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Abstract: In this paper the TP-based model transformation method is used in order to 

obtain a Tensor Product-based model of magnetic levitation systems which approximates 

the behavior of the plant, but exhibiting a numerical approximation error. In order to test 

the derived TP model, the behavior of the TP model is compared to the laboratory 

equipment behavior taking into consideration five testing scenarios. Experimental results 

show that approximation errors are generally low, but depend on model parameters. 
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1 Introduction 

The Tensor Product-based Model transformation (TPM) technique is a numerical, 

non-heuristic method that is capable of transforming a dynamic system model, 

given over a bounded domain, into parameter-varying weighted combination of 

parameter independent (constant) system models under the form of Linear Time-

Invariant (LTI) systems. More precisely the TPM starts with Linear Parameter–

Varying (LPV) dynamic models and derivates Linear Time-Invariant (LTI) 

systems as shown, for example, in the seminal papers and book (Baranyi, 2004) 

[1], (Petres et al., 2007) [2] and (Baranyi et al., 2013) [3]. 

TPM has the advantage of allowing linear matrix inequality (LMI) and parallel 

distributed compensation (PDC) frameworks to be applied immediately to the 

resulting affine models. This leads to tractable and improved control system 

performance. 

The derivations of TP-based model transformation design approaches for different 

application plants such as models of diabetes mellitus and nonlinear insulin-
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glucose dynamics, a nonlinear flexible joint robot system, a multi-tank system, 

etc., are given in the specialized literature in (Korondi, 2006) [4], (Galambos et 

al., 2015) [5] and (Hedrea et al., 2018) [6]. The combination with Proportional–

Integral–Derivative controller tuning is treated in (Kuti and Galambos, 2018) [7]. 

The book (Baranyi, 2016) [8] and the papers (Szöllösi and Baranyi, 2016) [9] and 

(Szöllösi and Baranyi, 2016) [10] are important as they prove that the 

manipulation of the TPM is neccesary in control deisgn like PDC. The latest 

results where the number of variables or inputs may differ are presented in 

(Baranyi, 2018) [11], and also in (Baranyi, 2019) [12] if the TPmodel starts from 

f(x, u, p), where the matrix structure is unknown. 

The Magnetic Levitation System (MLS) is a laboratory equipment (LabEq) used 

for experiments. It is an important benchmark to test linear and nonlinear 

modeling and control approaches applied to various areas including transportation 

systems. Some recent modeling solutions proposed for MLS include neural 

networks reported in (Rubio et al., 2017) [13], evolving fuzzy models reported in 

(Precup et al., 2017) [14] and Euler–Lagrange method reported in (Sun et al., 

2017) [15]. The evolving fuzzy models prove to be popular recently and the 

results related to MLS can be considered as belonging to the hot fields of 

transportation systems and automotive technology as exemplified by Precup et al. 

(2017) in [16]. 

This paper is an extended version of the paper (Hedrea et al., 2019) [17], where 

the derivation of a TP–based model (TPmodel) using TPM was recently proposed. 

The TPmodel is then tested and its validation is improved using two testing 

scenarios. The topic at hand should be of interest to many engineers hoping to 

apply the TPmodel as a numerical modeling approach. The main contributions of 

this paper, which required restructuring in all sections including authors team, are 

pointed out as follows: the authors use the same main steps as the ones presented 

in [17] in order to obtain the TPmodel of the stabilized reduced order linearized 

model of a magnetic levitation system (referred to as stMaglev) and discussed in 

(Inteco, 2008) [18] and (Bojan-Dragos et al., 2018) [19]. However, the derived 

model is tested using four new testing scenarios. More precisely four control 

inputs (signals), namely a staircase control input, a sine control input, a chirp 

control input and a Pulse–Width modulation (PWM) control input, were applied to 

both stMaglev LabEq and TPmodel of stMaglev and their corresponding outputs 

were compared. 

A part of the results given in both [17] and the current paper represent a sample of 

the continuation of the fruitful cooperation with the team of the Óbuda University 

(Budapest, Hungary). The excellent scientific contributions and management 

activity of Prof. Imre J. Rudas are kindly acknowledged. Some representative 

well-accepted joint papers in this regard are given in (Pozna et al., 2010 [20], 

(Haidegger et al., 2012) [21], (Precup et al., 2012) [22] and (Takács et al., 2015) 

[23]. 
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The paper treats these topics: Section 2 gives the steps of TPM and the derivation 

of the TPmodel for stMaglev. Section 3 illustrates the four testing scenarios used 

for testing the derived TPmodel for stMaglev and Section 4 highlights the 

conclusions. 

