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Abstract: Herein, we introduce an additional term into the induction equation (one of the 

Maxwell’s equation). The related Lagrangian formalism applying the scalar and vector 

potentials is fitted to this modified Maxwell’s equations. In the framework of Hamiltons’s 

principle we are able to deduce Klein-Gordon equations with negative “mass term” for the 

field variables electric field E and magnetic induction B. We can conclude from the 

mathematical structure of the equations that a repulsive interaction appears. The Wheeler 

propagator can be calculated for the present case by which the time evolution of the field can 

be discussed. In spite of the situation that these equations have tachyon solutions, the results 

are in line with the causality principle. As a consequence of the theory, a spontaneous charge 

disjunction process may rise in the field. 

Keywords: Maxwell’s equations; Klein-Gordon equation with negative “mass term”; 

Lagrangian, Wheeler propagator; charge distribution 

1 Introduction 

Mechanical [1, 2], thermodynamic [2-4] and further field theoretical examples [5-

7] for the Klein-Gordon equation with negative “mass term” involve the same 

dynamical phase transition that operates between the diffusive and the wave type 

dynamics. Studying the existence of these kinds of phenomena we may assume that 

the occurrence of these are more general and not restricted exclusively to a certain 

part of physics. 
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In the last decades a wider study of the negative mass term Klein-Gordon equation 

has been accomplished to get a detailed impression about the efficiency and the 

validity of this formulation [8-14]. This kind of examination is not a gratuitous 

mathematical whim at all, because there exist more realistic processes which are 

described by such equations. Thus, there is no reason to doubt their reality [15]. 

The mechanical example [1, 2] is a stretched string lying on the diameter of a 

rotating disk when the appearing centrifugal force behaves as a repulsive interaction 

as Fig. 1 shows. 

 

Fig. 1 

Stretched string of a rotating disk 

The model is covered by the equation: 

𝜕2Ψ

𝜕𝑡2 −
𝐹

𝜌𝐴

𝜕2Ψ

𝜕𝑥2 − 𝜔0
2Ψ = 0                     (1) 

where Ψ is the displacement from the equilibrium position, 𝜌 is the mass density of 

the string, 𝐹 is the stretching force, 𝐴 is the cross section of the string and 𝜔0  is the 

angular velocity of the disk. The second term pertains to the spring force, i.e., it is 

an attractive interaction. The so-called negative "mass term" is the third term of this 

equation due to the negative sign of the term. (This term is positive in the “well 

behaved” Klein-Gordon equation [16, 17]). The change of dynamics can be 

understood form the following physical picture. If the angular velocity 𝜔0 is small 

enough, the spring vibrates around its equilibrium position, but above a certain 

threshold angular velocity the centrifugal force elongates the spring towards the 

bigger radius without vibration. This is a transition between the vibrating and the 

dissipative state, i.e., this a dynamic phase transition. The detailed studies can be 

done by the examination of dispersion relation [1, 2] 

𝜔(𝑘, 𝜔0) = √
𝐹

𝜌𝐴
𝑘2 − 𝜔0

2 

Waves modes exist if 

𝐹

𝜌𝐴
>

𝜔0
2

𝑘2
 

and there are no wave modes if 

𝐹

𝜌𝐴
<

𝜔0
2

𝑘2
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It is clear that the third term in Eq. (1) behaves as a repulsive interaction. 

A much more interesting dynamic transition can be found in between wave like 

thermal propagation and the Fourier heat conduction. To achieve the aim, first, the 

equation of motion of Lorentz invariant thermal energy propagation [2-7] must be 

formulated: 

1

𝑐2

𝜕2T

𝜕𝑡2 −
𝜕2T

𝜕𝑥2 −
𝑐2𝑐𝑣

2

4𝜆2 𝑇 = 0         (2) 

It is obvious that the structure of this equation – aside from the meaning of the 

parameters – is the same as in Eq. (1). Here, 𝑐 is the speed of light; 𝑐𝑣 is the heat 

capacity and 𝜆 is the heat conductivity, both of them are constant parameters, now. 

