
Acta Polytechnica Hungarica Vol. 16, No. 3, 2019

 – 59 –

SEFRA - Web-based Framework Customizable

for Serbian Language Search Applications

Mioljub Jovanović
*
, Goran Šimić

**
, Milan Čabarkapa

*
, Dragan

Ranđelović

, Vojkan Nikolić

, Slobodan Nedeljković

,

Petar Čisar

*
Department for Postgraduate Studies, Singidunum University, Danielova 32,

11000 Belgrade, Serbia, mioljub.jovanovic.12@singimail.rs,

mcabarkapa@singidunum.ac.rs

**
Research Centre for Simulations, University of Defense, Generala Pavla Jurišića

Šturma 33, Banjica, 11000 Belgrade, Serbia, goran.simic@va.mod.gov.rs

Department for Informatics and Computing, Criminalistics and Police

University, Cara Dušana 196, 11070 Belgrade, Serbia,

dragan.randjelovic@kpa.edu.rs, petar.cisar@kpa.edu.rs

Ministry of Interior of the Republic of Serbia, Kneza Miloša 101, 11000

Belgrade, Serbia, vojkan.nikolic@mup.gov.rs, slobodan.nedeljkovic@mup.gov.rs

Abstract: This paper presents SEFRA – a web-based framework for searching Web content

written in Serbian. SEFRA is an easily customizable hybrid solution that can be a platform

for new search applications and/or a service for already existing ones. The proposed

architecture solves the problems of indexing, searching and displaying search results

adjusted for Serbian. It unifies several web technologies and services into one product

suitable for use in the Western Balkan’s countries for helping e-Government citizens'

services and other public-sector services, private company administration, solving specific

search problems for academic institutions and scientific literature publishers, etc. The

proposed solution uses advanced Serbian language services accessible over the Web. It is

also implementable for any other language where the target language morphology service

exists. In other words, architecture is also customizable in this direction. It should be noted

that the proposed architecture is optimized from both backend and web front-end

perspective. The source code can be pulled from https://bitbucket.org/mjovanov/pretraga/.

The one application of the proposed architecture is experimentally demonstrated through

the search of crime law documents of Serbia. The experimental usage of this

implementation shows that the problem of search relevance, is well-solved and easily

customizable.

Keywords: web-based architecture; Serbian language text search; software

implementation; search results

M. Jovanović et al. SEFRA - Web-based Framework Customizable for
 Serbian Language Search Applications

 – 60 –

1 Introduction

An accelerated development of the Internet as a platform and WWW (Web) as the

most frequently used service of the Internet, brought access to a huge number of

documents on the global network. Moreover, the documents’ content is distributed

in the same way. The page can also consist of fragments that originate from

different hosts. Considering such a complex situation, advanced search application

developers face many challenges, such as: collecting all available pages, analyzing

the content of the collected material and enabling a quick query, as well as,

display relevant documents based on the specified search criteria.

Since it is a fact that English is the most commonly used language on the Web [1],

there are many representative search applications and services specialized for

English content (e.g. Google, Bing…). In other words, we are in a position where

the problem of collecting, analyzing documents, and finding the search results is

solved for the English language. Since there are significant differences between

the languages of the Western Balkans and the English language, then the question

arises – if the data search problem is thoroughly resolved in English, is the

problem of indexing and searching documents in our local languages also solved?

This paper suggests the possible approach, through the example of the realization

of modern web architecture, to provide the answer to the above question of

indexing, searching and displaying the results adjusted for the Serbian language.

This work certainly would not be possible without going through various research

documents and reports which are mentioned in Section 2. The architecture of the

proposed solution along with its used components are discussed in Section 3,

while implementation details and most code excerpts are covered in Section 4 of

the document. Evaluation of results is given in Section 5, followed by conclusions

and potential future work.

2 Related Works

Nikolic et al. [2] presented one e-Government services to get quick responses.

