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Abstract: The paper proposes a new canonical form for RT-level descriptions, which can 
be systematically generated from both the specification and the structural description. The 
verification can be executed with the comparison of the two generated canonical form 
descriptions. 

1 Introduction 

When it comes to the designing of digital systems, a description in accordance 
with a well-chosen canonical form provides grounds for the efficient methods of 
the formal verification and the symbolic simulation, alike. The logic (gate-level) 
synthesis, along with the verification and the symbolic simulation are all based on 
the canonical forms, which borrows its tools from the classic switching algebra. In 
the aspect of their application on computer design systems, particularly successful 
was Roth’s cube algebra, which is based on a new wording of Boole’s canonical 
forms [1]. 

The descriptions of the register transfer level have up to the present lacked the 
universality and heuristic power, which characterises the switching algebra. Thus, 
the canonical forms employed on the register level could only be applied to a 
restricted scale of tasks. To this category belongs, for instance, the Taylor-
polynomial method, which is capable of verifying the register-level structures of 
arithmetic expressions, but has its limits within this very class [2], [3]. 

The implementation of the register transfer level canonical description suggested 
by the author of the present paper is conditional on the same requirements as those 
forming the principle of the most part of designing methods. The data-path 
structure is controlled by a synchronous finite state machine (FSM), as a controller 
built around a core. The structure must clearly reflect that in a specific state of the 
FSM, as an interval: 
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1 Which sub-paths of the data-path are switched active by the 
multiplexers, 

and 

2 Into which registers and on what conditions occurs entering of data. 

On condition that the structure's description meets the requirements above, the 
canonical form, as suggested by this paper, can be prepared. 

At the same time, an identical canonical description is gained from the algorithm-
level specification, which is a behavioural description, formulated in one of the 
high level programming languages. If the canonical description, gained from the 
structure, and the behavioural description are provably homomorphous, – even at 
the expense of certain permissible transformations – the verification process can 
be considered successful. 

2 Decomposition of Sequential Behavioral 
Descriptions 

We decompose the program, constituted by sequential statements, into a 
hierarchical structure of modules, between the statements modifying the control, 
as bordering points. In the sequential subset of VHDL-processes the control 
branch statements are the following: 

begin . . . . . . . . . . . end 

wait   until . . . .  

for   . .  loop. . . . .end loop 

while . . .loop . . . end loop 

if . . . then . . .else . . . end if 

The example below is the abstract style VHDL behavioural description of a 
hardware unit in charge of carrying out the algorithm of square root calculation. 
Figure 1 shows the way we decompose the description into modules, and the way 
these modules and their attachments constitute the state-graph of an abstract state 
machine. It is important to formulate the variable-assignment statements of the 
description through functions that are implemented by the components (function-
units) of the hardware structure. 
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library work; use 
work.sqrtpack.all; 

entity SQRT_UNIT is 

  port ( START : in bit; 

         READY : inout bit := '1'; 

         RESET : in bit; 

         pe : in real := 0.0; 

         px : in real:= 0.0; 

         py : inout real := 0.0; 

         ph1, ph2 : in bit); 

end SQRT_UNIT; 

 

architecture BEH of SQRT_UNIT 
is 

 begin 

 process 

   variable e, x, y, cy, ny, v : real := 
0.0; 

   variable d : real := 1.0; 

   variable f : bit := '1'; 

   variable g : bit; 

  begin 

   wait until START = '1';   

   READY <= '0'; 

   wait for 1 ns; 

   e := pe; x := px; 

   cy := Fi(x); 

   wait for 1 ns; 

    

while f = '1' loop 

      v := MD(div, x, cy); 

      v := AS(add, cy, v); 

      ny := MD(mult, 0.5, v) ; 

      d := AS(sub,ny,cy); 

      g := Cm(d, 0.0); 

      if g = '0' then  

         d := AS(sub, 0.0, d); 

      end if; 

      cy := ny; 

      f := Cm(d, e); 

    end loop; 

   wait for 1 ns; 

    py <= cy; 

    READY <= '1'; 

end process; 

end BEH; 
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Figure 1 

The decomposition of the square root algorithm into sequential modules 

3 Generating Value-target Event-driven Data-flow 
Blocks from Behavioural Description 

Consider the variable-assignment statements of a sequential module and the 
values ordered to the variables v1, v2, . . . vj . . . .vn by the sequence. Pick out the 
value of vj next in line, resulting from the next-in-line variable assignment. 
Formulate this in the following substitution expression: 

vj(p+1)  = E[ . . .vk / vk(p) . . . ] 

