

programming should usually be integrated into various teaching environments, including

teaching mathematical problem solving once again. Our method fits into analogy-based

pedagogical research, which focuses on problem solving in computer science. We

presented and examined our method at the 2017 CoginfoCom Conference, in the sense of

Mathability. There, we also asked further questions concerning the efficiency of analogy-

based computer programming teaching methods [2]. In this paper, we would like to answer

these questions.

Keywords: problem solving; mathability; mathematical psychology; novice computer

programming

1 Introduction: Analogy-based Algorithmization

At the beginning of Hungarian computer science teaching in public education

(1980s) it was natural that teaching computer science meant teaching computer

programming. It was also natural that mathematical problem solving and

computational problem solving have common origins and tools. That was the

reason why the first teachers, who started teaching computer programming in

schools, were Mathematics teachers. The strong relation between mathematical

and computational thinking enabled them to easily master and teach the basics of

programming. As times changed, computer science and computer science teaching

changed as well. Nowadays, the common origin, tools and thinking methods are

not so obvious. Infocommunication tools became more and more complex and

teaching the use of ICT tools is a priority, as opposed to computer programming.

K. Bubnó et al. Cognitive Aspects of ‘Mathematics-aided Computer Science Teaching’

 – 74 –

Some years ago, we started an experiment with teaching an algorithmic thinking

method, in an old-new approach and with a newly developed ecosystem. We

planned our method for a future, when students will use their own devices in

schools and computer programming would usually be integrated into various

teaching environments, including teaching mathematical problem solving.

We introduced our method in 2013 ProMath Conference [1], and four years later

at the 2017 CoginfoCom Conference, we summarized and demonstrated the

mature method, we examined the method and the programming environment we

used, in the sense of Mathability, and we presented some results from related

teaching experiments [2].

The conception of mathability was first introduced in the 2013 CoginfoCom

Conference [3]. Mathability research is intended to bridge the gap between

cognitive infocommunication and information technology education by modeling

mathematical thinking in computer problem solving. Former mathability research

enumerates various cognitive aspects to take attention [6, 7, 8, 11, 20], or they try

to match the mathability aspects of existing taxonomies [6, 7, 8, 9, 10, 11, 20].

Furthermore, we can find concrete classroom experiments and questionnaire

research in different ages and education levels, to evaluate IT tools in the sense of

mathability [6, 7, 9, 10, 20]. In [28] there is a review of Mathability and wider

scale of education subjects of the former CoginfoCom conferences.

In this paper we want to expand the list of aspects of cognitive theories with those

that have already been applied successfully in teaching mathematics.

At the same time, we want to introduce Blockly Code [12] programming editor, as

a kind of new learning environment. Virtual reality systems, as new learning

environments and especially 3D VR systems are relevant topics in cognitive

infocommunications, from the beginning of Coginfocom conferences. Several

studies prove the topicality and operability of these environments [29, 30, 31, 32,

38] and their benefits in cooperative learning [29], even in enterprise environment

[37].

Furthermore, cognitive infocommunications subjects were completed with

memory performance examinations [33, 34, 35, 36], that is in our inquiry as well.

Our method is based on the well-known mathematical problem solving model by

George Pólya [4]. In Hungarian schools it is the most common and well-known

mathematical problem solving model. Children from the first classes of

elementary school learn this method, for solving simple word problems. We

showed the analogies between this model and computational problem solving, and

demonstrated some examples as well [1].

A great part of mathematical didactical literature studied the difficulty of problem

solving from several aspects, for example, from the psychological aspect [5]. We

think computer science education has to investigate the difficulty of problem

solving also from the psychological point of view, because nowadays, in an

Acta Polytechnica Hungarica Vol. 16, No. 6, 2019

 – 75 –

Information Society, it is a critical skill that a young people can learn

computational thinking or not. Furthermore, if a youngster is not able to acquire

this knowledge, what is the reason for their failure.

We think that children cannot easily recognize the relationship between

Mathematics and computer programming, and they believe, computational

thinking is a very difficult, complicated, new knowledge for them and that is the

reason why they experience fear. We think, we can help them with our analogy-

based approach, to help them learn that computer programming is the natural

continuation of mathematical problem solving and it requires the same skills and

thinking, as Math and nothing new.

Our method fits into analogy-based pedagogical research, which focuses on

problem solving in computer science. In 2014 Coginfocom conference, Szi and

Csapo [6] described various factors which influence human mathematical abilities.

They mentioned analogy searching as one of the most important generic concepts

which refers to the existence of mathematical intelligence in a human. They said:

“Searching analogy (SA), which reflects the ability to recognize structural

associations, is also an important foundation for the development of mathematical

thinking. It has been argued that it is the structure of concepts and problem solving

that distinguishes mathematics from other natural sciences. In this sense, the

ability to find useful analogies is a crucial component of good mathematical

abilities, as reflected in the various mathematical intelligence tests.”