This equation implies the case of classical Fourier heat conduction [18] 

𝑐𝑣
𝜕𝑇

𝜕𝑡
− 𝜆

𝜕2𝑇

𝜕𝑥2 = 0        

which solution is separated from the wave-like propagation by a dynamic phase 

transition via a spinodal instability [19, 20]. This transition is also describable via 

the dispersion relation [3, 4] 

𝜔(𝑘) = √𝑐2𝑘2 −
𝑐4𝑐𝑣

2

4𝜆2
 

The propagation is wave-like if: 

𝑘 >
𝑐 𝑐𝑣

2𝜆
 

and dissipative if: 

𝑘 >
𝑐 𝑐𝑣

2𝜆
 

Similarly, to the mechanical example, the third term introduces a certain repulsive 

interaction in the thermal energy propagation. 

The present work is based on the idea of the previous examples. It seems interesting 

to formulate a Klein-Gordon type equation with the above mathematical structure – 

with negative "mass term" – to electrodynamics problems and to examine what kind 

of physical process may be governed by this way. Now, the whole description 

remains within the framework of the classical electrodynamics [21, 22]. It will be 

shown that to achieve this aim we should add an extra term to one of the Maxwell’s 

equations (see later Eq. (3b). The Lorentz invariance of the theory can be completed 

by the careful choice of this term. As the examples show, the meaning of the 

appeared term in the Klein-Gordon type equation should be a repulsive interaction. 

In the light of our knowledge by calculating the propagator of the process [8, 9] we 

point out that this repulsive interaction may cause a large spontaneous charge 

disjunction in the electric conductive medium. 
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We mention that in several areas of modelling of natural processes brave steps are 

needed, since the phenomena include not negligible – but not obviously deducible 

– additional interactions [23-26]. 

The structure of the paper is as follows. In Chapter 2 the mathematical construction 

is elaborated that leads to a repulsive interaction in the electrodynamics. The method 

is based on this new idea to add an extra term to one of the Maxwell’s equations. 

Finally, a negative mass term Klein-Gordon equation is obtained. As the 

propagators can generate from an initial state to a final state of a system in time, to 

achieve to time evolution of the electric and magnetic fields, and mainly the charge 

density, the so-called Wheeler propagator is needed calculate for this kind of Klein-

Gordon equation. Applying the result of previous studies [8-14] this calculation is 

shown in Chapter 3. The evolution of electric field and the charge density is 

calculated analytically in Chapter 4, while a numerical calculation is presented for 

a simple data set for the charge densities at different time in Chapter 5. The 

conclusions and some final remarks are presented in Chapter 6. 

2 A Repulsive Force in the Electrodynamics 

Our present aim is to formulate those kind of equations of motion that preserve the 

Lorentz invariance of the theory providing the Klein-Gordon type equation with the 

negative "mass term". At this stage it is not seen immediately what kind of physical 

process is generated really, but we know that the physical meaning of this negative 

term is a repulsive interaction. We restrict our consideration to only a pulse-like 

impact within the system, thus the additional term in the Maxwell’s equation should 

be a process starting at the initial 𝑡0 and ending at the final 𝑡, i.e., assuming that the 

elapsed time 𝜏  𝑜𝑓 ~10−18 𝑡𝑜 10−12 seconds, is very short. 