This service enables citizens to receive answers, in the form of documents in the

Serbian language, at any time and in any place, to the questions in the criminal

law domain. This service has developed a Question and Answer (Q&A) system,

based on Bag of Words (BoW) and Bag of Concepts (BoC), for categorizing text

and incorporating background knowledge. The automatic mapping of relevant

documents stands out as an important application for automatic question-

documents classification strategies. This research presents a contribution to the

identification concepts in text comprehension in unstructured documents as a

significant step towards clarifying the role of explicit concepts in retrieval

Acta Polytechnica Hungarica Vol. 16, No. 3, 2019

 – 61 –

information in general. These authors introduce a new approach to create concept-

based text representations and apply it to a text categorization collection in order

to create predefined classes in the case of a short document analysis document. In

the revolutions of this Q&A system, is a classification-based algorithm for a

question matching topic model. The results obtained proved to be satisfactory

based on the "golden rule".

In article Martinovic et al. [3] is presented an information retrieval system for

Serbian language. Approaches designed and adopted to handle them are depicted

and illuminated in this article. As a backbone of this system, they used a SMART

retrieval system which they augmented with features necessary to deal with the

specifics of the Serbian alphabet. Serbian language is a morphologically rich

language that leads to specific implications of the text prefix. During the

development a SMART retrieval system, the authors developed two algorithms

which increased retrieval precision by 14% and 27%, respectively. Complete

testing was conducted using two gigabyte EBART collection of Serbian

newspaper articles.

Considering the existing solutions that depend on e-Government requirements,

Šimić et al. in [4] proposed focusing on testing in different conditions and

improving the ability of adaptation in the next research phases. One of the

objectives pursued in this work is to find solutions for the functioning of such a

system in multilingual environments and increasing content complexity

concerning grammar and dictionaries of different languages, regardless of the area

of use.

Kolomiyets et al. [5] represent the Question Answering method as a

comprehensive approach that provides a qualitative way for information retrieval.

This approach is a system of queries and documents in relation to the possible

functions of search to find an answer. This research discusses general questions

contained in a complex architecture with increasing complexity and the level of

frequency of questions and information objects. These authors represent here a

method of how natural language roots are reduced on keyword for search, while

knowledge databases, and resources, obtained from natural language questions

and answers, are made intelligible.

In addition, there are now research efforts where the authors try to solve a specific

language searching problem [6] - [13], but there is no complete software

architecture easily customizable for different search applications. In [6] author’s

give one optimization of the method proposed in [2] where selection of the

similarity measure is performed using the principles of redundancy and fault

tolerance, in [7] is described one search engine using MySQL as one of cheap

option, work [8] presents one architecture which uses different semantic web

technologies and builds one prototype of semantic web mashup possibility, paper

[9] proposes one novel Italian Sign Language Multi Word Net using process of

integration the Multi Word Net lexical database and the Italian Sign Language,

M. Jovanović et al. SEFRA - Web-based Framework Customizable for
 Serbian Language Search Applications

 – 62 –

paper [10] describes a novel LInSTSS approach which is suitable for using to

create a software tool which is capable to determine the semantic similarity of two

presented no large texts, in paper [11], authors propose the use of smoothed n-

gram language models to classify tweets as a typical short texts from Twitter in

both Portuguese languages - Brazilian and European variants, paper [12] deals

with the software architecture which establishing electronic services for searching

and presentation in an information system on scientific activities of the Ministry

of Education, Science and Technological Development of the Republic of Serbia

and work [13] has objective to give a lexicon based algorithm which is able to

perform different natural language identification using minimal training data in

the obligatory process of machine learning because this step is often the first step

in many natural language processing tasks which is normally necessary to make in

the shortest possible time. Therefore, we have a strong motive for designing the

SEFRA framework – hybrid solution based on existing Web services and

technologies (framework source code is available at:

https://bitbucket.org/mjovanov/pretraga/). Additionally, there is a search

application developed for demonstration and testing SEFRA (the implementation

available online: http://88.99.175.85/pretraga/).

3 Proposed Web Architecture

According to previous researches and already existing implementations [14] [15],

there are four processes necessary to obtain relevant search results (Figure 1).

During processing, targeted content passes through the two stages: collecting,

preparing and indexing belong to the preparation stage while query processing,

searching and presenting belongs to the production stage.

Figure 1

Four processes necessary for Web content searching

Acta Polytechnica Hungarica Vol. 16, No. 3, 2019

 – 63 –

Additionally, entering the production stage, the system must run these four

processes simultaneously. This is a consequence of permanent changes of the

content. For instance, constantly adding, removing, updating and replacing of

documents and their references (URI) is a common case on the global network.