We believe, our method offers ‘useful analogy’ for children to solve problems

with computers, and in this paper we should prove it with some of our measuring

results.

In the CoginfoCom conference we propose a final test in our experiment and seek

to answer the following questions:

1) Are the analogies in teaching methodology helpful or not, when they

have been achieved as an established method from elementary school?

2) Can children recognize mathematical analogies or not in certain

programming environments?

3) Can this approach help overcome fear and aversion of computer

programming?

2 About Our Conscious Problem Solving Method

with Computer Programming

In Hungarian schools teaching mathematical problem solving started in early the

school years. Children repeat as a ‘mantra’ the engraved method:

K. Bubnó et al. Cognitive Aspects of ‘Mathematics-aided Computer Science Teaching’

 – 76 –

1) Gather data from text

2) Create a plan

3) Count

4) Check and Answer

But from Pólya’s, How to solve it [4], we know, there is also a step: ‘Looking

back’. Looking back means discussing the problem, examining the solutions,

asking new questions related to the problem, forming the problem into another

problem (posing new problems), formalizing and generalizing the problem.

In [2] we demonstrated via an example how we can recall Pólya’s model and use

it for teaching the base elements of computer programming via classic word

problems. We also presented how to use ‘Looking back’, for teaching how to

formalize and generalize a certain problem and evaluate a students’ work. We

presented that ‘Looking back’ precedes generalizing, debugging and optimizing

the algorithm. Furthermore, we mentioned that during evaluation, we specified 5

critical factors of assessment: initial data extraction from word problem (Data),

Problem solving correctness mathematically (Math), Problem solving correctness

algorithmically (Alg), Algorithm checking (Check), Answering the problem

(Answ).

In [2] we also presented a system of criteria to measure the level of discussion of

the problem. We can see this discussion pyramid in Figure 1.

Figure 1

Discussion pyramid

Acta Polytechnica Hungarica Vol. 16, No. 6, 2019

 – 77 –

3 Blockly Code

In [2] we presented, that we chose Blockly Code [12] programming editor, the

base of many novices block based programming languages to work with.

Furthermore, we showed, that Blockly is a high level mathability tool. We could

say, Blockly is an end-user-friendly pseudocode. It is user friendly and

comfortable for novice programmers as opposed to text-based languages. When

we code with Blockly, we write algorithms in a formal language, but we do not

have to memorize the elements of the language, just search for them in the

structured toolbar, and drag-and-drop them into the code. The most well-known

block based programming language, Scratch’s official portal [13] we find some

advantages and disadvantages, usually mentioned in this topic. David Weintrop

examined this problem in details in his dissertation and articles. [14, 15].

He examined a very serious problem that “block-based” programming

environments, while successful in changing attitudes and engaging learners, do

not adequately prepare them to transition to more conventional programming

languages, thus imposing an artificial ceiling on how far learners can progress

with these tools [15].

This question is relevant for us, in the sense that we think it is a similar problem

that mathematics didactic literature discusses, as the transit from a lower

representation stage to a higher.

3.1 Blockly Code as Tool from Mathematical Didactical and

Mathematical Psychological Point of View

Because we chose a mathematical teaching content, as an aid for teaching

computer science content, we have to investigate what the mathematical didactical

and mathematical psychological background teaching problems are, so that we can

use and recall them, to support our teaching goals.

3.1.1 Bruner’s Representation Stages

In mathematics teaching, we used three stages of representation and we called

them, Bruner’s representation stages, after Jerome Bruner [5].

In [2] we examined a Blockly Code programming editor, in the context of

mathability, now we would like to investigate it in the context of mathematical

representation stages.

Enactive or action-based stage means concrete tangible tools, hands-on

manipulative methods to understand a certain problem and model (or solve) it.

Nowadays, it is a very exciting question, for example, whether a computer

software (for example a game) can be evaluated as an action-based tool or not.

K. Bubnó et al. Cognitive Aspects of ‘Mathematics-aided Computer Science Teaching’

 – 78 –

Because there is no real physical interaction, just imaginary. Volk and colleagues

examined this question [16] in the sense of tablet using in Math lessons. Based on

their results, the authors argue for the introduction of tablets in schools, because

‘their multi-sensory human-computer touch interaction provides interactive

manipulatives supporting transition between representations on the concrete,

visual and abstract level’ [16].

As we mentioned before, we plan this method for the near future, and we believe

that tablets or other computer hardware tools will have very important roles in

schools, and not just as a tool for displaying, demonstrating and illustrating

problems, but as a tool for solving the problem. Blockly, like other drag-and-drop

programming environments, gives the feeling for children, that they are working

with hands-on tools. So we can say, Blockly is able to make connection between

representation stages. According to [16] we think, Blockly’s comfortable

handling, the unnecessary memorization of components of language and the

illusion of physical manipulation, reassures children and reduces their fear of a

difficult task.

