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Abstract: In addtion to security purposes, closed circuit video camera usually installed in a 

business establishment can provide extra customer information, e.g., a frequently visited 

area. Such valuable information allows marketing analysis to better understand customer 

behavior and can provide a more satifying service. Underlying customer behavior analysis 

is customer detection that usually serves as an early step. This article discusses a complete 

automatic customer behavior pipeline in detail with a focus on customer detection. 

Conventional customer detection approach relies on one source of decision based on 

multiple small image areas. However, a human visual system also exploits many other 

cues, e.g., context, prior knowledge, sense of place, and even other sensory input, to 

interpret what one sees. Accounting for multiple cues may enable a more accurate 

detection system, but this requires a reliable integration mechanism. This article proposes 

a framework for integration of multiple cues for customer detection. The detection 

framework is evaluated on 609 image frames captured from a retailer video data. The 

detected locations are compared against ground truth provided by our personnel. Miss rate 

to false positive per window is used as a performance index. Performance of the detection 

framework shows at least 42% improvement over other control treatments. Our results 

support our hypothesis and show the potential of the framework. 

Keywords: customer detection, human detection, video analytics, hot zone visualization, 

multiple-cue integration, global-local inference integration, ensemble framework 

1 Introduction 

The closed circuit video camera is becoming more common in many businesses 

and household establishments, mostly for security purposes. To gain an extra 

value out of a camera system, many studies investigate utilization of video data 

installed in business establishments, such as shopping malls and supermarkets, for 

customer behavior analysis. Customer behavior analysis via video analytics has 

automatic customer detection as its essential part. 
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Conventional customer detection relies solely on visual information contained 

within a limited area of the window. This approach simplifies a detection process 

and enables the use of a regular classifier, which takes input of a small and fixed 

size, in a detection problem involving images of larger and various sizes. 

However, this approach leads to limited inference capability, as discussed in 

Torralba [1] and Mottaghi et al. [2]. Contextual information and prior knowledge 

are natural cues. Along with focal-point visual information of an object itself, 

human visual system employs a collective sense of scene, other surrounding 

objects, prior knowledge of relation among different types of objects, dynamic 

nature of objects, and continuity of objects in the perceiving stream to interpret 

current visual perception. Accounting for auxiliary information can provide viable 

additional cues for a more accurate automatic customer detection, as well as 

benefiting object detection in general. Given various sources of information, a 

reliable integration mechanism is essential. Such a mechanism may also enable an 

ensemble of multiple models, which in turn provides a key to adjust a global 

inference system with a local sense to better fit a specific task. Our work proposes 

an integration framework that can accommodate various types of cues under 

customer detection settings. A general customer detection approach and hot zone 

customer analysis based on video information are also discussed. 

Section 2 provides a review of previous studies on customer analysis via video 

analytics. Section 3 discusses an approach for customer detection and hot zone 

analysis. Section 4 discusses a framework for integration of multiple cues. Section 

5 discusses our experiments and results and also provides discussion, conclusions, 

and potential directions. 

2 Literature Review 

Utilization of video data from closed circuit camera for customer behavior 

analysis is of great interest in business and academia [3][4][5]. Customer behavior 

analysis via video analytics employs and integrates techniques from various 

related fields, e.g., motion detection [6][7], pedestrian detection [8][9], object 

detection and recognition [10][11][12], object tracking [14][15], and activity 

recognition [16][17][18]. 

Popa et al. [3] studied and designed a system to detect, track, and analyse 

customers and their behavior in a large business establishment, e.g., a shopping 

mall, or a supermarket. They investigated a dedicated system designed specifically 

for customer behavior analysis, not a value-added security camera system. It 

employed various types of sensors, including high-angle cameras to locate 

customers, face-level cameras to read facial expression, microphones for verbal 

information, and dynamic Bayesian network for data fusion. To locate customers, 
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Popa et al. [3] used background subtraction to detect customers in the entry points 

and then tracked them with mean shift algorithm [15]. 

Background subtraction was a widely-used method to detect motion or a moving 

object. To detect moving objects, a background model was subtracted from an 

image under question. The background model itself is an image similar to the 

underlying image, but without the objects. Therefore, the difference between the 

two images revealed the moving objects. There were several methods to derive a 

background model. Popa et al. [3] did not provide the details of how they derived 

the background model. Popa et al. [4] extended [3] by adding higher level analysis 

of customer’s action and behavior. Both works [3][4] conformed to a general 

approach of customer behavior analysis via video analytics. 

Ko [19] summarized that customer behavior analysis via video analytics consisted 

of video acquisition, object and motion detection, object classification, object 

tracking, behavior and activity analysis, person identification, data fusion, and 

control, alarm, and visualization. Ko identified background subtraction, temporal 

differencing, and optical flow methods as the main approaches for motion 

detection. Ko credited simplicity as the main reason for popular use of background 

subtraction. Object classification or object category recognition was extensively 

studied [20]. Semantic segmentation [2] and image description [13] were closely 

related fields. Object classification referred to an approach to identify pre-defined 

categories of objects in an image. Along with sliding window technique, object 

classification could be used to locate positions of objects in an image. Once the 

object of interest had been located, it could be tracked more efficiently with an 

object tracking method, e.g., a mean shift algorithm [15]. To get good tracking 

performance, Yilmaz et al. [14] recommended that a good selection of features to 

represent an object of interest, online selection of discriminative features, and 

exploitation of prior knowledge and contextual information were among the key 

factors. 