Such challenges as well as a complex nature of Serbian language directed SEFRA

design (Figure 2) to be modular solution based on open components.

Figure 2

SEFRA architecture - modular solution based on open components

The developed solution is an open and modular framework which consists of four

components. For preparation stage, SEFRA uses SolrClient – Python library

(solrclient.readthedocs.io) for locating, collecting, and preparing documents.

Further documents’ analyzing and indexing SEFRA performs by using Apache’s

Solr and Lucene libraries (lucene.apache.org/solr/).

Solr is a popular fast – search platform based on Lucene technology. Both are

developed under Apache Foundation [16] as platforms for full text search written

in the Java programming language. Lucene [19] represents a framework with high

– performances in full-text search. Designed as a system centered solution, Lucene

API is complex for implementing special requests and search customization. For

this reason, Solr is a solution dedicated to enable simpler interface and better

customization abilities for Lucene with resources accessible locally as well as

remotely (through the REST API).

For production stage, SEFRA uses a reach Web client application based on

Angular 4 (angular.io) [18] and Bootstrap 4 (v4-alpha.getbootstrap.com) [19]

libraries. SEFRA client communicates with the end users as well as with the

external services. In concrete scenario, SEFRA uses the Vebran – Serbian

language service (hlt.rgf.bg.ac.rs/VeBran) to obtain lemmatization of query

(transforming its words into normal form). Then, it sends a prepared query, as a

M. Jovanović et al. SEFRA - Web-based Framework Customizable for
 Serbian Language Search Applications

 – 64 –

REST request to the Solr search service. After receiving search results, the

SEFRA Client prepares the representation for delivering to the end user.

4 Implementation

4.1 Preparation Stage Processes

As mentioned, SEFRA uses SolrClient – Python library for locating, collecting,

and preparing documents. Python is a modern, easy-to-use programming

language, which contains many libraries useful for acquiring documents,

analyzing them and creating fields and schemas for indexing as well. In SEFRA

the SolrClient represents a module which works together with Solr server acting

as an interface between Solr and rest of the system as well as with the outer world.

In other words, SEFRA uses SolrClient instance to retrieve local or remote

documents and to prepare them for later indexing and searching. It leverages the

potential of the Solr server quickly and easily from the Python environment,

facilitating the use of the REST interface of the Solr platform.

For analyzing of acquired documents Solr server by default tries to find out fields

and their types based on the content. This approach is interesting when objective

is to index text in English as Solr uses built in functions (and thesaurus) designed

for English language in this process. This automatized indexing unfortunately

produces unexpected results for content written in other languages (e.g. Serbian).

In this case, Solr recognizes the sentences in the Serbian language in the wrong

way – meaningless strings often considered as a single string instead at least, a list

of words. Therefore, adding new pre-defined fields is necessary for making

improvements of indexing process.

SolrClient allows adding of new fields or metadata to a document, specifying the

type of field(s) and schema on the server, preparing it for further document

processing. There are several SolrClient functions for this purpose. In the concrete

scenario, solr.schema.create_field and solr.index methods are used to add desired

fields in the scheme and to add indexes to documents. To enable proper

processing of words and sentences in Serbian, the default Solr behavior has been

adapted to manage specific language requirements such as grammatical cases,

synonyms, stop words and processing of diacritics.

There is a REST service designed for this purpose. It is accessible over Solr’s URI

solr/sd/schema. It enables remote setup of Solr server by using simple JSON

formatted messages (Figure 3) sent as a HTTP request (application/json type).

Acta Polytechnica Hungarica Vol. 16, No. 3, 2019

 – 65 –

Figure 3

Solr server setup for indexing documents written in Serbian

The above figure shows the complete process of creating a text_rs field type. This

field is based on similar solutions for other languages that are supported in Solr,

and it has been defined including new entities into Solr core: stop-words filter

(stopwords_rs.txt), filter for synonyms (index_sinonimus.txt), filter for upper /

lower cases (already built-in resource) and filter for the processing of diacritical

signs (SerbianNormalizationFilterFactory).