Iconic representation is the next level of representation stages. It means, we use

structured ‘illustrations’, i.e. diagrams, tables, etc. for modeling the problem.

When we do computer programming, we have to plan for the type of data

structures to order our data. It is the part of the implementation. So, what we use at

the phase of mathematical solution for illustration, later, at the algorithmization

phase, we have to implement it. Good examples are early heuristic problems, for

example, in divisibility domain. Usually we order the possible solutions into a

table and eliminate those cases that do not lead to a solution. At implementation of

such, we use ‘loop plus list’ or ‘double list’ methods to run and find every case,

and enumerate the good cases into a list. The problem below is from a 4th grade

Hungarian Mathematical textbook [17].

Example: David’s mother is older than 24 but younger than 55. If we sum the

digits of the year she was born, we get 22. When was David’s mother born?

We order the solutions into a table (see Table 1):

Table 1

Cases of David’s mother task

YearMom BornDateMom =

= DateNow - YearMom

The sum of the digits

of ‘BornDateMom’

Solution

(Y/N)

25 1992 = 2017 - 25 1+9+9+2 = 21 N

26 1991 = 2017 - 26 1+9+9+1 = 20 N

… … … …

54 1963 = 2017 - 54 1+9+6+3 = 19 N

The loop we have to run for ‘YearMom’, from 25 to 54, we count the

‘BornDateMom’, and check with the sum of the digits if it satisfies the initial

Acta Polytechnica Hungarica Vol. 16, No. 6, 2019

 – 79 –

condition or not. If it does, we put it into the solution list. In Figure 2, we can see

the implementation of this task in Blockly Code.

Figure 2

Blockly Code implementation of ‘David’s mother’ task1

If we only examine Blockly Code as a tool, we should mention the block-like

arrangement, the coloration of the block groups what reports about the function of

the certain blocks. We also have to emphasize the elements that support the

possible attachment or mutation of the blocks. All of these are great help to model

the problem. But, from the results of the final test, we can see how many children

it helps to recognize the certain steps of problem solving.

The highest level of abstraction is the symbolic stage when we use a formal

language. As we mentioned, Blockly Code is like a pseudocode. Its other

advantage is that its mathematical toolbar and formalism are similar to the well-

known mathematical symbols and concepts we use in Mathematics lessons. We

have to mention, that Blockly Code is available in Hungarian. In our method

Blockly Code plays the role of the language, and it means that writing confidently

a right pseudocode for a problem with Blockly Code means that children can use

the language of algorithmization consciously, so they can solve the problem at a

symbolic stage, but of course, not immediately, not for the first look. We have to

teach it step by step and this is what our method is all about.

1 https://blockly-demo.appspot.com/static/demos/code/index.html?lang=en#izn4tc

K. Bubnó et al. Cognitive Aspects of ‘Mathematics-aided Computer Science Teaching’

 – 80 –

3.1.2 Teaching Concepts and Making Them Conscious

We called again for the methodology of Mathematics teaching, when we decided

how to introduce and teach computer programming content. In computer science,

like in other sciences there are usually descriptive names of concepts. For

example, list, array, loop, etc. It gives an image in our mind at once, when we hear

the word. But it is not obvious for children. Children’s attention should be drawn

to the relationship between common meaning of the word and the role of the tool

in computer programming. But it is not enough. When we teach, based on

mathematical analogies, we have to teach and make these analogies conscious as

well, and – as we have mentioned before – the iconic stage can help this process.

The example we presented anticipates that it depends on the mathematical

problem type. So we have to teach the connection between types of word

problems and basic programming elements.

3.1.3 Cognitive Load Theory and Mathematics Teaching

The theory of X, Y, and Z generations has become fashionable psychological

theory. It investigates the psychological impact of technical tools and it tries to

identify the characteristics of the given generations [18]. With this theory, today's

high school children’s natural need and important feature, is multitasking, that is,

the ability to share attention.

Having this need does not mean that it is good for them. Indeed, if there is too

much information that we have to process, our working memory is overloaded.

The Working Memory model was first presented by Baddeley and Hitch (1974)

and has been refined many times since. Working memory is the territory of our

mind where conscious knowledge processing takes place – understanding,

realizing, compiling knowledge, comparing, critical thinking, problem solving,

planning strategies, using transformation strategies, making analogies, making

connections between things, making mental representations and abstractions. This

is the place where analogy and metaphorical based thinking takes place [19].

In the model of working memory it has four main components:

● Phonological loop (for storing verbal, and sound information and

maintaining them by repeating)

● Visio-spatial sketchpad (for storing and maintaining visual information)

● Episodic buffer (making connection between the verbal and visual

information by the supervising of ‘central executive’ and with the help of the

information from the long-term memory)

● Central Executive: it is a supervisory system that controls the flow of

information from and to the other subsystems [19]

Acta Polytechnica Hungarica Vol. 16, No. 6, 2019

 – 81 –

In Hungarian mathematical didactics Ambrus, investigated and summarized the

role of working memory in Mathematics teaching and learning processes. In [19]

he makes some didactical suggestions to avoid cognitive overload during teaching

mathematical problem solving. Cognitive load means the load of working memory

during information processes.