In addition, pedestrian detection research also worked on many similar key 

challenging issues. Dollar et al. [21] followed a general approach for object 

detection. They proposed a scheme to perform less image scaling, while delivering 

a similar detection quality. They also emphasized that, rather than using pixel 

intensities directly, employing image features as an input for classification was a 

key factor for high quality detection. Dollar et al. [9] noted that histogram of 

oriented gradients [22] was a widely-used choice of image features for pedestrian 

detection. Dollar et al.[9] also noted that occlusion was still a major issue for 

automatic pedestrian detection. They speculated that motion features [23], 

inference of detection from consecutive frames, contextual information, and 

combination of various types of visual features could mitigate the issue. 

Comparing customer detection to pedestrian detection, while pedestrian detection 

often involved a moving camera, changing background, and variably lighting 

conditions, customer detection usually involved a stationary camera and a 
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relatively constant background. In addition, an area where customers entered or 

exited a store could commonly be identified. This prior information could be 

exploited. Regarding an issue of image distortion, pedestrian detection often 

involved a focal point viewing which delivered a lower image distortion than ones 

normally found in customer detection. Customer detection often involved a wide-

angle view, from a camera installed at the corner on the ceiling. Image distortion 

and odd angle-view posed a unique challenging issue, specific to customer 

detection. Simple multi-scaling alone might not be adequate to handle the issue. 

Another difference was that customer detection was usually a preliminary part of a 

pipeline that ultimately delivered customer analysis at the end. In addition to high 

level customer behavior analysis [3], Connell et al. [5] commented people 

counting and hot zone were among the most common end results. 

Our study discusses a pipeline of customer behavior analysis, from customer 

detection to hot zone map visualisation, as well as a close investigation on a 

framework for integrating multiple cues. Our study implements the pipeline based 

on common practice in video processing [19] and object detection [22]. 

 

Figure 1 

Customer analysis pipeline: (1) image frames are captured from video data, (2) each image frame is 

scaled to multiple sizes, (3) small cropped images, called “windows”, are sampled, (4) each window is 

classified to either +1 or −1, when a positive one indicates a window containing a customer and a 

negative one indicates no customer in a window, (5) multiple positive adjacent windows for the same 

customer are redundancies and most of them are removed, leaving only one detection for one 

customer, and (6) detection results of image frames in the video are summarized into a hot zone map. 
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3 Customer Analysis Pipeline 

One of the most common customer behavior video analytics is hot zone analysis 

[5]. Hot zone map shows frequently visited spots in the area of interest. Fig. 1 

shows a working pipeline, starting from video data and finishing as a heat map. 

Firstly, video data is turned into a series of image frames, so that the task can be 

simplified to multiple processing on each image frame (Frame Capture in Fig. 1). 

Then, customer detection is performed for each image frame (Collective process 

of Scaling, Window Sampling, Window Classification, and Redundancy Removal 

in Fig. 1). Each frame is scaled to multiple sizes, so that objects at different 

distances appearing in different sizes have fair chances to be detected (Scaling). 

Then, at each scale, windows—small fixed-size image patches— are sampled 

from the scaled image frame (Window Sampling). Each window is passed through 

a classifier to decide whether it contains visual cues indicating presence of a 

customer (Window Classification). Once a window is classified positive 

(indicating presence of a customer), a set of coordinates of the top-left and 

bottom-right corners of the window is  recorded as a detected location. In practice, 

it is likely that presence of a customer may trigger multiple positive windows 

around the location of one’s presence. Multiple positive windows indicating the 

same presence are redundant. Only one positive window is needed and the other 

redundant windows are discarded (Redundancy Removal). The result from the 

redundancy removal step is a collection of detected locations in an image frame. 

This is a detection result. Detection results from multiple image frames indicate 

frequencies of locations inside a retailer store that customers have visited. The 

visiting frequencies are mapped to colors to provide a hot zone map, marketing 

personnel can use for behavior, marketing, and store layout analyses. 

Window Sampling. Our window sampling step is implemented by sliding 

window scheme [24]. A sliding window scheme starts by taking a sample from a 

top-left corner of an image frame. Then, it requires taking a sample a step size 

right from the previous one until reaching the right end, and then back to take the 

next sample from a position on the left end but a step size down from the previous 

one. It repeats the procedure until an entire image frame is exhausted. A sequence 

of sampled windows appear like a series of cropped images seen from a fixed size 

viewing area that slides through the image from top-left to bottom-right row by 

row, hence the scheme is named sliding window. 