A value next in line of variable vj can be calculated through the substitution of the 
present values of the variables of the right hand side into the variable-assignment 
statement. If we number the values of the variables of the sequence, from v1(0), 
v2(0), . . . vj(0), . . .vn(0) up to those terminal values of maximum indexes v1(t), v2(t), 
. . . vj(t),  . . .vn(t), ordering one target to each and every value of each and every 
variable, and on the other hand, we order to each variable-assignment an event-
driven concurrent statement, 

wj(p+1)  <= E [ . . .vk /wk(p) . . . ] 
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then from these statements we attain an event-driven dataflow-block, which can 
be ordered to the sub-sequence. This block is termed the value-target block (VTB) 
of the sequential module. 

The VTB at rest is 

wj (t)  = E [ . . .vk / wk(t) . . . ] 

It is conceivable that if the initial value of the variable vj is equal to the initial 
value of the target wj, ordered to it, then the value of vj, with which it leaves the 
sequence module, is also equal to the terminal value of the target of the maximal 
index. One sequence is therefore value-equivalent to the value-tracking block 
gained from it. See a simple example: 

SEQ1: begin 

             for i in 1 to 4 loop 

               a := a + 1; 

           end loop; 

end; 

 

 

VTB1 : block 

     begin 

        a1 <= a0 + 1; 

        a2 <= a1 + 1; 

        a3 <= a2 + 1; 

        a4 <= a3 + 1; 

end block; 

A more complex one: 

SEQ2 : begin 

                    if e < 0 then a := b * c; 

                                         d := a + b; 

                    elsif  e = 0 then 

                                          a := b;     

                    else 

                                          d := a;     

                    end if; 

           end; 

 

VTB2 :  block  begin 

                         a1 <= b0 * c0  when 
e0 < 0  else 

                         b0 when e0 = 0  else 

a0; 

                         d1 <= a1 + b0 when 
e0 < 0 else 

                         d0 when e0 = 0  else 

a0; 

                  end block; 

Now complement the abstract state-transition graph, attained from the square root 
algorithm, with the VTBs of the particular modules. Hence will be obtained the 
description in accordance with Figure 2. Hereafter, this is regarded as the 
canonical form of the specification. 
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4 Notations 

In Figure 2 a possible form of FSM controlled value-target blocks are shown. The 
meaning af notations which are used in the blocks can be explained by the 
semantics of VHDL statements. Table 1 shows that form of canonical description 
of the specification, which will be compared with the canonical form of the 
structure. 

 
Figure 2 

The canonical form without time-refinement of the square root calculation's specification 

Target/state s0 s1 s2 s3 s4 
v1   MD(d,x1,cy1)   

ny1   MD(m,0.5,py)   
v2   AS(a,cy1,v1)   
d1   AS(s,ny1,cy1)   
g1   Cm(d1, 0.0)   
d2   d1 when g1 = ’1’ else 

AS(s, 0.0, d1) 
  

      
e1  pe    
x1  px    
cy1  Fi(x1)   cy2 
cy2   ny1   
f1   Cm(d2, e1)   
py    cy2  

Table 1 
Canonical form of specification. The simple- (<=) and the register-type (<<=) transactions  are isolated 

parts of the first column. 
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The simple transaction v1 <= MD(d, x1, y1) given in a box ordered to state s2 of 
FSM can be expressed as follows: 

       v1 <= MD(d, x1, y1) when fsm_state = s1 else anyvalue; 

The transaction for v1 is a non-register-type statement. 

An other transaction, for example cy1 <<= Fi(x1) given in the fsm-state s1 
together with the other transaction with the same target in fsm-state s4, (cy1 <<= 
cy2) can be interpeted as follows: 

      cy1 <= Fi(x1) when fsm_state = s1 and fsm_phase = ph2 else 

                   cy2 when  fsm_state = s4 and fsm_phase = ph2 else 

                   cy1; 

The two transactions for cy1 constitute register-type statement. It has to be 
emphasided that each register type transaction is executed by a phase of an FSM 
state. The phase has to be an inner time interval of  the of the FSM state. 