Sweller and colleagues worked out their theory of cognitive overload and

mathematical problem solving. They stated that problem solvers have to have

many problem situations, problem positions in their mind (similar to professional

chess players’ mind about chess positions) and the schemas of steps by step

solutions (as some kind of strategy). After problem solvers successfully recognize

the problem they can recall and activate these schemas [19]. If a student does not

possess suitable schemas, he/she has to activate trial and error, or other attempting

methods and it depends on luck if these methods can help or not. Biró and

Csernoch presented in [20] that although these methods require metacognitive

processes they do not develop the algorithmic skills. Furthermore, the other

problem is that these methods overload the capacity of working memory very

much. Working memory has very small capacity: Miller’s law states that the

number of objects an average human can hold in working memory is 7 ± 2. [21]

Some new research states that because Miller made no distinction between the

type or length of the information his law must be reconsidered, and nowadays

research shows that 4 ± 1 units of information are closer to reality. Furthermore, if

there is not only storing information but also processing it, this capacity is not

more than 2 or 3 units. [19]

We believe that analogy-seeking thinking can be developed for everyone if we

consciously pay attention. Furthermore, if our analogy based strategy could be

automated, it does not occupy working memory, because automated methods are

stored in long-term memory and recalling them uses only one information unit

from working memory capacity [19].

3.1.4 Cognitive Load Theory and Computer Science Teaching

According to our research, we have to mention some results in this topic [22, 23,

24]. All of the three publications investigate the problem of cognitive overload

when tutorials, exercises, and other materials are planned and created for users.

However, tutorials are mainly developed for independent studying, and it is

obvious that the question was raised because of the multimedia technology

research, we appreciate the objective that the issue of working memory has been

raised both in user training and in computer programming teaching and the

methodology literature of computer science and information technology has begun

to deal with it. But we also have to examine this question in the teaching-learning

process, in computer science lessons/classroom work.

K. Bubnó et al. Cognitive Aspects of ‘Mathematics-aided Computer Science Teaching’

 – 82 –

3.1.5 Examining Blockly Code in the Sense of Cognitive Overload

There are some ergonomic aspects of cognitive load theory which we can

examine. Some block-based programming languages that were made for novice

(mainly children) computer programmers are too colorful or contain too many

unnecessary graphical elements. This can cause cognitive overload [19]. Further

ergonomic inconvenience, can also cause cognitive overload, for example, when

we have to scroll down a lot on a web-page, etc. Blockly Code was planned for

being the programming library of making further block based languages, so its

user interface is simple and free from unnecessary elements.

Drag and drop technique is an ordinary motion in our touch screen based world.

Some of the blocks are able to mutate. It means that a block can be expanded if it

is necessary. For example, in Blockly Code there are not 3 types of conditional

statements (IF...THEN, IF...THEN...ELSE, ELSE IF…). There is one type of

IF...DO block and it can mutate, if the problem solving process requires it.

4 Experiment

In [2] we presented our teaching experiment with analogy-based computer

programming method and showed results from the student groups. The first

groups who studied Blockly were in their graduation year, the time when we

decided to measure the pupils who took part in our teaching experiment. So we do

not measure the graduating classes, only the younger students. We wanted to

know whether they recall some knowledge from our analogy-based method or not.

We had 63 pupils in 4 groups with different attitudes to computer programming

and at different ages.

Figure 3

The performance of student groups by school year when they learned algorithmization with Blockly

Code

Acta Polytechnica Hungarica Vol. 16, No. 6, 2019

 – 83 –

In Figure 3 we can see that after one year (2015/2016), from teaching, the

knowledge of algorithmization can easily be recalled. In the 2015/2016 school

year, there were two study groups who studied algorithmization with Blockly

Code. One was a 6th grade class with scientific orientation, the other was a classic

4th grade class with applied scientific orientation. After two years (2014/2015) the

result is much worse, however this class was a six-graded scientific orientation

class too. The group studied Blockly Code in 2013/2014 school year and the

group who never studied Blockly (signed with ‘na’) was mainly from a special

group in Informatics. These children chose Informatics to take the graduation

exam in the 12th grade, so they had two more Informatics lessons in 11th and 12th

classes to prepare them. So, despite the time, their motivation was much better

than the others.

4.1 The Structure of the Worksheet and the Relationships

between the Tasks

In [2] we presented some results from students’ work during the teaching

experiment. Now, we would like to show the results of a final test we wrote with

four groups, who were taught using this method. They were different orientation

classes and the time elapsed, since the teaching experiment, is different for each

group.