Denote a scaled image frame (in form of a matrix of pixel intensities) F  ICR and 

a window Wij  IAB, where pixel intensity I = {0, 1, 2, ..., 255}, (C,R) and (A,B) 

are frame and window sizes, respectively. Given step size of (a,b), sliding window 

is a mapping function, S: F  {Wij}, for i = 0, ..., (C-A)/a and j = 0, ..., (R-

B)/b. Each window Wij = [wp,q
(i,j)], p = 1, ..., A and q = 1, ..., B, is a submatrix of 

F = [fm,n], m = 1, ..., C and n = 1, ..., R, where wp,q
(i,j) = fai+p,bj+q. 
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Although sliding window is simple to implement and it guarantees complete frame 

coverage, it requires considerable computational cost. In order to speed up the 

system, a detection proposal method can be used instead. Detection proposal 

method employs the idea of cascading. A weak but fast classifier is applied to 

initially decide if the window is a good candidate. A failed window is discarded. 

A passed window gets to the next round with a stronger but slower classifier. The 

mechanism is that a deserved candidate passes through a series of classifiers to 

reach a positive label, while other candidates are discarded along the way. 

Therefore, the highest quality classifier, which usually is very slow, only performs 

on a few worthy candidate windows. Hosang et al. [10] provided formal 

investigation on detection proposal methods. 

Window Classification. Given a window Wij, a classifier determines if the 

window contains visual features of a customer. Window classification is to map 

Wij to one of the decisive labels, in our case, positive label (+1) indicating a 

detected customer or negative label (−1) indicating no detection. Regarding 

common practice, classification in object or pedestrian detection usually takes 

image features, rather than pixel intensities, as an input. The exception may be 

later development of deep learning [20]. Features represent an original input in a 

way that allows a task to be achieved easier than operating directly on the original 

input. Milestones of object detection development tie strongly with development 

of visual features: Haar features [24], Histogram of Oriented Gradient (HOG) 

[22], and a Bag of Visual Words [25]. Some later features are built on previously 

well-developed ones. A deformable model [26] employs HOGs as its building 

blocks. An ensemble approach of Malisiewicz et al. [27] predicts a class based on 

combined predictions from multiple linear Support Vector Machines (SVMs), 

each trained on only one example. Later development takes a deep learning 

approach [11][12][13]. Although, most deep learning object detections do not 

require image features and can directly take image intensities as input. Visual 

features are constructed internally during the learning process of deep networks. 

Despite great potential, a deep learning approach requires considerable resources, 

compared to an explicit feature-based approach. 

Following common practice [22], our study implements window classification in 

two successive stages, (1) feature mapping and (2) classification. That is, (1) 

window Wij is mapped to visual feature vector Xij and then (2) Xij is mapped to 

decisive label yij ∈ {−1,+1}. Histogram of Oriented Gradient (HOG) [22] is used 

for our feature mapping and Support Vector Machine (SVM) [28] is used for our 

feature classification. 

It should be noted that the approach presented here is only to detect presence and a 

location of a human in an image. It does not distinguish a high-level concept that 

whether the detected human is actually a customer or a store staff. Distinction 

between a customer and a staff is not only crucial to accurate customer behavior 

analysis, it may also provide an insight bridging a low-level concept, e.g., an 

activity, to a high-level concept, e.g., a role. To distinguish between a customer 
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and a staff, a pattern of a moving trajectory of the detected human can provide an 

essential cue. However, with its depth and implication, research on this high-level 

notion deserves a dedicated study on its own right and it is beyond our current 

scope of this investigation. 

Histogram of Oriented Gradient (HOG). HOG is a mapping function, H: W → 

X, when W ∈ IA×B is a matrix of pixel intensities and X ∈ RD is a HOG-feature 

vector. Generally, a size of X is much smaller than that of W, i.e., D << A×B. 

There are many types of features for visual input. Good features emphasize 

relevant information to the intended task and mumble noise or irrelevant 

information. HOG [22] is among the most widely-used feature families for object 

and pedestrian detection. The assumption underlying HOG is that distribution of 

image gradients provides a good cue to an object’s shape and presumably 

identification of an object. Votes of image gradients are collected within a small 

area, called a “cell.” Each cell has K votes. Each vote is for each of K pre-defined 

orientations. A vote can be defined as a sum of magnitudes of all gradients 

locating inside the cell and having the corresponding orientation. Then, to mitigate 

shadow and variant lighting, cell votes are normalized locally. That is, cell votes 

are spatially grouped into a block. Therefore, a block of Nc cells has Nc·K cell 

votes. All cell votes are normalized within a block. Blocks are defined in an 

overlapping manner to allow each cell to be normalized under multiple 

surroundings. Finally, all normalized cell votes are collected to make up a 

complete set of HOG features. Our investigation follows Dalal and Triggs [22], 

using 64x28-pixel detection window and HOG with a cell size of 8x8 pixels, 9 

orientations (spacing evenly in 0o–180o), a block size of 2x2 cells, and block 

spacing of 8 pixels in either direction. It should be noted that combination of HOG 

and other types of features, e.g., color similarity score (CSS) [23], may lead to 

better discriminative performance. 