SerbianNormalizationFilter is Java based Lucene library which is implemented

and leveraged for use in Solr custom field “text_rs”, as depicted on Figure 3. Since

Serbian language uses Cyrillic alphabet as well as Latin it’s possible to perform

several language-specific steps in order to render both indexing and querying

process more effective. Example implementation in SEFRA uses haircut=”bald”

which removes all diacritics from letters such as 'č', 'ć', 'š', 'ž' or 'đ' from the search

text which reduces the precision of the query results. However, since Vebran is

invoked as a backend service before Solr query, text in query field entered with

diacritics will be correctly returned in all shapes and forms. Finally, these settings

are stored in Solr server configuration file ready for use.

After creating fields and setup Solr, the documents are ready to be loaded into

index. Next Python code demonstrates this process (Figure 4). In this example, the

origin of documents to be indexed is in dokumenti/Na1 folder. The system opens

each file to read its content and put it in the previously created field named tekst

for further analysis. After the collection is completed, document is sent to a server

by forwarding it as a parameter of SolrClient (solr) index() method. Example

depicted on Figure 4 demonstrates use of Python code to enrich index by additional

fields which may be relevant for such – such as “clan_id”, which is the exact

article id referenced in the original text search corpus. Python code provides

capability to easily extend given code to any number of additional parameters or

fields which may be required to properly index the text.

M. Jovanović et al. SEFRA - Web-based Framework Customizable for
 Serbian Language Search Applications

 – 66 –

Figure 4

Preparing documents for indexing

4.2. Production Stage Processes

SEFRA performs production stage processes in both of entities – Solr server and

Angular clients. The distribution of functionalities reduces stress to the server side

by using powerful client technology. The main reasons in favor of using the

Angular 4 as a client platform [20] are:

 Separating of the user interface from the business logic

 Modularity (Enabling flexible design of low coupled forms and logic)

 Asynchronous calls support (Easy to code client-side multithreading)

 Rich user interface support (forms based on templates as well as program-

generated forms)

 Reusable and responsive components (support for Angular Material and

Bootstrap 4)

The list of features and advantages embedded in Angular 4 is a quite long.

TypeScript is language of choice in our implementation. There are several reasons

for choosing TypeScript: modular development support (object oriented language

semantic), easy compiling (transpiling) into JavaScript code and compilation time

error detection, etc. Moreover, Angular is written in TypeScript, which is

obviously a huge advantage if one develops application in the same programming

language as the platform itself. Typescript is a super-set of JavaScript that will be

transpiled into pure JavaScript code [21].

The core production – stage functionality is to process searching queries,

prompted by the users, based on existing services specialized for Serbian

language. This client-side module provides integration of Solr indexing &

Acta Polytechnica Hungarica Vol. 16, No. 3, 2019

 – 67 –

searching services with Vebran – Delafs services (Vocabulary of word forms with

all their morphological properties) [3]. Vebran is Serbian linguistic web-based

service offering different linguistic capabilities for semantic and morphologic

extension of the given phrase. Implementation of Verbran service invocation is

explained in page 69 and Figure 4. As an example, for input search text “delo”,

getDelafs method will invoke Vebran API “/Vebran/api/delafs/delo” which

returns all other morphological shapes of the given input text, which is:

 <string xmlns="http://schemas.microsoft.com/2003/10/Serialization/">

dela;delima;delo;delom;delu;дела;делима;дело;делом;делу</string>

With Verbran it is also possible to leverage other linguistic services, such as

synonyms using API “Vebran/api/sinonimi/”, which for given term “delo” also

gives it is synonyms:

 <string xmlns="http://schemas.microsoft.com/2003/10/Serialization/">

delo;opus;podvig;rad;duhovnatvorevina;дело;опус;подвиг;рад;духовна

творевина</string>

On one hand, with the Web services used on the server side, SEFRA client

communicates asynchronously. On the other hand, there has to be synchronization

between Solr and Vebran services during this process. Therefore, SEFRA uses

RxJS Observable Library (Observer design pattern) [22] [23] as appropriate one

for handling multiple service requests and responses simultaneously. This way it

becomes possible to extend the number of services used. Enabling full control of

concurrent execution, Observable also simplifies the termination of running

asynchronous calls if timeout is expired. In SEFRA example implementation

Vebran Delafs API has been leveraged, yet all other services can be easily

involved and processed using Observable design pattern as described in the

remainder of the paper.