To achieve our previously summarized goals we start from the regular form of the 

Maxwell’s equations [21, 22] modifying the second one (Eq. (3b) with an additional 

term 

𝛼2 ∫ 𝑩(𝑟, 𝑡′𝑡

0
)𝑑𝑡′       (3) 

that brings a short time  (0 < 𝑡 < 𝜏) interaction in the theory. Thus the four 

equations take the form: 

1

𝜇0
𝑟𝑜𝑡𝑩 = 𝜀0

𝜕𝑬

𝜕𝑡
+ 𝑱                   (3a) 

 𝑟𝑜𝑡𝑬 = −
𝜕𝑩

𝜕𝑡
+ 𝛼2 ∫ 𝑩(𝑟, 𝑡′𝑡

0
)𝑑𝑡′                   (3b) 

 𝜀0𝑑𝑖𝑣𝑬 = 𝜌                   (3c) 

 𝑑𝑖𝑣𝑩 = 0                   (3d) 
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Here, 𝑩 denotes the magnetic field, 𝑬 is the electric field, 𝑱 is the current density, 𝜌 

is the charge density, 𝜀0 is the vacuum permittivity and 𝜇0 is the vacuum 

permeability. The parameter 𝛼 pertains to the assumed interaction. (The square is 

used for the later calculation convenience.) 

Now, we show the calculations to understand the influence of the above extra term 

(Eq. (3)) in the theory. In order to solve these equations it is usual to introduce the 

vector potential 𝑨 [21, 22] by the help of Eq. (3d) as:  

𝑩 = 𝑟𝑜𝑡𝑨          (4) 

Substituting this into Eq. (3b) and rearranging the obtained formula we get 

𝑟𝑜𝑡 (𝑬 +
𝜕𝑨

𝜕𝑡
− 𝛼2 ∫ 𝑨(𝑟, 𝑡′𝑡

0
)𝑑𝑡′) = 0       (5) 

We can express the electric field 𝑬 from the above equation 

𝑬 = −
𝜕𝑨

𝜕𝑡
− 𝑔𝑟𝑎𝑑𝜑 + 𝛼2 ∫ 𝑨(𝑟, 𝑡′𝑡

0
)𝑑𝑡′       (6) 

where the scalar potential 𝜑 is introduced too. Since there is a free degree of 

freedom in the connection of the scalar and the vector potentials, we are allowed to 

take the condition: 

𝜕𝜑

𝜕𝑡
+ 𝑑𝑖𝑣𝑨 = 0                       (7) 

with the choice 

𝜀0𝜇0 = 1  

for these universal parameters. Now, we take Eq. (3c) and we replace 𝑬 into it, thus 

we can write 

𝑑𝑖𝑣𝑬 = −
𝜕(𝑑𝑖𝑣𝑨)

𝜕𝑡
− ∆𝜑 + 𝛼2 ∫ 𝑑𝑖𝑣𝑨(𝑟, 𝑡′𝑡

0
)𝑑𝑡′ =

𝜌

𝜀0
      (8) 

Eliminating the vector potential by the help of Eq. (7), thus we obtain 

𝜕2φ

𝜕𝑡2 − ∆𝜑 − 𝛼2𝜑 =
𝜌

𝜀0
                       (9) 

The third term is a Lorentz invariant negative mass term Klein-Gordon equation. 

We remember that the term −𝛼2𝜑 acts just in the time interval 𝜏. The structure of 

equation is similar to the equations (1) and (2) (such as in Refs. [1-7]) that includes 

a dynamical phase transition depending on the parameter 𝛼 as a consequence of a 

spinodal instability [19, 20]. The equation for the vector potential can be also 

formulated, starting from Eq. (3a) and substituting the form of electric field from 

Eq. (6) 

𝑟𝑜𝑡𝑟𝑜𝑡𝑨 = −
𝜕2𝑨

𝜕𝑡2 −
𝜕𝑔𝑟𝑎𝑑𝜑

𝜕𝑡
+ 𝛼2𝑨 + 𝜇0𝑱                   (10) 

Applying the vector identity: 
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𝑟𝑜𝑡𝑟𝑜𝑡 = 𝑔𝑟𝑎𝑑𝑑𝑖𝑣 − ∆  

and the condition in Eq. (7), we can rewrite the above equation in a more expressive 

form 

 
𝜕2𝑨

𝜕𝑡2 − ∆𝑨 − 𝛼2𝑨 = 𝜇0𝑱                     (11) 

which is also a Lorentz invariant expression, and we can recognize that this is also 

a negative mass term Klein-Gordon type equation for the vector potential 𝑨. 