Every class completed the final test in May 2017. The final test was in a printed

format, not on computers. So we create tasks from solutions of word problems of

different types, or part of algorithms. In different tasks children had to recognize

the mathematical concepts involved in the algorithm, they had to recognize

analogies of mathematical problem solving, they had to decide whether a solution

was right or not and sometimes they had to troubleshoot.

In the test we had 9 tasks that measure how children can recognize the analogy

between mathematical tasks, and the mathematical problem solving method in

computer algorithms. Task 1-5 are from the questionnaire of TAaAS project

(Testing Algorithmic and Application Skills), that measured Hungarian university

students’ algorithmic skills by Csernoch and colleagues [25]. Their test had two

parts. There was a questionnaire, from which the researcher could get information

concerning the students’ former results (graduation exam, etc.) and the

circumstances of their former education in Math and Computer Science. The other

part was the test that measured students’ computational thinking and

algorithmization skills in different (traditional and nontraditional) programming

environments and examined whether students think consciously, when they are

doing or evaluation an algorithm. They clustered it based on SOLO taxonomy.

We should mention another research from Spain, where Roman-Gonzales and

colleagues created and validated their own computational thinking test based on

Dr. Scratch [25] and the international Bebras [26] tests. They also extended the

K. Bubnó et al. Cognitive Aspects of ‘Mathematics-aided Computer Science Teaching’

 – 84 –

nomological network of "Computational Thinking" with some non-cognitive

factors in [27], so they moved forward investigating and mapping the

psychological aspects of this domain with their research.

Task 1-3 originally in TAaAS project, used simple pseudocodes to present

algorithms and students had to tell what the codes did. We implement some of

these tasks in Blockly Code environment and ask further questions. Task4 and

Task5 were left original, we did not implement them in Blockly. Task4 was

illustrated with a diagram; Task5 was implemented in block diagram.

Task1 is a simple algorithm for changing the values of two variables.

Task2 is a simple algorithm to decide about 3 required numbers if they are

Pythagorean triples or not.

Task3 is a simple algorithm to decide about 4 required numbers (in a certain

order) if they could satisfy the general formula of the linear function (when the

first number is the slope of the function, the second is the y-intercept, and the third

and fourth are the abscissa and the ordinate of a point).

Task4 was a short pseudocode and a set of 50 numbers. Furthermore, these

numbers were described in a diagram. The pseudocode is about counting how

many numbers are more than 800.

Task5 was an algorithm in block diagram. There was a list with smiley figures

with different size. The block diagram was about a loop that counts the number of

the smilies smaller than a defined size.

We created another 4 tasks. We chose 4 word problems solved with Blockly Code

by pupils. There were good and also bad solutions. The children had to answer

some questions related to the solutions.

Task6 was a good solution of a classic mathematical word problem about the

connection of distance, speed and time. We asked pupils to sign the place where

they find the steps of classic mathematical solving (Data gathering, Plan, Count,

Check, Answer), decide, whether the solution is suitable for generalizing the

problem, and what should be changed for that in the code. Furthermore, if they

would have to implement, how did they use programming tools for the solution of

the problem and for the printing of the result.

Task7 was a troubleshooting exercise. We created a very chaotic algorithm based

on a bad solution for a word problem. The students had to recognize the types of 8

mistakes.

Task8 and Task9 were similar to Task6, but we also asked pupils whether the

solution was correct or not, because Task8 was a mathematically incorrect

solution. It would lead to a quadratic equation, but because of a wrong initial

value of the loop in the Blockly implementation (we missed one root). Task9 was

a correct solution of a heuristic problem we presented in the details in [2].

Acta Polytechnica Hungarica Vol. 16, No. 6, 2019

 – 85 –

4.2 The Aspects of Assessment of Students’ Solutions

First we categorized the tasks from four aspects.

1) The identified generic concepts we wanted to measure with the certain

task could be: algorithm evaluation, analogy recognition, code

correctness, code optimization, problem solving and terminology usage.

2) The identified critical factors are the elements of problem solving in

algorithmization process: data, algorithm, math (run), check and answer.

3) The teaching content in algorithmization: list, loop, variable, conditional

statement, printing.

4) Related Mathematics teaching concept: diagrams, discussion, equation,

linear function, logical statement, Pythagorean triple, sets, solving word

problems.

We have 9 Task, with 81 subtasks. In Figure 4 we can see how the certain tasks

were built by the aspects above:

Figure 4

Distribution of the final results by the aspects of assessment

During the evaluation of solutions we categorized the mistakes depending on

whether a certain mistake was algorithmically, mathematical or terminological

(and of course we also made a difference, when there was no solution or no

mistake).

We marked the solutions from 0 to 1, depending on the aspects above.