Support Vector Machine (SVM). A classifier determines a class label y for a 

given feature vector X. Our study employs Support Vector Machine (SVM) [28], 

one of the most widely-used classifiers. SVM is a discriminant function, which 

directly maps X ∈ RD to y ∈ {−1,+1} and does not provide related probability 

estimation. As most supervised machine learning methods, SVM has two 

operating modes, training and prediction modes. In a training mode, SVM uses 

training data to lay on a projection space in order to find a decision hyperplane 

that best separates the training data based on corresponding labels. The decision 

hyperplane is then used in a prediction mode to decide a class label for a given 

input. 

Specifically, the training stage is formulated as a constrained optimization 

problem, minw,b, ½ wTw + Ci i, s.t. yi(wT(Xi)+b)  1  i and i  0, for all i 

= 1, ..., N. Vector w and scalar b are parameters characterizing a decision 

hyperplane. Variables ξi’s are slack variables to allow SVM to compromise 

outlying datapoints. User-specified parameter C is to control a degree of relaxation 

of ξi’s. A higher value of C penalizes training misclassification heavier, which 
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results in forcing SVM to reduce its misclassified training examples. A proper 

value of C leads to a good performing SVM. Too large value of C may lead to 

overfitting to training data and loss of prediction generality. Vector Xi and scalar 

yi represent respectively features and correct class label of the ith datapoint in a 

training dataset of size N. Function (·) is a projection function, intended to map 

input features onto a multi-dimensional space that eases the data separation. 

However, instead of directly solving the minimization problem in its original 

form, it is more efficient to solve its dual form, mina i ai – ½ i j ai aj yi yj k(Xi 

, Xj), s.t. i yi ai = 0 and 0  ai  C, for all i =1, ..., N. Variables ai’s are dual 

variables and kernel function k(u,v) = (u)T(v).  Our work uses a radial basis 

kernel, k(u,v) = exp(||uv||2), where  is a user-specified parameter. Once SVM 

is trained (all ai’s are determined), SVM can be used in a prediction mode. Given 

input vector X, its class label y is predicted by y = sign(s), when  

 
i

ii bXXkyas )',(' . (1) 

Variable s, called “a decision score,” indicates a degree of class likeliness. A 

decision score is, related but, nor a probability nor a distance to a decision 

boundary. Vectors Xi’s and scalars yi’s are of training data points (or selected 

data points, called “support vectors” [29]). Parameter b = |M|-1 iM { yi   jS aj 

yj k(Xi , Xj)} when |M| is a size of set M, M = {i: 0  ai  C} and S = {i:  ai > 0}, 

and sign(u) = 1 when u > 0, otherwise sign(u) = 1. 

Fundamentally, SVM is a binary classifier. However, multiclass capability can be 

achieved by an extension, such as one-against-one approach [30] that builds a 

multiclass classifier from multiple binary classifiers. Our current problem settings 

require only a binary classifier. As a discriminant function, SVM in its original 

development does not provide estimated probability, however its popularity has 

attracted extensive studies to extend SVM capability enabling SVM to provide 

estimate probability [29]. 

Redundancy Removal. Once positive windows have been identified in Window 

Classification, all locations of positive windows are recorded as detected bounding 

boxes. Adjacent windows may be triggered positive for the same customer and 

that causes redundant detected bounding boxes. Out of all bounding boxes 

corresponding to the same customer, only one bounding box is reported and others 

are suppressed. 

Non-maximum suppression [27] is a mechanism to remove redundant bounding 

boxes. Given a threshold, any pair of bounding boxes with an overlapping area 

larger than the threshold is considered redundant and one of them should be 

suppressed. A simple way to perform non-maximum suppression is to arbitrarily 

pick one bounding box from a pair and suppress the other. Arbitrary selection may 

be convenient, but this practice may lead to sub-quality results. Study of edge 

detection [31] has a similar issue. A non-local maxima suppression approach is 
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used to remove edge redundancy. Each edge candidate has a fitting value, 

indicating how likely the candidate may be an edge. A fitting value of the 

candidate is compared to values of all its neighbors. The candidate is suppressed if 

there is at least one value of its neighbors larger than the one of the candidate. To 

employ such redundancy removal approach, it is required an extra information in 

addition to window location. Such extra information is a value quantifying a 

degree of detection confidence, e.g., posterior probability P(y|X) or, in case of 

SVM, a decision score [29] (Eq. 1). Our redundancy removal is performed by (1) 

sorting all detected bounding boxes by their fitting values in descending order, (2) 

choosing the top bounding box on the sorted list and putting it in another list, 

called a reporting list, (3) then choosing the next bounding box on the sorted list to 

be a candidate bounding box, (4) comparing the candidate to every bounding box 

on the reporting list, if the candidate is redundant to any box on the reporting list, 

it is suppressed. Otherwise, it is put into the reporting list. Then, (5) repeat the 

process (steps 3 and 4) until the sorted list is exhausted. 

Redundancy is checked by assuming that if an area of a candidate bounding box 

overlaps an area of a higher fitting-value bounding box (which is a bounding box 

on the reporting list) more than a specific threshold, then it is redundant. In 

practice, we found that using an overlapping ratio is more favourable. It is more 

intuitive and also insensitive to window size. A ratio of overlapping is defined as a 

proportion of an overlapping area between two bounding boxes to a larger area of 

the two. That is overlapping ratio, R = (Ac  Ar)/max{Ac, Ar} , where Ac and Ar are 

areas of the candidate and reporting bounding boxes, respectively. Rationale for 

using a larger area to be a denominator is drawn from a case of comparing 

bounding boxes of different sizes and, especially, when the sizes are too different. 