Similarly to the previous remark, the term −𝛼2𝑨 is active in the time range 𝜏. We 

can conclude that both the scalar and the vector potentials as basic fields – the 

components of a four vector 

𝐴𝜇 = (−𝜑, 𝑨)  

– fulfill the Lorentz invariant Klein-Gordon type equations with the same 

mathematical structure, the field variables propagate with the same speed, the whole 

description is Lorentz invariant. 

It is important to emphasize that – from the viewpoint of the physical process 

description – the Lorentz invariant field equations (equations 9 and 11) for the scalar 

and the vector potentials have central roles. All of the other field variables can be 

deduced from these potentials [21, 22, 27, 28]. This fact can be obviously seen from 

the Lagrangian of the theory formulated [29, 30] as 

𝐿 = −
1

4
𝐹𝜇𝜈𝐹𝜇𝜈 −

1

2
𝜆(𝜕𝜇𝐴𝜇)

2
+

1

2
𝛼2𝐴𝜇𝐴𝜇 + 𝑗𝜇𝐴𝜇                   (12) 

where the 𝐹𝜇𝜈  is the electromagnetic tensor field 

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇                     (13) 

Selecting 𝜆 = 1 (Feynman's gauge) [31, 32] in the Lagrangian the movement 

equations for the four-potential can be obtained for the present case. It is clear that 

the electric and magnetic fields are not observables and are not components of 

neither the electromagnetic tensor field nor the Lagrangian. 

Now, we should write the equations for the field variables, 𝑬 and 𝑩. Thus, we take 

the time derivative of Eq. (3a) 

𝑟𝑜𝑡
𝜕𝑩

𝜕𝑡
=

𝜕2𝑬

𝜕𝑡2 + 𝜇0
𝜕𝑱

𝜕𝑡
                     (14) 

The term on the left hand side can be substituted after taking the rotation of Eq. (3b) 

by which we write 

 𝑟𝑜𝑡 (−𝑟𝑜𝑡𝑬 + 𝛼2 ∫ 𝑩(𝒓, 𝑡′𝑡

0
)𝑑𝑡′) =

𝜕2𝑬

𝜕𝑡2 + 𝜇0
𝜕𝑱

𝜕𝑡
                  (15) 

We can eliminate the field 𝑩 applying again Eq. (3a), and finally we obtain 

 
𝜕2𝑬

𝜕𝑡2 − ∆𝑬 − 𝛼2𝑬 = −
1

𝜀0
𝑔𝑟𝑎𝑑𝜌 − 𝜇0

𝜕𝑱

𝜕𝑡
+ 𝜇0𝛼2 ∫ 𝑱(𝒓, 𝑡′𝑡

0
)𝑑𝑡′              (16) 
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Similarly, for the field 𝑩, we take the time derivative of Eq. (3b) 

𝑟𝑜𝑡
𝜕𝑬

𝜕𝑡
= −

𝜕2𝑩

𝜕𝑡2 + 𝛼2𝑩                     (17) 

and eliminating the field 𝑬 by the help of the rotation of Eq. (3a) we obtain the 

equation for the magnetic field 

𝜕2𝑩

𝜕𝑡2 − ∆𝑩 − 𝛼2𝑩 = 𝜇0𝑟𝑜𝑡𝑱                   (18) 

It can be seen that for all of the field equations – equations (9), (11), (16) and (18) 

– have the same structure. We know from the former studies [1-7, 15] that these 

Klein-Gordon equations with a negative "mass term" are resulted from repulsive 

interactions. Thus, it seems to us that the interaction in the present case is a 

repulsive-like force which appears mathematically in the second Maxwell’s 

equation, in Eq. (3b). 