K. Bubnó et al. Cognitive Aspects of ‘Mathematics-aided Computer Science Teaching’

 – 86 –

From our pupils, we know their grade, orientation, gender, whether they learned

algorithmization with our method and Blockly environment or not, and the

elapsed time from learning algorithmization. Furthermore, students can express

their opinion about the tasks by a 5 graded Likert scale where: 1 - task was

unknown problem for the student and does not know what to do with it; 2 - task

causes a lot of difficulties, but student tried to solve although they were not sure

about whether their solution was correct or not; 3 - task was difficult, but student

solved it successfully; 4 - student had to think, but soon realized the solution; 5 -

task was very easy. Really they assess their knowledge, and furthermore, this self-

assessment we can use as the subjective measuring of cognitive load [19].

We organized our data into a dataset. We process our research data with OLAP

technology for better visualization and further extensibility. Our dataset is a

multidimensional data cube2. The indicators (facts) of the cube are the point of the

solution and the self-assessment point. Task, Solution and Pupils are formed in

Tables (dimensions) of the data cube with the attributes we can see in Figure 5.

Figure 5

Structure of the OLAP-cube

4.3 Results

First we present the average results related to the Blockly Code, as programming

environment.

2 The whole dataset and visualization can be seen at https://goo.gl/tHKpkS

Acta Polytechnica Hungarica Vol. 16, No. 6, 2019

 – 87 –

Figure 6

Blockly vs. pseudocode or block diagram

In Figure 6 we compared the achieved average points and the self-assessment

points related to the tasks that were implemented in Blockly Code or in another

algorithm modeling tool (pseudocode or block diagram).

First, we must point out that the children’s self-assessment shows a normal

distribution, undervaluation or overvaluation of their own performance is not

typical in the examined group.

Figure 7

Students’ self-assessment in different environments

From results in Figure 7, we can see that the best result was in the tasks where the

implementing tool was Blockly Code, furthermore pupils could rate their own

performance, most real, on these tasks. Children could experience block

diagraming, in their former (primary school) studies and we think this was the

reason they overvalued their own performance in this tasks. However, they had

not seen pseudocode before, as we have already told Blockly Code actually is a

user-friendly pseudocode, so we think it is the reason why they rate themselves

under their real performance.

The next result we present are the average results by tasks and in total in Figure 8.

K. Bubnó et al. Cognitive Aspects of ‘Mathematics-aided Computer Science Teaching’

 – 88 –

Figure 8

Average results by tasks and total

Students could tell their opinion about the tasks by the 5 graded Likert scale. A

self-assessment can be used as the subjective measuring of cognitive load. In

Figure 8 we can see that students thought these tasks sometimes were significantly

more difficult than their performance showed. The most difficult problem was

Task4 for the students. It was the pseudocode illustrated with a diagram. As we

mentioned previously  and also can be seen in Figure5  they were more

successful than they thought. The less cognitive load they had at Task2 and Task3.

These tasks were algorithm evaluation based on counting with concrete numbers,

furthermore related to mathematical concepts and after pupils have noticed these

mathematical concepts they can easily make success with the tasks.

The next diagram we present concerns the distribution of the identified critical

factors, based on the 63 students’ work. We can see that our analogy based

method works well, except we have to pay more attention in the future, to

eliminate/avoid some mistakes.

Figure 9

Average results of critical factors

Figure 9 shows how successful the analogous steps of the mathematical problem

solving were discovered during computer problem solving. The most obvious and

recognized analogy, by children, were data gathering and answering. We feel, we

Acta Polytechnica Hungarica Vol. 16, No. 6, 2019

 – 89 –

get an acceptable result at Checking as well, but the result of the algorithm needs

to be improved. This result shows that the implementation of the mathematical

plan did not cause any problems only in the quarter of the total solutions, however

we have to note that in this result there are those who did not respond at all. To

eliminate them, we created the column in the middle, to see only those results who

started to solve the task. The other problem is Math (run). In the teaching process

we emphasized many times  but not enough  that there is no analogous step we

made with counting. Counting means that computer runs the program and we do

not count. Nevertheless, it was a common mistake to consider the step of

‘counting’ in the code, mostly at the expense of the ‘plan’ or ‘check’ stages.

Finally, we present the results, categorizing the types of mistakes.

Figure 10

Results by mistakes

We categorized students’ answer whether there was an algorithmically,

mathematical or terminological mistake (nothing or none were answered). In

Figure 10 we can see the type of mistakes they made, by tasks. Our experience is

that although students were successful in solving Task2 and Task3, at the same

time, they had many faults, inaccuracies in their terminology usage, both in

mathematics and in informatics. So we should pay much more attention when

teaching the correct use of terminology and we have to make sure that they use the

language correctly.