Firstly, this scheme gives a consistent result whether a candidate is a small 

bounding box compared to a large reporting bounding box or vice versa. 

Secondly, when the two sizes are too different, they are likely to indicate two 

different customers locating at different depth of view. Therefore, using a larger 

denominator allows a candidate a better chance to be retained. 

Hot Zone Visualization. Hot zone map is a color-based presentation of spatial 

visiting frequencies. Visiting frequencies are inferred from detected locations on 

image frames corresponding to time duration of interest. Our study constructs a 

hot zone map based on Kernel Density Estimation (KDE) [32]. Given top-left and 

bottom-right coordinates (xt,yt)’s and (xb,yb)’s of the detected locations, 

representative points (c (x),c (y))’s are computed as centroid coordinates: c(x) = (xt + 

xb)/2 and c(y) = (yt + yb)/2. Given every detected centroid ci = (ci
(x),ci

(y)) for i = 1, 

..., Nd and Nd is a number of detected coordinates, KDE estimates a probability 

density at location v by (1/Nd)  (22)-1/2 z(v), where 


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variable  is a user-specified parameter to control smoothness of the function. 

Producing a hot zone map does not require a proper probability treatment, only 

z(v), denoted “heat”, is sufficient. To produce a hot zone map, heat values at all 

locations on the map are computed by Eq.  2, then they are mapped to appropriate 

colors based on a desired color scheme. In practice, it is more convenient for 

marketing personnel to be able to adjust a color scheme so that some ranges of 

visiting frequencies become more striking at desired degrees. Instead of directly 

changing a color scheme, this can be achieved easily by introducing another 

parameter to globally manipulate heat values. Then, the manipulated heat values 

can be mapped on a same color scheme, but the resulting hot zone map appears as 

if it is produced on a different mapping color scale. A manipulated heat value is 

called “heat intensity.” One simple manipulation is to power a normalized heat 

value to a fraction of the manipulation parameter. That is, given heat value z and 

parameter u, heat intensity is calculated by, 

u

zz

zz
z

1

minmax

min' 











 . (3) 

Fig. 2 shows examples of hot zone maps produced from the same heat values, but 

different values of parameter u. It should be noted that using u > 1 leads to a heat 

intensification effect, which allows lower visiting frequencies to be more 

noticeable. The left most picture shows a hot zone map without intensification (u 

= 1). Without intensification, only the most frequently visited area, which is 

around cashier counter, is noticeable. This is trivial and provides virtually no 

marketing insight. With different degrees of intensification, the second most and 

other less frequently visited areas can be identified and examined, as shown in 

other pictures (u = 2, 3, 5, 8, 10). 

This is a figure example: 

 

Figure 2 
Hot zone maps at various intensities 

4 Integration of Multiple Cues 

A classical object detection approach relies only on evaluating visual features 

containing in a window. Window is a very limited focal image area, compared to 
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an entire image frame. Complementarily, contextual information can provide 

important cues for visual perception, especially when image quality is poor [2]. 

Contextual information can be in many forms. Torralba [1] used a visual features 

of an entire scene as contextual information. 

The notion of contextual information is based on a single frame detection. This 

study uses a term “additional cue” for a broader notion that also accommodates 

any useful addition for either a single frame or a video setting. For example, for 

video analytics, we may be able to use a state-based cue, such as frame continuity 

that a location of a customer in a subsequent frame is likely to appear near the one 

of its previous frame. The notion also can accommodate prior knowledge, such as 

an awareness of an entrance or an exit, where a customer can appear or disappear 

regarding frame continuity. This example of prior knowledge can provide 

relaxation on the state-based cue. Although our notion of additional cues initially 

developed based on additional information, it can be extended to integrate results 

from many decisive models. For example, a main cue may be drawn from a 

generic classifier, while an additional cue could be from a task-specific classifier. 

This allows a local task-specific adjustment to a global generic inference system, 

which may be available off-the-shelf. 

A simple integration scheme is derived based on a probabilistic approach. It 

follows an approach of Torralba [1]’s contextual priming with two major 

distinctions. Firstly, it is generality of a notion of an additional cue. Secondly, we 

relax probabilistic relation to explicitly distinguish two main components, a 

generic object detection model and a local characteristic model. This explicit 

discernment allows utilization of a well-trained generic object detection model 

with an enhancement tailored for a specific task. This approach aligns with an 

enticing concept of transfer and hierarchical learning. A classical object detection 

counts on a classifier to evaluate a set of visual features inside a window and 

determine if the window contains an object. A probabilistic approach is either to 

directly determine the likelihood that an object of interest is present or determine 

it through a generative model P(O|M) = P(M|O) P(O)/P(M), where P(O|M) is a 

conditional probability density function (PDF) of presence of the object O given a 

set of main features M. Since P(M) does not have any effect on an object inference 

and it is difficult to determine, it is omitted and the relation is left to P(O|M)  

P(M|O)·P(O). 