4.3. User Interface

SEFRA uses Bootstrap Navbar component (getbootstrap.com) for creating end –

user interface. It enables responding to the device size (Figure 5), easy navigation

and intuitive interface. There is one menu bar with drop down menus, modelled

through the appropriate classes.

M. Jovanović et al. SEFRA - Web-based Framework Customizable for
 Serbian Language Search Applications

 – 68 –

Figure 5

Responding GUI – the same code produces different appearance for desktop (a) and smartphone (b)

display

Angular enables clear separating of components and easy arranging of elements

on the web page. It also reduces the content of HTML elements combined them

with the ones defined in Angular. Previous picture illustrates it – GUI contains

only div HTML elements, while app-solr-query and app-solr-response are user-

defined Angular components. Their definitions are split in three parts - three files

generated for each active GUI element in Angular (Figure 6): HTML, CSS and

TypeScript (ts) files (there is additional spec.ts file only for testing purposes).

Figure 6

Modular design of Angular application

HTML and CSS files contain details of design, while the ts files implement the

application logic (interactivity). In addition, a separate file (i.e. app.module.ts)

contains declarations for each GUI component, imports of built-in library modules

and other specifications necessary for running the application. Consequently, the

described approach produces low coupling between presentation and functionality

behind it enabling if–necessity, or on–demand, easy replacing any of these two.

Acta Polytechnica Hungarica Vol. 16, No. 3, 2019

 – 69 –

4.4. The Search Query Processing

App-solr-query is the frontend Angular component (previous section) which

receives searching criteria entered by the user (Figure 7) putting it in the variable

named guiQ (line 14). There is bounded variable of the same name defined in

SolrQueryComponent class. SEFRA starts searching process when the user clicks

the button labeled Traži (line 15). This event triggers searchClanovi method

defined in background class (SolrQueryComponent class).

Figure 7

Fragment of app-solr-query component

Method SolrQueryComponent.searchClanovi starts the RgfService firstly (Figure

8), calling its observable method getDelafs forwarding the user search criteria as

created query instance to normalize it by finding the basic form of each word in a

query. In more details, the system consequently calls additional three observable

operators: map – calls the function for each (query) element found, mergeMap –

calls SolrService method named getClanovi enabling the use of more than one

service at the same time and merging their results, and subscribe – that enables an

observer object to receive items emitted by an observable instance. In the concrete

case, the SolrQueryComponent is a subscriber. That means that any change in a

query string produces a new request to the Solr service and updates the results

presented to the user.

Figure 8

The core function of SolrQueryComponent

In the last statement, SolrQueryComponent uses RxJS synchronization to

propagate the information through the rest of the system that initiates the search of

specified query (SolrService.announceQueryStart).

M. Jovanović et al. SEFRA - Web-based Framework Customizable for
 Serbian Language Search Applications

 – 70 –

As mentioned, SEFRA uses Vebran service to pre-process the search criteria

originally sent by the user to obtain regular query expression. It happens through

the RgfService class (Figure 9). More precisely, running in separate process

thread, getDelafs method implements it. Due to getDelafs method, instances of

RgfService class become observable for consumer class instance.

Figure 9

Angular service implementation for Vebran query

SolrQuery is a class that contains everything necessary for performing a search.

SEFRA communicates with the Vebran service through the HTTP GET request

sending a query as JSON formatted string. The method getDelafs returns content

received from the Vebran service to the observer (SolrQueryComponent).

In the same manner, SolrQueryComponent leverages the other service

encapsulated in SolrSevice class. After query normalization, SolrSevice’s method

getClanovi forwards query as a JSON string through the HTTP GET request to the

Solr server (

Figure 10).

Figure 10

Sending of search query to the Solr server

Acta Polytechnica Hungarica Vol. 16, No. 3, 2019

 – 71 –

Since getClanovi is an observable method, it returns content received from the

service to the observer (SolrQueryComponent). More precisely, it triggers

updateSolrResults method subscribed to wait this response (Figure 8, line 138)

encapsulated in ResponseSolr instance for search results (Figure 11). It contains a

set of highlighted document fragments that fit the criteria, the links and similarity

scores as well.

Figure 11

The last preparations before presenting search results

After the preparation, SolrQueryComponent calls the SolrService to announce that

the searching is finished, and results are ready for presenting. Further, the system

broadcast this information for updating GUI components that present the results.