Conclusions

Summarizing, when using Blockly Code and our analogy-based introductory

computer programming teaching method, we successfully taught and automatized

a problem-solving strategy, that pupils could store in their long-term memory and

they did not overload their working memory during coding. They could focus on

the problem they had to solve and not on the language or other difficulties of

implementation. We feel, we have provided answers to our opening questions

herein. Analogies are helpful in teaching problem solving methodologies.

K. Bubnó et al. Cognitive Aspects of ‘Mathematics-aided Computer Science Teaching’

 – 90 –

Children can recognize mathematical analogies in the Blockly-based environment

and this approach can help overcome the aversion to traditional computer

programming and strengthens the relationship between computer science and

mathematics.

Based on our experience we think this analogy-based method could be an

effective way (both in content and time) of teaching mathematical problem

solving  and during the generalization  the basic elements of future, more

complex computer programming.

During the evaluation of the students’ work we identified some typical mistakes

and we think, this could be the next step of our research when we explore

potential misconceptions, common bad terminology and what we then what we

need to pay more attention to during the teaching process.

We believe, it should be introduced into Mathematics curriculums by our

Mathematics teachers to lay the foundation for algorithmization.

References

[1] K. Takácsné Bubnó and V. Takács: Solving word problems by computer

programming. Proceedings of Problem Solving in Mathematics Education

2013 Conference (ProMath), A. Ambrus and É. Vásárhelyi, (eds.),

Budapest, 2014, pp. 193-208

[2] K. Bubnó and V. Takács: The mathability of word problems as initial

computer programming exercises. Proceedings of the 8th IEEE International

Conference on Cognitive Infocommunications (CoginfoCom) Debrecen,

2017, pp. 39-44

[3] P. Baranyi and A. Gilányi, Mathability: Emulating and enhancing human

mathematical capabilities, Proceedings of the 2013 IEEE 4th International

Conference on Cognitive Infocommunications (CogInfoCom) Budapest,

2013, pp. 555-558

[4] G. Pólya: How to solve it, 2nd ed., Doubleday, 1957

[5] A. Ambrus, Introduction to the didactics of mathematics, 2nd ed., ELTE,

2004 (In Hungarian)

[6] B. Szi and A. Csapo, An outline of some human factors contributing to

mathability research, Proceedings of the 2014 5th IEEE Conference on

Cognitive Infocommunications (CogInfoCom) Vietri sul Mare, 2014, pp.

583-586

[7] K. Chmielewska, A. Gilányi and A. Łukasiewicz, Mathability and

mathematical cognition, Proceedings of the 2016 7th IEEE International

Conference on Cognitive Infocommunications (CogInfoCom) Wroclaw,

2016, pp. 245-250

Acta Polytechnica Hungarica Vol. 16, No. 6, 2019

 – 91 –

[8] K. Chmielewska and A. Gilányi, Mathability and computer aided

mathematical education, 2015 6th IEEE International Conference on

Cognitive Infocommunications (CogInfoCom) Győr: IEEE 2015, pp. 473-

477

[9] P. Biró and M. Csernoch, The mathability of spreadsheet tools, 2015

Proceedings of the 6th IEEE International Conference on Cognitive

Infocommunications (CogInfoCom) Győr, 2015, pp. 105-110

[10] B. Szi and A. Csapo, An outline of some human factors contributing to

mathability research, 2014 5th IEEE Conference on Cognitive

Infocommunications (CogInfoCom) Vietri sul Mare, 2014, pp. 583-586

[11] M. Török, M. J. Tóth and A. Szöllősi, Foundations and perspectives of

mathability in relation to the CogInfoCom domain, 2013 IEEE 4th

International Conference on Cognitive Infocommunications (CogInfoCom)

Budapest, 2013, pp. 869-872

[12] Google: Blockly Code, https://developers.google.com/blockly/

[13] MIT: Scratch, https://scratch.mit.edu/

[14] D. Weintrop and U. Wilensky: Comparing block-based and text-based

programming in high school Computer Science classrooms. ACM Trans.

Comput. Educ. 18, Article 3

[15] D. Weintrop: Modality matters: understanding the effects of programming

language representation in high school Computer Science classrooms (PhD

dissertation) Evanston, 2016

[16] M. Volk, M. Cotič, M. Zajc, A. Istenic Starcic: Tablet-based cross-

curricular maths vs. traditional maths classroom practice for higher-order

learning outcomes, Comput. Educ. 114, 2017, pp. 1-23

[17] K. Némethné Rakos: My Mathematics 4, Celldömölk, 2012 (In Hungarian)

[18] A. Tari: Z generation, Budapest, Tericum, 2011 (In Hungarian)

[19] A. Ambrus: Some cognitive psychological issues in mathematics education,

Gradus 2, 2015, pp. 63-73 (In Hungarian)

[20] P. Biró and M. Csernoch, Deep and surface structural metacognitive

abilities of the first year students of Informatics, 2013 IEEE 4th

International Conference on Cognitive Infocommunications (CogInfoCom)