Given that additional cue A is available, the presence of the object can be 

determined with the likelihood P(O|M,A). Applying Bayes’s rule, we get 

P(O|M,A) = P(O, M, A)/P(M,A) = P(M,A|O) P(O)/P(M,A). Denominator P(M,A) 

does not have any effect on the final decision, the likelihood can be written as, 

P(O|M,A)  P(M,A|O)·P(O). Given training data, P(M,A|O) can be estimated. 

Choices of estimating models are plentiful, e.g., Gaussian Mixture Model (GMM) 

and Expectation-Maximization method (EM), Self Organizing Map (SOM) and 

Artificial Neural Network (ANN), and, for a small set of data, Kernel Density 

Estimation (KDE). 
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With Bayes’ product rule, we also can write P(O|M,A)  P(A|M,O)·P(M|O)· P(O). 

This expression distinguishes a generic model P(M|O) and a local characteristics 

P(A|M,O). A generic model is a function of only primary information M. This 

modularization allows a use of an available good generic model with its 

adjustment to local characteristics. This may be interpreted as a local adjustment 

to exploit specific aspects in order to fine tune the combination to better fit a 

particular task. However, PDF P(A|M,O) is difficult to estimate. One possible 

remedy is to relax P(A|M,O) with an assumption that primary and additional cues 

are independent. That is, P(A|M,O) ≈ P(A|O), which leads to P(O|M,A)  
P(A|O)·P(M|O)·P(O). Both P(A|O) and P(M|O) can be estimated efficiently based 

on training data. Both P(A|O) and P(M|O) require generative models. An 

equivalent form for a main discriminative model is P(O|M,A)  P(A|O)·P(O|M). 

Term P(M) is also omitted here for the reasons discussed earlier. Similarly, when 

additional discriminative model is easier to acquired, the expression can be 

manipulated to P(O|M,A)  P(O|A)·P(O|M)/P(O). The term P(O) can be simply 

estimated by No/N, where No is a number of windows containing the object and N 

is a number of all windows in a training set. Given such relation, define a decision 

score 

)()ˆ( XfXfs mad  , (4) 

where fa() and fm() are score functions related to P(O = +1|A = X̂ ) and P(O = 

+1|M = X), respectively. Vectors X and X̂  represent main and additional cues, 

respectively. The integrated model predicts a positive window class when sd > τ, 

otherwise it predicts a negative class. Parameterτ is a user specified threshold. 

5 Experiments 

Our system was built as the pipeline discussed in §3. The integration was meant 

for detection decision (Window Classification stage, Fig. 1). Our experiments 

were designed to demonstrate potential of the integration framework. Four 

treatments were examined. Three of them were represented by detectors of the 

same type, but trained on different datasets. The three datasets are a generic 

dataset, a task-specific dataset, and a combining dataset. These generic and task-

specific notions were to simultaneously examined as another goal. That was to 

figure out how a local task specific cue could be used to enhance a generically 

well-tuned detector, so that the resulting model could perform better on a specific 

task without having to rebuild everything from scratch. A generic dataset, denoted 

“Gdataset,” acquired data from Inria person dataset [22]. A task-specific dataset, 

denoted “Tdataset,” acquired data from a retailer video dataset (details discussed 

later). The third set, denoted “GT,” was a combination of both G and T datasets. 

The treatments or models trained on G, T, and GT datasets were referred to as G, 
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T, and GT, respectively. The last treatment, denoted “G+AT”, represented a 

detector built on the integration framework with G model as its main cue and T 

model as its additional cue. Our experiment used 1/{1+exp(−s)} for score 

functions, fa(·) and fm(·) in Eq. 4, where s was s/smax when s was SVM decision 

score (Eq. 1) and smax was the maximum decision score. 

G dataset was comprised of 2,416 positive, 4,872 negative, and 1,000 hard 

negative examples1. T dataset had 80 positive, 315 negative, 141 hard positive, 

and 582 hard negative examples. Video data recording activities in a retailer store, 

donated by our funder, was used for both training (as T dataset) and evaluation. A 

total of 20 video clips, each lasted about 30 sec. to 3 min., were separated into 15 

and 5 clips for training and evaluating sets, respectively. Image frames were 

captured from video clips at a rate 1:30, which made it 1 frame/sec. All frames 

were 704x576-pixel RBG-color images. A region of interest (ROI) is defined to be 

an area of 250x150-pixel around a store entry. Each ROI was processed in 3 

scales, 0.86x, 1x (original scale), and 1.2x. Windows were sampled by sliding 

window scheme at a window size of 64x128 pixels and step sizes of 4 in both x- 

and y-directions. Each window was passed through window classification process, 

which was central to our investigation, before gone through redundancy removal 

at an overlapping ratio over a threshold of 0.5. 

All models, G, T, and GT, were HOG-based radial-basis SVM classifiers, but 

trained with three different datasets, as mentioned earlier. HOG features were 

computed with 9 orientations, cells of 8x8 pixels, and blocks of 2x2 cells. The 

SVM model was set with parameters C=10.0 and radial basis γ = 0.1. Detection 

performances, miss rate (MR) and false positive per window (FPW), of all 

treatments were evaluated against ground truth of the evaluation set of the retailer 

video data. The evaluation set contained 609 image frames. 