3 The Wheeler Propagator and the Time-Evolution of 

the Electric Field 

The following physical description of the Wheeler propagator is based on 

Feynman's and Wheeler's original idea [33, 34]. The clear mathematical deduction 

of the Wheeler propagator is developed by Bollini, Rocca, Giambiagi and Oxman 

[8-14]. The difficult and complicated mathematical method to evaluate the 

calculations needs to apply the Bochner's theorem [35, 36] taking into account 

further complicated mathematical formulations [37]. 

In the knowledge of the time evolution equations we can study the processes 

evolving in the electric conductive media. We focus on the connection between the 

appearing electrical field and the charge distribution given by Eq. (16). Since the 

last two terms of this equation make rather complicated the solution and assuming 

that the contribution of the current and the time derivative of the current can be 

negligible at the initial time, we can simplify the problem to: 

 
𝜕2𝐄

𝜕𝑡2 − ∆𝑬 − 𝛼2𝑬 = −
1

𝜀0
𝑔𝑟𝑎𝑑𝜌                   (19) 

This equation can be solved applying the Green function method. On the basis of it, 

the electric field 𝑬 as the solution of this partial differential equation can be 

expressed by the following integral: 

𝑬(𝑟, 𝑡) = ∫ −
1

𝜀0
𝑔𝑟𝑎𝑑𝜌(𝑥′) [

1

(2𝜋)4 ∫ 𝑑4𝑘
𝑒𝑖𝑘(𝑥−𝑥′)

𝑘2−𝛼2 ] 𝑑𝑉′                 (20) 

Here, the four-vector: 

𝑥 = (𝑡 = 𝑥0, 𝒓 = (𝑥1, 𝑥2, 𝑥3)) 
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involves both the space and time coordinates: 

𝑘 = (𝜔 = 𝑝0, 𝑘)  

denotes the four-momentum 

𝑑𝑉′ = 𝑑𝑥1
′ 𝑑𝑥2

′ 𝑑𝑥3
′   

is the volume element. (We follow the notations of Refs. [8-14] in the calculations 

of the Wheeler propagator.) The expression 

𝐺(𝑥, 𝑥′) =
1

(2𝜋)4 ∫ 𝑑4𝑘
𝑒𝑖𝑘(𝑥−𝑥′)

𝑘2−𝛼2                    (21) 

in the [… ] bracket is the Green function generating the evolution of the process in 

the space-time from the initial 𝑥′to the final 𝑥. 

In order to evaluate this integral, we find the zero points of the denominator 

𝑘2 − 𝛼2 = 𝑝2 − 𝑝0
2 − 𝛼2 = 0                    (22) 

from which we obtain 

𝑝0 = ±√𝑝2 − 𝛼2                      (23) 

To obtain the propagator, first, we need to calculate the integral in Eq. (21) with the 

𝐺𝑎𝑑𝑣(𝑥) =
1

(2𝜋)4 ∫ 𝑑3𝑝𝑒𝑖𝑝𝑟 ∫ 𝑑𝑝0𝑎𝑑𝑣

𝑒−𝑖𝑝0𝑥0

𝑝2−𝑝0
2−𝛼2                  (24) 

where Eq. (22) is used for the separation. Then the integration can be evaluated 

applying the residue theorem. We have two cases. We obtain the advanced 

propagator if the path of integration runs parallel to the real axis and below both the 

poles. (In the case of the retarded propagator the path runs above the poles.) Thus, 

considering the integration 𝑥0 > 0 the path is closed on the lower half plane giving 

null result. In the opposite case, when 𝑥0 < 0, there is a non-zero finite contribution 

of the residues at the poles 

𝑝0 = ±𝜔 = √𝒑2 − 𝛼2   𝑖𝑓  𝒑2 ≥ 𝛼2                  (25) 

and 

𝑝0 = ±𝑖𝜔′ = √ 𝒑2 − 𝛼2   𝑖𝑓  𝒑2 ≤ 𝛼2                  (26) 