4.5. Presentation of Search Results

An appropriate binding between GUI components and needed features of the

SEFRA provides handling of the user requests and system responses separately

because there are several services and asynchronous calls used for this purpose.

SolrService class is responsible for a mutual synchronization in this complex

process. It uses broadcasted events (observables) for triggering appropriate

component functions. After completing the query task, SolrQueryComponent

forces SolrService to emit this information to the all subscribed objects (Figure 11,

line 89). It performs this task by using observable string subject

queryFinishedSource and observable string stream queryFinished$ (Figure 12).

Figure 12

Broadcasting the event when the search has finished

SolrResponseComponent is a class responsible for presenting searching results.

Subscribing the stream named queryFinished$ (Figure 13), it receives the event

when the search has finished and prepares the results for rendering.

SolrResponseComponent extracts all the information necessary to perform

mentioned task.

M. Jovanović et al. SEFRA - Web-based Framework Customizable for
 Serbian Language Search Applications

 – 72 –

Figure 13

SolrResponseComponent subscribed for event that the search is finished

Angular GUI component app-solr-response is responsible for presenting the

search results to the user (Figure 14). This component is acting along with

SolrResponseComponent class and they share the same scope. In other words, the

variables defined in SolrResponseComponent are visible to app-solr-response and

vice versa.

Figure 14

GUI component

This way a variable success is examined by using ngIf directive to check the

conditions if there are quantitative details of the search process (this part of code

is collapsed) which should be shown. The collection clanovi represents the search

result that is iterated through by using ngFor directive. The component represents

each element in this collection by using temporary variable clan showing its id,

absolute and relative score, and textual content.

Acta Polytechnica Hungarica Vol. 16, No. 3, 2019

 – 73 –

5 Evaluation

For evaluation purposes, the set of criminal low documents written in Serbian

Latin is used as a searching content. SEFRA framework shows a flexible behavior

for different test cases. The following examples illustrate it. In the first one,

irrespectively whether the search criteria have been written in different alphabets –

Latin (Figure 15a) or Cyrillic (Figure 15b), SEFRA obtained the identical results

in both cases. The ranking, similarity measures and relevance were the same.

Moreover, the example shows that SEFRA responses appropriately on inaccurate

written query – novcana kazna (eng. Fine/monetary penalty). Instead of correcting

word novčana, word novcana is used. In other words, it compensates the case in

which the user cannot use specific letters of national alphabet (e.g. mobile devices

or keyboard without this kind of support).

Figure 15

The same query written in different alphabets produces the same result

SEFRA also has a flexible search for different word forms found in documents.

For concrete searching term kazna zatvora (eng. Prison sentence), it responses

with document ranking that shows the terms are counted regardless of their forms

(singular/plural, tenses, grammatical cases etc.). Consequently, there is a minor

influence of word forms on a final documents’ rank.

M. Jovanović et al. SEFRA - Web-based Framework Customizable for
 Serbian Language Search Applications

 – 74 –

Figure 16

Flexible response on different word forms

For more details in search criteria SEFRA produces better results in document

selection and ranking. Next example shows expanded criteria kazna zatvora za

ubistvo (eng. Prison sentence for murder, Figure 17a) related with the previous

one kazna zatvora (eng. Prison sentence, Figure 17b). The best-fit (100%

relevancy) document explains a murder as a term and time range the jury can

punish the accused with, while previously first-ranked document is shifted down

the list.

Figure 17

The more details in search criteria the better results in response

Additionally, there is a quantitative analysis performed through two types of

measurement. The first one shows the Solr service response time (Figure 18a). As

expected, service-processing time is 5 to 10 times less than service-delivering

time. A satisfactory fact is that the Solr aggregate response time varies from 10
-2

to 10
-1

 seconds.

Acta Polytechnica Hungarica Vol. 16, No. 3, 2019

 – 75 –

a)

b)

Figure 18

SEFRA quantitative analysis

As SEFRA includes using of outside services, its performances depend on their

response time. In the concrete study, Vebran and Solr services are used (see

Section 3). The second chart (Fig. 18b) presents the performance of these two

services used together. It shows timelines (x-axis values are in hours) of their

responses. It is obvious that (excepting one remarkable peak produced by Vebran)

there are minor differences between them. On the other hand, pie chart shows that

Solr consumes 43% while Vebran consumes 57% of aggregate response time

which varies from 156 to 236 ms with the average response time of 170 ms. Also,

in comparison with previous work [2], when consider precision, recall and

accuracy metrics, SEFRA has obtained better validity results performance in

considerably more advanced testing conditions but in comparison with work [6]

which is one optimization of algorithm described in [2] it has poorer results. These

results are an excellent starting point for further development.