2 The TPmodel Derivation for stMaglev 

2.1 TP-based Model Design Approach 

When creating TPmodels for system representations, it is always useful for the 

reader to understand the base system equations of the physical system, preferably 

in a continuous–time state–space representation. That is the reason why such 

details are given in the section. 

The TP-based model transformation is a numerical non-heuristic method which 

was first introduced by Baranyi (2004) in [1]. This method uses the high order 

singular value decomposition (HOSVD) technique in order to generate convex 

polytopic forms starting with the LPV models. In order to derivate a TPmodel 

uring the TPM technique the six steps with the diagram illustrated by Hedrea et al. 

(2019) in [17] and detailed in the following paragraphs are used. 

In the first step the Transformation Space (TSp) is defined. Let 

Ωp  T

nppp ] ...   [ 21
 be a parameter vector and n the number of parameters. 

Therefore, n

nn bababa  ],[...],[],[ 2211Ω  is the TSp with the bounds of 

the intervals ],[ ii ba , i = 1...n chosen according to the plant specifications. A TSp 

],[],[ 2211 baba Ω  for two parameters is illustrated in (Hedrea et al., 2019) [17]. 

In the second step the Dicretization Grid (DG) is defined. Let 2 , ,  iii MMM N  

be the number of the discretization points from each interval [ai, bi], i = 1...n, 

including the ends of the intervals, which are computed using the technique 

described in (Baranyi et al., 2013) [3]. Therefore, the DG is given as: 

,...||

,...1 ,...1},{

21

,...,, 21

n

iimmm

MMM

niMm
n





M

ΩgM
 (1) 

where Ωg 
nmmm ,...,, 21

 is a discretization point. An example of DG with 

68|| 21  MMM , where n = 2, for M1 = 8 and M2 = 6 is given in (Hedrea et 

al., 2019) [17]. 
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In the third step the discretized Tensor (dTens) is determined. Using the LPV 

model of the plant as shown in (Baranyi et al., 2013) [3] and (Hedrea et al., 2018) 

[6], the System matrix (Sm) can be defined as: 

.)]([)(

,
)()(

)()(
)(

)...(1),...(1

)()(

qmjqliij

qmql
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ppS

pDpC

pBpA
pS  (2) 

Considering the parameter vector equal to the discretization point 

Mgp  T

mnmmmmm nn
ggg ]...[ ,,2,1,...,, 2121

 the Discretized System matrix 

(DSm) is given as: 

)...(1),...(1,...,,...,
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,...,,...,

)]([

)(

2121

2121
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 (3) 

and the dTens D
S  is defined as: 

.][
)()(...

...1,...,...1,...1,...,
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221121
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D n
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A particular example of a dTens computed for two parameters  111 ,bap   and 

 222 ,bap   with the TSp ],[ 11 baΩ  ],[ 22 ba  and the DG 

68|| 21  MMM  has the following expression: 
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In the fourth step the HOSVD is applied in order to obtain the singular values of 

the dTens )()(...21 qmqlMMMD n 
RS , which can be expressed as 

n

N

n

D
USS

1
  

(Baranyi et al., 2013) [3] where Un, S and   are expressed in (Baranyi et al., 

2013) [3] and (Hedrea et al., 2019) [17]. 

The n–mode matrix ))...()...((

)(
2121 qlMMqmMMMD

n
nnn  S  can be given as 

],[)(

D

r

D

n sS  where nMD

r s  denote the column vectors of the Mn dimension of 

tensor D
S  and r = 1...R, with )...()...( 2121 qlMMqmMMR nn  

. 

In order to compute the HOSVD of the tensor D
S  n singular value decompositions 

(SVD) made for all the n–mode matrices D

n)(S  are made using the theorem given in 

(Hedrea et al., 2019) [17] and (Lathauwer et al., 2000) [25], whose proof is given 

by Lathauwer et al. (2000) in [25]. 
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Using this theorem given in (Lathauwer et al., 2000) [25], the SVD (with the three 

steps a), b) and c) detailed in [16]) of the n–mode matrix D

n)(S  can be given as 

T

nnn

D

n VΣUS )(
 (Hedrea et al., 2019) [17]. 

Finally the matrices Un and Vn are computed following the steps taken from 

(Hedrea et al., 2019) [17]. 

In the fifth step the numerical values of the weighting functions are determined. 