After all we can apply the Cauchy's residue theorem for the integration (for the 

internal integral) with respect to 𝑝0. We take case if  𝒑2 ≥ 𝛼2 and 𝑥0 < 0. We have 

two poles (see Eq. (25)), thus the following integral: 

∫ 𝑑𝑝0
𝑎𝑑𝑣

𝑒−𝑖𝑝0𝑥0

𝑝2 − 𝑝0
2 − 𝛼2

= 2𝜋𝑖
𝑒−𝑖√𝒑2−𝛼2+𝑖0 𝑥0

−2√𝒑2 − 𝛼2 + 𝑖0 
+ 2𝜋𝑖

𝑒+𝑖√𝒑2−𝛼2+𝑖0 𝑥0

2√𝒑2 − 𝛼2 + 𝑖0 
  

= −2𝜋
sin √𝒑2 − 𝛼2 + 𝑖0 𝑥0

√𝒑2 − 𝛼2 + 𝑖0 
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In the other case, if 𝒑2 ≤ 𝛼2 and 𝑥0 < 0, the calculation is similar with the poles in 

Eq. (26). It is easy to check that formally the result is the same with the condition 

𝒑2 ≤ 𝛼2. The two cases (𝒑2 ≥ 𝛼2 and 𝒑2 ≤ 𝛼2) can be summarized in one 

expression, i.e., we obtain a 3rd order integral for the advanced propagator: 

𝐺𝑎𝑑𝑣(𝑥) = −
𝐻(−𝑥0)

(2𝜋)3 ∫ 𝑑3 𝑝𝑒𝑖𝑝𝑟
𝑠𝑖𝑛[(𝒑2−𝛼2+𝑖0)

1
2𝑥0]

(𝒑2−𝛼2+𝑖0)
1
2

                 (27) 

where 𝐻(𝑥) is the Heaviside's function which ensures the validity just for the 

retarded case 𝑥0 < 0. Finally, we conclude that this formula is valid for 𝑥0 < 0 and 

for any 𝒑.  

Reversing the previous procedure the retarded propagator (𝑥0 > 0) can be also 

calculated similarly for any 𝒑 

𝐺𝑟𝑒𝑡(𝑥) =
𝐻(𝑥0)

(2𝜋)3 ∫ 𝑑3 𝑝𝑒𝑖𝑝𝑟
𝑠𝑖𝑛[(𝒑2−𝛼2+𝑖0)

1
2𝑥0]

(𝒑2−𝛼2+𝑖0)
1
2

                  (28) 

Following Feynman’s and Wheeler’s idea [33, 34], i.e., considering that the 

propagator is the sum of the half advanced and the half retarded propagator we 

obtain the propagator 

𝐺(𝑥) =
𝑆𝑔𝑛(𝑥0)

2(2𝜋)3 ∫ 𝑑3 𝑝𝑒𝑖𝑝𝑟
𝑠𝑖𝑛[(𝒑2−𝛼2+𝑖0)

1
2𝑥0]

(𝒑2−𝛼2+𝑖0)
1
2

                  (29) 

Now, this formula is valid for any 𝑥0 and for any 𝒑. Here, the integrals can be 

rewritten by the Hankel transformation based on Bochner's theorem [35, 36] by 

which the propagator can be expressed analytically and denoted as 

𝑊(4)(𝑥) =
𝛼

8𝜋
(𝑥0

2 − 𝑟2)
+

−
1

2𝐼−1 (𝛼(𝑥0
2 − 𝑟2)

+

1

2 )                  (30) 

𝐼−1(𝑥) is the modified Bessel function – taking into account the notations: 

𝑥+
𝛽

= 𝑥𝛽  𝑓𝑜𝑟  𝑥 > 0 

𝑥+
𝛽

= 0  𝑓𝑜𝑟  𝑥 < 0 

This propagator is often called Wheeler propagator, when the negative sign is in the 

denominator of the Green function in Eq. (21), i.e., when the denominator is 𝑘2 −
𝛼2. As a remark, it is important to emphasize, that the above propagator meets the 

requirement of causality.  