It was worth emphasizing that treatment G was our implementation intended to 

replicate a classic Dalal-Triggs human detection [22]. Treatment G used Dalal-

Triggs method and was trained with the same Inria person dataset. There were 

only two major differences. Firstly, SVM was trained on a smaller number of 

examples in order to mitigate a memory issue. Secondly, our implementation of 

HOG did not have a downweighing mechanism for pixels near the edges of the 

block, which Dalal and Triggs reported to contribute to only about 1% 

improvement. However, it should be emphasized again that our study was not 

proposing a competing method against a classic Dalal-Triggs human detection 

                                                           
1 Hard negative examples are negative examples that were incorrectly classified by a simple 

classifier. We identified such examples in our preliminary study by applying a 

classifier trained with regular positive and negative examples on a set of negative 

examples. Then, negative examples that were incorrectly classified were hand-picked 

to be the hard-negative examples. Due to our memory limitation, we had to hand-

picked negative examples that look distinct, so that they would be beneficial in a 

training process, while did not exhaust our computer memory. 
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[22]. Our framework was proposed as an approach to extend any object detection 

method, not limited to only Dalal-Triggs method [22]. Classical Dalal-Triggs 

schemes, mainly employing HOG features and SVM, were extensively used in all 

of our four treatments. They were to represent a generic detector, a task-specific 

detector, a conventional combined detector, and a combined detector based on our 

proposed framework. 

 

Figure 3 

Detection performances in MR-FPW plots: (a) all treatments and (b) treatments T and G+AT in a 

closer view. 

Fig. 3a showed MR-FPW plots of 4 treatments. Treatment G+AT apparently 

outperformed treatments G and GT, but comparison between treatment G+AT and 

T was better seen in Fig. 3b, where treatment G+AT was shown to perform 

slightly better than treatment T. At FPW of about 0.0001, treatments G, T, GT, 

and G+AT delivered MRs at 0.507, 0.184, 0.263, and 0.106, respectively. That is, 

the integration framework showed 42% improvement over treatment T, the best 

performing treatment without the framework. 

Discussion and Conclusions 

The result shows promising potential of the framework. An integration of a task 

specific model to a generic model clearly improves over a generic model. This 

improvement is emphasized, since the integration also outperforms the model with 

a combining datasets. Therefore, this approach shows a benefit over simply 

combining datasets. Excluding the integration, model T outperforms the other two 

models. For model G, the explanation is obvious, but for model GT, which also 

has T dataset in its training, the explanation lies in the proportion of the training 

data. Generally, generic data is easier to be acquired than task-specific data is. 

That reflects in sizes of training data. Here, sizes of G dataset to T dataset is 7.4:1. 

This large difference may weigh down inference from T dataset excessively. 

Building separate models and integrating them later with the integration 

framework allow some distinct characteristic inference of minority to prevail, 

while still retain principal values of the global majority. Those retaining global 

gumptions are those that are indispensable, which in turn deliver as an 

improvement seen over other models, including a task specific model. Our 
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findings are only preliminary and it requires a more thoroughly investigation to 

realize implication of this framework, as a key to tweak a global inference system 

with a local sense, as an ensemble of various models, as a fusion of different 

sources of information, or as a mélange of models and cues. Regarding worth 

investigating cues, specific characteristics of customers, e.g., constantly moving 

nature and common trajectory, frame continuity, and possible locations on a scene 

seem to be able to provide promising cues. Customer trajectory and locations may 

also provide a key to distinguish a high-level deduction, such as recognition of the 

difference between staff and customers. Frequently visited locations, 

conventionally an end result, itself can be fed back in the pipeline and used to 

deduce likeliness of presence of customers to improve detection quality, which in 

turn results in more accurate frequently visited locations. Customer trajectory is 

interesting as a propitious cue and as insightful visualization for understanding 

customer behavior. For customer behavior analysis via video analytics, issues of 

distortion and an application of object tracking appear worth prioritizing. 

To summarize, this article provides a detailed discussion on an entire procedure 

for customer analysis via video analytics, as well as demonstrates potential of the 

integration framework for customer detection. 
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Appendix: Multivariate Analysis 

Means and variances of all datasets are shown in Figure A.1. In Figure A.1 (a), a 

mean of positive examples resembles a rough outline of a standing human. A 

mean of negative examples from G and T datasets looks like a simple gray patch. 

This shows a well balance of variety of negative examples that are averaged to 

medium values throughout every pixel. Although a mean of hard positive 

examples from T dataset still resembles a rough outline of a human, it is less 

noticeable than those of regular positive examples. Hard positive examples from 

G datasets are excluded from our experiments or analysis for an economical 

reason. A mean of hard negative examples from T dataset vaguely resembles an 

area in the store where the classifier is often confused. A variance of hard negative 

examples from G datasets reveals a barely noticeable trace similar to an outline of 

human’s head and shoulder, which may be a reason that makes those examples 

difficult to classify. There is no sign of this trace in a variance of regular negative 

examples. A variance of hard negative examples from T datasets also reveals a 

lighter spot in the middle of the area. This high variation coincidentally locates 

around the middle of the area where critical classification is supposedly to take 

place. Therefore, it contributes to confusion and consequently makes those hard 

negative examples difficult to classify. 