The column vectors 
nIn,u  in the matrix Un are called weighting vectors and they 

contain the values of the w.f. )( ,..., 21 nmmmn pw  for ),....( ,,1,..., 121 nn mnmmmm ggp  

(Baranyi et al., 2013) [3]: 

.)( ,,..., 21 nn Inmmmn upw   (6) 

In the final step the core tensor 
fS  is computed using the dTens D

S  and the 

matrix 
NU  from the above steps (Baranyi et al., 2013) [3]: 

T

N

N

n

D

f USS
1

  (7) 

The core tensor 
fS  is defined as LTI

mmm
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m
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m

M

m
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n ,....,

1 1 1 1

,..., 21

1

1

2

2

21
)( SpwS  
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   

with the equivalent notation )())(( ,..., 21 nmmmnft pwSpS   presented in (Baranyi, 

2004) [1]. 

2.2 Derivation of TPmodel for stMaglev 

The modelled plant considered in this paper is a laboratory system based on the 

magnetic levitation principle, which includes a metallic frame with one upper 

electromagnet, Electromagnet1, and one lower electromagnet, Electromagnet2, 

between which a ferromagnetic sphere levitates as shown in Figure 1. The position 

of the ferromagnetic sphere is measured using position sensors. In order to ensure 

the communication between the hardware and the software components one 

computer interface is used. 

The base system equations for MLS are (Inteco, 2008) [18]: 
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where the ferromagnetic sphere position (m) is 
1x [0, 0.0016], the speed of the 

ferromagnetic sphere (m/s) is v , the current of Electromagnet1 (A) is 

iEM1[0.03884, 2.38], the current of Electromagnet2 (A) is iEM2[0.03884, 2.38], 

the control signals applied to Electromagnet1 and Electromagnet2, respectively 

(V) are uEM1[0.005, 1] and uEM2[0.005, 1] and the measured output of the 

process (m) is denoted by y. The process parameters are: m=0.0571 [kg] – the 

mass of ferromagnetic sphere, FemP1=1.752110–2 [H], FemP2=5.823110–3 [m], 

ki=0.0243 [A], ci=2.5165 [A], fiP1=1.414210–4 [ms], fiP2=4.562610–3 [m] (Bojan-

Dragos et al., 2018) [19]. 

 

Figure 1 

Experimental setup for MLS 

In order to determine the qLPV model of the process, which is later used in the 

derivation of the TPmodel a stabilizing control solution was designed (Bojan-

Dragos et al., 2018) [19] resulting the stabilized linearized model for MLS 

(stMaglev): 

Therefore, the qLPV model representation of stMaglev is expressed as 
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where the matrices Ax(p), b1x(p) and cT(p) are (Bojan-Dragos et al., 2018) [19] 
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where p is vector of the parameters which contains the state variable p(1) – the 

position of the ferromagnetic sphere and the state variable p(2) – the top 

electromagnet current, v is the speed of the ferromagnetic sphere, u1x is the plant 

input, y is the measured output of the process. 

Introducing in (9) the Sm ,])()([)( 43

1

 pbpApS xx the model is transformed 

in the qLPV state–space form 
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with the following LTI models (Hedrea et al., 2017) [26]: 
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The LTI Sms contain the matrices 
2,1 mm

xA  and 
2,1

1
mm

xb  from the state–space model 
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3 Experimental Results 

Using the TP Tool, with its operation mode described by Nagy et al. (2007) in 

[27], the matrices Sm1,m2 obtained for stMaglev are given in (14) and the w.f.s are 

presented in Figure 2 for the two parameters, namely the sphere position and the 

top electromagnetic current. 

 

Figure 2 

W.f.s obtained by TPM of stMaglev (sphere position and top electromagnetic current) 
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In order to test the derived TPmodel, five testing scenarios are presented in this 

extented paper and are detailed in the followings. The same testing signal was 

applied both to the stMaglev LabEq and to the TPmodel derived for stMaglev on 

the time frame of 20 s and their corresponding outputs, 
jMLSy  and 

jTPy , j{PRBS, 

STAIRS, SINE, CHIRP, PWM}, were compared (Figure 3). The initial state vector 

matching the experiments was T]000083.0[0 x . 

 

Figure 3 

Testing block diagram for stMaglev LabEq and TPmodel 

The first testing scenario is the same as the first one used by Hedrea et al. (2019) 

in [17] and consists in applying a Pseudo Random Binary Signal (PRBS) with a 

0.008 m amplitude as control input with the corresponding plot of the sphere 

position versus time illustrated in Figure 4. 
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Figure 4 

The time response of TPmodel and stMaglev with PRBS control input 

The next four testing scenarios consist in applying four new control inputs 

(signals), namely a staircase control input, a sine control input, a chirp control 

input and a PWM control input, to both stMaglev LabEq and TPmodel of 

stMaglev. 