Finally, we can express the resulted electric field 𝑬(𝒓, 𝑡) generated from an initial 

charge distribution 𝜌(𝑥′) during the elapsed time 0 → 𝑡 by the application of the 

calculated propagator: 

𝑬(𝑟, 𝑡) = ∫ −
1

𝜀0
𝑔𝑟𝑎𝑑𝜌(𝑥′)𝑊(4)(𝑥 − 𝑥′)𝑑𝑉′                  (31) 
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4 Evolution of an Initially Nearly Flat Gaussian 

Charge Distribution 

On the basis of the previous calculations we can calculate the electric field in view 

of the initial charge distribution. The question is what kind of process is going 

within the system governed by the propagator. Now, we imagine a nearly Gaussian 

charge distribution: 

𝜌(𝑟′, 0) = 𝜌0𝑒−𝑎𝑟′2
                                (32) 

at the initial time 0 in the space coordinate 𝑟0 = 0. If the parameter 

𝑎 ~ 0  

the charge distribution can be considered practically homogeneous, since we can 

take that 

 𝑒−𝑎𝑟2
~1  

So, if we consider the charge gradient for small values of 𝑎 we approximate 

𝑔𝑟𝑎𝑑𝜌(𝑟′) = −2𝜌0𝑎𝑟′𝑒−𝑎𝑟′2
~ − 2𝜌0𝑎𝑟′                                (33) 

Here, we apply the form of the Wheeler propagator from Eq. (30) for the present 

analytical calculations. Substituting the calculated charge gradient from Eq. (33) 

and the Wheeler propagator from Eq. (29) into the expression of 𝑬(𝑟, 𝑡) in Eq. (31) 

then we obtain the time evolution of the electric field: 

𝑬(𝑟, 𝑡)  

=
2𝜌0𝑎

16𝜋3𝜀0
𝑆𝑔𝑛(𝑡) ∫ ∫

𝑠𝑖𝑛[(𝒑2−𝛼2+𝑖0)
1
2𝑡]

(𝒑2−𝛼2+𝑖0)
1
2

𝑒𝑖𝑝(𝑟−𝑟′)∞

−∞
𝒓′𝑒−𝑎𝑟′2

𝑑3𝑝𝑑𝑉′ 
𝑉 (𝑎𝑙𝑙)

                 (34)     

After the evaluation of the integral and simplifying the mathematical expression the 

electric field can be analytically expressed as: 

𝑬(𝑟, 𝑡) =
𝜌0𝑎

𝜀0𝛼
𝒓𝑒−𝑎𝑟2

𝑆𝑔𝑛(𝑡) 𝑠𝑖𝑛ℎ(𝛼|𝑡|)                                (35) 

It can be read out easily from this exact result that the magnitude of the electric field 

𝑬 follows an exponential behavior. The source of the huge electric field is the 

enormously growing charge distribution 

𝜌(𝑟, 𝑡) =
𝜌0𝑎

𝛼
(3 − 2𝑎𝑟2)𝑒−𝑎𝑟2

𝑆𝑔𝑛(𝑡) 𝑠𝑖𝑛ℎ(𝛼|𝑡|)                                (36) 

which can be obtained by the Maxwell’s equation:  

𝑑𝑖𝑣𝑬 =
𝜌

𝜀0
  

It is interesting to see that if we integrate this charge density for the whole space the 

result is always zero for all positive values of the parameter 𝑎 > 0  



Acta Polytechnica Hungarica Vol. 17, No. 1, 2020 

 – 185 –   

∫ 𝜌(𝑟, 𝑡)𝑑𝑉 = 4𝜋 ∫
𝜌0𝑎

𝛼
(3 − 2𝑎𝑟2)𝑒−𝑎𝑟2

𝑆𝑔𝑛(𝑡) 𝑠𝑖𝑛ℎ(𝛼|𝑡|)𝑑𝑟 = 0 
∞

0

∞

0
             (37) 

i.e., the conservation law of electric charge is completed, there is only internal 

movement of the charges – charge disjunction. Applying the continuity relation 

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣𝑱 = 0                     (38) 

and considering equations (3c) and (35) we obtain the current 𝑱(𝑟, 𝑡) 