While human perceives each image patch effortlessly, a classifier takes each 

64×128 pixel color image as a vector of 24576 values. Figure A.1 (b) shows 

means of all datasets as series of pixel-intensity values. Processing directly on this 

highly dimensional information requires a considerable amount of computing 

resources. A general approach is to convert the high-dimension data to more 

manageable lower dimension form. Our study employs Histogram of Oriented 

Gradient (HOG) [22] to map from 24576-dimension data to 3780-dimension HOG 

features. Figure A.1 (c) shows means of HOG features of all datasets. It should be 

noted that a mean of regular positive examples looks distinguishable from a mean 

of regular negative examples regardless of whether it is G or T dataset. However, 

patterns of hard examples are less distinguishable: a mean of hard negative 

examples from G dataset looks similar to the one of positive examples. 

Examination of correlation, clustering, and visualisation of data with high 

dimensionality is less straightforward, but it can be mitigated using dimension 

reduction projection, e.g., t-SNE [33]. Figure A.2 shows scatter plots based on t-

SNE projection from high dimensional datapoints onto a two-dimension space. 

Since a mechanism of t-SNE is to project high dimensional datapoints onto a 

lower dimensional space such that a projected relative distance between similar 

datapoints is preserved, while a projected relative distance between dissimilar 

datapoints is allowed to have a higher degree of relaxation. Specifically, given 

datapoints in high dimensional space {x1,x2,···,xN} and xi ∈ RD, t-SNE is to find 

corresponding datapoints in low dimensional space {y1,y2,···,yN}, yi ∈ Rd, and d << 

D. That is, {y1
*,y2

*,···,yN
*}=argminy1,y2,···,yN i ji pij  log(pij/qij). A degree of relative 

similarity between high-dimension datapoints i and j is defined as pij = (pj|i + 
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pi|j)/(2N), where pb|a = (exp{-||xa-xb||2/2i
2})/(ca exp{-||xa-xc||2/2i

2}) and i’s are 

user specific parameters, called “perplexity.” A degree of relative similarity 

between low-dimension datapoints i and j is defined as qij = (1+||yi-yj||2)-1/ k lk 

(1+||yk-yl||2)-1. Problem formulation of t-SNE directly enforces that projections of 

similar datapoints must be projected onto close locations. It does not enforce the 

projections of dissimilar datapoints in the same degree. Distance between two 

dissimilar datapoints is indirectly enforced through mechanism of relativity. That 

is iji qij = 1, therefore when a projected distance between two dissimilar 

datapoints is too small, the corresponding projected relative similarity qij of those 

two dissimilar datapoints will be too large in the expense of that other projected 

relative similarities including the ones corresponding to similar datapoints will be 

too small. Consequently, that reflects to the objective function through too large 

values of terms corresponding to similar datapoints and the process of 

minimization will regulate to discourage projecting two dissimilar datapoints onto 

nearby locations. 

Regarding t-SNE projections of original and HOG features (Figure A.2), HOG 

features do not seem to help much in term of data separation. The scale of Figure 

A.2 (a) may make it appear less separable than Figure A.2 (b), however, after a 

close investigation the t-SNE projection of original datapoints do not appear to be 

less separable than the t-SNE projection of HOG-mapped datapoints. At this point, 

an obvious advantage of using HOG features seems to be putting a number of 

dimensions down to a manageable size. 
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Figure A.1 

Multivariate analysis of the datasets: (a) mean and variance of pixel intensities in each training dataset, 

presented as color images (each has 64x128x3 pixel intensities); (b) mean of pixel intensities in each 

training dataset, presented as a series of pixel intensities (each series has 24576 values); and (c) mean 

of HOG features in each training dataset. HOG scheme reduces dimensionality from 24576 of original 

pixel intensities to 3780 of HOG features. Acronyms “G”, “G Hard”, “T”, and “T Hard” indicate 

association to G dataset, hard examples from G dataset, T dataset, and hard examples from T dataset, 

respectively. Words “Positive” and “Negative” indicate association to positive examples and negative 

examples, respectively. 
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Figure A.2 

Scatter plots of t-SNE projections of (a) original datapoints and (b) HOG-mapped datapoints. 

Perplexity σi = 10 for all i’s. In order to mitigate memory issue, 50 representative points of each 

category are used instead of real datapoints. Representative points are centroids of clusters based on K-

Means clustering. Symbols ‘G+’, ‘T+’, ‘TH+’, ‘G-’, ‘GH-’, ‘T-’, and ‘TH-’ indicate representative 

points for positive examples of G dataset, positive examples of T dataset, hard positive examples of T 

dataset, negative examples of G dataset, hard negative examples of G dataset, negative examples of T 

dataset, and hard negative examples of T dataset, respectively. (The image is best viewed in colors.) 