In the first new testing scenario, the plot of the sphere position versus time 

obtained after applying a staircase control input with a R1=0.006 m, R2=0.008 m 

and R3=0.007 m amplitude as control input is illustrated in Figure 5. 

In the second new testing scenario, the plot of the sphere position versus time 

obtained after applying a sine control input with a 0.001 m amplitude as control 

input is illustrated in Figure 6. 

 

Figure 5 

The time response of TPmodel and stMaglev with PRBS control input 
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Figure 6 

The time response of TPmodeland stMaglev with sine control input 

In the third testing scenario the plot of the sphere position versus time obtained 

after applying a Chirp control input with a 0.1 initial frequency as control input is 

illustrated in Figure 7. 

In the fourth testing scenario the plot of the sphere position versus time obtained 

after applying a Pulse–width modulation (PWM) control signal with a 0.0012 m 

amplitude, a 50% pulse width as control input is illustrated in Figure 8. 

 

Figure 7 

The time response of TPmodel and stMaglev with chirp control input 
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Figure 8 

The time response of TPmodel and stMaglev with PWM control input 

In order to better highlight the performances of the TPmodel derived for stMaglev 

in all testing scenarios the following performance indices were computed: the 

modeling errors, the mean square error and the percent relative modeling error. 

The modeling errors were computed as the difference between the output 

responses of the real–world stMaglev (experimenting on the LabEq) and the 

TPmodel of stMaglev: 

,
jj TPMLSj yye   (16) 

The mean square error (MSE) was also calculated as: 

,))((
1

MSE
1

2



N

t

djj

d

te
N

 (17) 

where 
je  results from (16), N=80000 is the number of records. The following 

numerical values of MSE were obtained: 8102096.7MSE PRBS
, 

8105279.3MSE STAIRS
 in case of PRBS control input, 7101904.1MSE SINE

 

in case of sine control input, 8108753.1MSE CHIRP
 in case of chirp control 

input and 8109096.8MSE PWM
 in case of Pulse–width modulation (PWM) 

control input. The MSE numerical values are small because the ranges of 

stMaglev and TPmodel outputs are less than 10 mm. 

The percent relative modeling errors have the following expressions: 

.100||/||[%] 
jMLSjrj yee  (18) 
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The plot of the percent relative modeling errors in case of the PRBS control signal 

is illustrated in Figure 9. The plots of the percent relative modeling errors in all 

new testing scenarios are illustrated in Figures 10-13. 

The large values of the percent relative modeling errors in the initial phase of 

system responses are caused by neglecting the fourth state variable of stMaglev, 

the bottom electromagnet current, in the design of stMaglev and next the 

derivation of TP-m. 

 

Figure 9 

Percent relative modeling error with PRBS control input 

 

Figure 10 

Percent relative modeling error with staircase control input 
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Figure 11 

Percent relative modeling error with sine control input 

 

Figure 12 

Percent relative modeling error with chirp control input 

 

Figure 13 

Percent relative modeling error with PWM control input 
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Conclusions 

This paper proposed an extension of the ideas suggested in Hedrea et al. (2019) 

[17] by means of four new testing scenarios and adding useful information on the 

nonlinear plant that is subjected to the attractive nonlinear modeling and control 

technique built around TP. The new testing scenarios are important as a nonlinear 

plant is controlled and the TPmodel proposed by Hedrea et al. (2019) in [17] and 

this paper and will next be used in model-based control requires adequate 

validation. Various operating regimes were considered in this respect, and three 

performance indices, namely the modeling error, the mean square error and the 

percent relative modeling error, were also computed. 

The experimental results show that the derived TPmodel approximates the 

behavior of the plant, but exhibiting a numerical approximation error which 

depends on the model parameters. The numerical values of the performance 

indices show that the TPmodel ensures good performance in terms of mean square 

error and percent relative modeling error in all testing scenarios, which are 

relevant to the real process operation. Experimental results also show that 

approximation errors are generally low, but depend on the control input. 

Future research will be focused on finding what options are available to further 

reduce the approximation errors of the derived TPmodels or, in other words, to 

analyze what parameters do the approximation errors depend on. Future research 

will also include a part of the next directions already identified and proposed in 

(Hedrea et al., 2019) [17]: the derivation of other TPmodels for different plants, 

and the adaptation of results from other models and application areas. Such 

promising and also challenging plants and applications include robotics [28-31], 

fuzzy models and control [32-38], neural networks [39], medicine [40-42], servo 

systems and engines [43, 44], supervisory control [45], and various modern 

optimization algorithms [46-51] applied to controller tuning and system model 

identification as well. 
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