Budapest, 2013, pp. 521-526

[21] G. A. Miller: The magical number seven plus or minus two: some limits on

our capacity for processing information. Psychological Review 63, 1956,

pp. 81-97

[22] J. Á. Velázquez-Iturbide, Exploring the joint use of educational theories

and information technology to improve CS courses, Proceedings of the

https://developers.google.com/blockly/
https://scratch.mit.edu/

K. Bubnó et al. Cognitive Aspects of ‘Mathematics-aided Computer Science Teaching’

 – 92 –

2017 IEEE Global Engineering Education Conference (EDUCON) Athens,

2017, pp. 1561-1570

[23] S. Feinberg and M. Murphy, Applying cognitive load theory to the design

of Web-based instruction, IPCC/SIGDOC '00 Proceedings of IEEE

professional communication society international professional

communication conference and Proceedings of the 18th annual ACM

international conference on Computer documentation: technology &

teamwork, Cambridge, MA, 2000, pp. 353-360

[24] K. J. Harms, Applying cognitive load theory to generate effective

programming tutorials, 2013 IEEE Symposium on Visual Languages and

Human Centric Computing, San Jose, CA, 2013, pp. 179-180

[25] M. Csernoch, P. Biró, J. Máth and K. Abari, Testing algorithmic skills in

traditional and non-traditional programming environments, Inf. Educ. 14,

2015, pp. 175-197

[25] Dr. Scratch, http://www.drscratch.org/

[26] Bebras, http://www.bebras.org/

[27] M. Román-González, J.-C. Pérez-González, J. Moreno-León and G.

Robles, Extending the nomological network of computational thinking with

non-cognitive factors, Comput. Human. Behav. 80, 2018, pp. 441-489

[28] A. Kővári, CogInfoCom Supported Education: A review of CogInfoCom

based conference papers, 2018 IEEE 9th International Conference on

Cognitive Infocommunications (CogInfoCom) Budapest, 2018, pp. 233-

236

[29] V. Kövecses-Gősi, Cooperative learning in VR environment, Acta

Polytech. Hung. 15, 2018, pp. 205-224

[30] B. Lampert, A. Pongracz, J. Sipos, A. Vehrer and I. Horvath, MaxWhere

VR-learning improves effectiveness over clasiccal tools of e-learning. Acta

Polytech. Hung. 15, 2018, pp. 125-147

[31] I. Horvath and A. Sudar, Factors Contributing to the Enhanced

Performance of the MaxWhere 3D VR Platform in the Distribution of

Digital Information. Acta Polytech. Hung. 15, 2018, pp. 149-173

[32] G. Csapó, Sprego virtual collaboration space, 2017 IEEE 8th International

Conference on Cognitive Infocommunications (CogInfoCom) Debrecen,

2017, pp. 137-142

[33] A. D. Di Sarno, S. Dell’Orco, R. Sperandeo, G. Iorio, N. M. Maldonato, M.

L. Fusco, V. Cioffi, E. Moretto, T. Longobardi and G. Buonocore,

Conscious experience using the Virtual Reality: A proposal of study about

connection between memory and conscience, 2018 IEEE 9th International

Conference on Cognitive Infocommunications (CogInfoCom) Budapest,

2018, pp. 289-292

http://www.drscratch.org/
http://www.bebras.org/

Acta Polytechnica Hungarica Vol. 16, No. 6, 2019

 – 93 –

[34] L. L Mosca, A. D. Di Sarno, R. Sperandeo, V. Cioffi, N. M. Maldonato, M.

Duval, S. Dell’orco, G. di Ronza and E. Moretto, “I am a brain, Watson.

The rest of me is a mere appendix” The memory, a characteristic of the

human being, 2018 IEEE 9th International Conference on Cognitive

Infocommunications (CogInfoCom) Budapest, 2018, pp. 254-298

[35] B. Berki, Better Memory Performance for Images in MaxWhere 3D VR

Space than in Website, 2018 IEEE 9th International Conference on

Cognitive Infocommunications (CogInfoCom) Budapest, 2018, pp. 281-

283

[36] A. Csapo, I. Horváth, P. Galambos and P. Baranyi, VR as a Medium of

Communication: from Memory Palaces to Comprehensive Memory

Management, 2018 IEEE 9th International Conference on Cognitive

Infocommunications (CogInfoCom) Budapest, 2018, pp. 389-394

[37] P. Bőczén-Rumbach, Industry-Oriented Enhancement of Information

Management Systems at AUDI Hungaria using MaxWhere’s 3D Digital

Environments, 2018 IEEE 9th International Conference on Cognitive

Infocommunications (CogInfoCom) Budapest, 2018, pp. 417-422

[38] Z. T Horváth, Another e-learning method in upper primary school: 3D

spaces, 2018 IEEE 9th International Conference on Cognitive

Infocommunications (CogInfoCom) Budapest, 2018, pp. 405-408