Table 1

Validity performance results

PERFORMANCE Work [2] Work [6] SEFRA

Precision 75.71% 49.67% 78.3%

Recall 57% 49.67% 57.76%

Accuracy 46.66% 74.83% 48.21%

Conclusions

SEFRA represents one of the rare solutions focused on improving search

capabilities of specific (non-English) language(s). Regardless of a significant

M. Jovanović et al. SEFRA - Web-based Framework Customizable for
 Serbian Language Search Applications

 – 76 –

progress made in natural language processing (NLP) of Serbian and other western

Balkan languages (i.e. south Slavic languages group), neither commercial

solutions, nor similar public services exist yet. Fortunately, there are Web services

(as Vebran) that enable further NLP development offering their capacities to the

researchers and developers. Moreover, SEFRA brought important contribution as

new TypeScript libraries for Angular 4 framework both for Solr as well as Vebran

backend services. Therefore, new Solr and Vebran libraries written as a part of

SEFRA can be easily reusable by research and development community, so that

powerful language and search services can be leveraged by simple instantiation of

Classes defined in SEFRA libraries.

From design prospective, SEFRA is a hybrid Web framework with processing

power balanced between advanced application delivered to the platforms on the

client side and different Web services on server side. At the same time, it

represents a proof of concept that it is possible to make reliable and efficient

synchronization of different Web services on the client side. This approach which

is very similar to observer design pattern, enables easy subscribing of new

services in the roles of observables (e.g. for pre-processing the search queries, or

for displaying results to the end users), or observers (e.g. different Web search

services that can be used). This flexibility is also useful to relieve search engines,

as SEFRA will not engage search services if there are no results returned from

query pre-processing service(s).

During the evaluation, SEFRA satisfied the expectations of various searching

tasks preformed. The collection of criminal low documents written in Serbian

Latin enabled us a full control during this process (comparison of obtained and

expected results). Domain experts agreed almost with all search results, which

means SEFRA made reliable selection and ranking of documents. Inability to

handle search queries that include different forms, cases and tenses and delivering

nothing, or unexpected results, represent the main weaknesses of already existing

searching engines for Serbian content. Therefore, such problems became also

high-priority evaluation tasks. SEFRA uses Vebran service as a part of solution.

Specific set up of Solr server as a search engine represents the other service being

used. The Solr service was prepared by adding new fields, configuring the stop-

words set and set of synonyms, and modifying indexing schema. In other words,

the issues described above became solvable by using different services combined

and synchronized in the joint solution.

As a modular and flexible framework built of low-coupled and easy-to-change

components that interact with each other through the standardized services,

SEFRA provides conditions for making modifications and improvements

permanently. The core component is Angular multithread application (SEFRA

client) that can manage any number of services involved in the search process.

Holding services in the separate threads, SEFRA client synchronizes the API calls

and mutual information exchange making them to act as a whole. Alternatively, it

Acta Polytechnica Hungarica Vol. 16, No. 3, 2019

 – 77 –

delivers the results to the end user in seconds, hiding a lot of processing performed

on various distributed platforms.

There are several ways for future development. Improving the search quality by

including new services is one of them. For instance, there are many foreign

companies running their business in Serbia. Including Bi/Multi-lingual services

can significantly improve SEFRA usability. On the other hand, it is necessary to

index as much available content as possible. Increasing quantity of the content

results in the need for a content categorization (clustering). Moreover, it implies

separate, domain-specific dictionaries for this purpose. Finally, every new

(domain-specific) collection requires resetting of search engine(s). As Web

content is constantly changing, the researchers and developers face the challenges

in the same manner. SEFRA provides well-formed infrastructure for such efforts.