𝑱(𝑟, 𝑡) = − 𝜌0 𝑎 𝒓𝑒−𝑎𝑟2
𝑆𝑔𝑛(𝑡) 𝑐𝑜𝑠ℎ(𝛼|𝑡|)                              (39) 

Here, we note that calculating the dropped part of Eq. (16) 

−𝜇0
𝜕𝑱

𝜕𝑡
+ 𝜇0𝛼2 ∫ 𝑱(𝑟, 𝑡′)𝑑𝑡′𝑡

0
                   (40) 

with the above solution of the current in Eq. (39), we obtain zero. (This is in line 

that the current is zero at time 0.) Thus, we can say that the obtained solution for 

the electric field in Eq. (35) and for the charge density in Eq. (36) from the cut 

Klein-Gordon type equation in Eq. (19) can be considered as exact results. 

5 Calculation Result 

The time evolution of the charge density can be also calculated numerically by the 

propagator form given by Eq. (36). The charge density is homogeneous at the initial 

time 𝑡0 = 0, the process ends in short time 𝑡. The resulted graphs are shown in Figs. 

2 – 4 pertaining to time: 0.3, 0.7 and 1.0. Since the physical situation is spherically 

symmetric, it is enough to demonstrate the increase of the charge density, as a 

function of the radius, in different time segments. 

 

Figure 2 

Charge density as a function of the radius 𝑟 at time 𝑡 = 0.3. The charge density and time are 

considered in natural units. 
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Figure 3 

Charge density as a function of the radius 𝑟 at time 𝑡 = 0.7. The charge density and time are 

considered in natural units. 

 

Figure 4 

Charge density as a function of the radius 𝑟 at time 𝑡 = 1. The charge density and time are considered 

in natural units. 

This figure demonstrates spectacularly how fast the charge density increases in 

time. Here, the applied parameters can be taken optionally at the present stage, thus  

𝜌0 = 1  

𝑎 = 1  

and  

𝛼 = 1  

are chosen. This means that the scales are in natural units in the figure. (This a 

similar assumption when the speed of light is taken 𝑐 = 1 or the Planck constant is 

also ℎ = 1 in other theories. The tendency does not depend on this choice.) We can 

see that at the beginning the charge density increases rather slowly comparing the 

later time, and in a certain time it can grow up in a giant form. During the elapsing 

time a negative spherically symmetric charge density is collecting with a maximal 

value at radius 𝛼 = 1.5 . The process stops at the very short time 𝜏 , and it turns 

back, so finally the system reaches its originally homogeneous charge distribution. 

It seems from physical reasons natural that the process must be restricted to 

nano/micro-distances and for short time. 
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Conclusions 

As a thought experiment, in the present work, it is shown how a negative mass term 

Klein-Gordon equation can be deduced in the electrodynamics. This aim could be 

achieved by adding an appropriate term to one of the Maxwell’s equations. It is 

clear from other experiences of previous studies of mechanical, thermodynamic and 

field theoretical problems that the appeared term pertains to a repulsive interaction. 

As a result of the paper, on the one hand, the Wheeler propagator of the process is 

expressed. We pointed out, on the other hand, that this repulsive force causes a giant 

charge disjunction on a short range within a short time.  

As a final consequence, we can predict that if this short time extreme intensive 

process (laser light or X-ray, gamma radiation) happens, it can contribute 

effectively, to the physical behavior of the entire or some small parts of systems, 

e.g., perhaps on nano/micro-scale, to the electric properties or to other transport 

phenomena of the few-body systems. 

The present calculations do not involve the possibilities of charge oscillations, but 

this process should remain realistic. This examination and discussion are great 

challenges for future work. 
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