References

[1] Miniwatts Marketing Group, “Internet World Stats”, Miniwatts Marketing

Group, [Online]. Available: http://www.internetworldstats.com/stats7.htm

[Accessed August 2017]

[2] V. Nikolić, B. Markoski, K. Kuk, D. Randjelović, P. Čisar, “Modelling the

System of Receiving Quick Answers for e-Government Services: Study for

the Crime Domain in the Republic of Serbia”, Acta Polytechnica

Hungarica, Vol. 14, No. 8, pp. 143-163, 2017

[3] M. Martinović, S. Vesić and G. Rakić, “Building an Information Retrieval

System for Serbian - Challenges and Solutions”, Springer International

Publishing, 2015

[4] G. Šimić, Z. Jeremić, E. Kajan, D. Randjelović and A. Presnall, “A

Framework for Delivering e-Government Support”, Acta Polytechnica

Hungarica, Vol. 11, No. 1, pp. 79-96, 2014

[5] O. Kolomiyets and M.-F. Moens, “A Survey on Question Answering

Technology from an Information Retrieval Perspective”, Information

Sciences, No. 181, pp. 5412–5434, 2011

[6] S. Nedeljković, V. Nikolić, M. Čabarkapa, J. Mišić, D. Randjelović, “An

Advanced Quick-Answering System Intended for the e-Government

Service of the Republic of Serbia”, Acta Polytechnica Hungarica, paper

accepted for publishing in 2019

[7] C. Gyorodi, R. Gyorodi, G. Pecherle and G. Mihai Cornea, “Full-Text

Search Engine Using MySQL”, Int. J. of Computers, Vol. V, pp. 735-743,

2010

[8] S.-C. Necula, “Implementing the Main Functionalities Required by

Semantic”, International Journal of Computers Communications &

Control, Vol. 7, No. 5, 2012

M. Jovanović et al. SEFRA - Web-based Framework Customizable for
 Serbian Language Search Applications

 – 78 –

[9] U. Shoaib, N. Ahmad, P. Prinetto and G. Tiotto, “Integrating

MultiWordNet with Italian Sign Language Lexical Resources”, Expert

Systems with Applications, Vol. 41, No. 5, pp. 2300-2308, 2014

[10] B. Furlan, V. Batanović and B. Nikolić, “Semantic Similarity of Short

Texts in Languages with a Deficient Natural Language Processing

Support”, Decision Support Systems, Vol. 55, No. 3, pp. 710-719, 2013

[11] D. W. Castro, E. Souza, D. Vitório, D. Santos and A. L. Oliveira,

“Smoothed n-gram Based Models for Tweet Language Identification: A

Case Study of the Brazilian and European Portuguese National Varieties”,

Applied Soft Computing, pp. 1568-4946, 2017

[12] D. Ivanović, D. Surla, M. Trajanović, D. Misić and Z. Konjović, “Towards

the Information System for Research Programmes of the Ministry of

Education, Science and Technological Development of the Republic of

Serbia”, Procedia Computer Science, Vol. 106, pp. 122-129, 2017

[13] A. Selemat and N. Akosu, “Word-Length Algorithm for Language

Identification of Under-Resourced Languages”, Journal of King Saud

University - Computer and Information Sciences, Vol. 28, No. 4, pp. 457-

469, 2016

[14] G. Kowalski and M. Maybury, Information Storage and Retrieval Systems,

Springer US, 2002

[15] H. Bast and B. Buchhold, “An Index for Efficient Semantic Full-Text

Search”, in International Conference on Information and Knowledge

Management, Proceedings, 2013

[16] Apache Solr, “Overview of Searching in Solr”, 2017 [Online] Available:

https://lucene.apache.org/solr/guide/6_6/

[17] M. White, Enterprise Search, 2
nd

 Edition ed., O'Reilly Media, Inc., 2015

[18] Google, Inc, “Angular Fundamentals – Overview”, 2017. [Online].

Available: https://angular.io/guide/architecture

[19] Twitter Bootstrap, “Bootstrap”, 2017 [Online] Available:

http://getbootstrap.com/

[20] Y. Fain and A. Moiseev, Angular 2 Development with Typescript, Manning

Publications, 2016

[21] “Microsoft Typescript project on GitHub”, 2017 [Online] Available:

https://github.com/Microsoft/TypeScript

[22] SourceMaking.com, “Design Patterns”, 2017 [Online] Available:

https://sourcemaking.com/design_patterns

[23] S. Salehi, Angular Services, Packt Publishing, 2017