5 Characteristics of the Proposed Canonical Form 
Description 

Two sequential descriptions can be fully equivalent in spite of the number of 
variables or the order of statements within them being different. The canonical 
form described above shows some very important features. These are the 
following: 

1 Unaffected by the number of the variables of the specification's equivalent 
forms. 

2 Unaffected by the order of statements in the modules' equivalent forms. 

3 Unaffected by the number of FSM states deriving from hardware 
limitations. 

4 Unaffected by the allocations of function-unit, register and multiplexer, 
which derive from hardware limitations. 

The first characteristic derives from the fact that the description orders the target-
signals to the values of the variables, which means that the canonical forms of two 
equivalent sequential modules are identical, irrespective of the difference between 
the number of their respective variables. The second feature derives from the fact 
that we convert the modules into data-flow blocks composed of concurrent 
statements, and thus the canonical forms of equivalent sequential modules 
applying different orders of statements are also identical. The third characteristic 
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derives from the fact that the states, whose number has been increased because of 
the necessity generated by the hardware limitations, can be contracted during the 
transformations of the canonical form that describes the structure. The fact that 
units lose their identities during the transformations of the structure-describing 
canonical form, and appear in the changed canonical description only through 
their functions (similarly to the way they do in the canonical description of the 
specification) accounts for the fourth characteristic. 

6 Process of Verification of a RT-level Unit 

The RT-level structure to be verified is shown in Figure 3, Figure 4, and Table 2. 
The description has to contain the structure of DATA-PATH (Figure 3) and the 
state-transition graph of the FSM (Figure 4). The fuction units of the DATA-
PATH: 

- One multiplier/divider unit (M/D) 

- Two adder/subtractor units (A/S) 

- Two comparators (Cm) 

- A special look-up table unit for deriving of initial approximation of 
square-root. (Fi) 

Above these components the DATA-PATH contains 6 registers and 7 
multiplexers. Table 2 shows the initial form of the structural description to be 
verified. There is a part of the targets which contain outputs of multiplexers and 
function units, while another part of them contain outputs of registers. These parts 
are isolated in the left side of the list. There are state-independent transactions in 
the structure, and they are isolated in the left side of the list. 
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Figure 3 

RT-level structure of square-root calculation unit 

 
Figure 4 

The graf of counter-based FSM, which controls the data-path of square-root calculation unit 
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Target/state   0   1           2 3  4  5 
w3                                                                          Fi(w2) 
w6   w2  0.5   
w7   w4  py   
w8   w4  w11   
w9   w11  w4   
w10                                                                    Cm(w17,w1) 
w11   MD(d,w6,w7) MD(m,w6,w7)   
w12   AS(a,w8,w9) AS(s,w8,w9)   
w13                                                                   AS(s,0.0,w12) 
w14                                                                   Cm(12, 0.0) 
w16   w12  w5  
w17                                                        w12 when w14 = ’1’ else w13 
       
w1  pe     
w2  px     
w4  w3    w5 
w5    w11   
w15    w10   
py   w16  w16  

Table 2 
The source of the structural canonical description, which is  derived from the implementation 

7 Transformation Steps of the Verification Process 

The application of the following transformation steps leads to the canonical form 
of structural description which can be compared with the canonical form of the 
specification. They are based on the semantical equivalency of some parts of the 
structural description and corresponding abstract data-flow expressions. The name 
of each step is a reference to the structural analogy of the given transformation. 

7.1 Placement of State-Independent Transactions into States 

The first step of transformation is the placement of the state-independent 
transactions into those states, in which the target of the transaction, or the target of 
another transaction which is driven by it is stored in a register. This step is based 
on the recognition that the target-value of a state-independent transaction is ‘don’t 
care’ in those states, in which it is not stored. 
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For example, given a state independent transaction 

wi <= EXPi 

and wi is used in state nl as follows: 

   nl : wj <= EXPj(. . . wi . . .),  wk <<= wj. 

In this case the result of the placement is the following: 

  S[nl] :  wi <=EXPi   wj <= EXPj(. . . wi . . .)  wk <<= wj 

7.2 Node Elimination 

In the second phase of the transformations those targets are eliminated inside a 
given FSM state, which are not stored in the given state, and they are used at the 
right side of another target. It can be shown, that this step can eliminate all the 
nodes, the signals represented by which do not belong to a behavioural 
description. Assume that in fsm-state nl the following transactions are given: 

   nl : wi <= wj    wk <= EXP(. . . wi . . .) 

The result of the node elimination is as follws: 

                 S[nl] : wk <= EXP(. . . wj . . .) 

7.3 Merging Subsequent Loopless States 

The number of FSM states in canonical specifications is minimum, but in the 
structural description because of the hardware constraints it can be much higher. 
The FSM states that are introduced only because of the contraints of the number 
of function units are subsequent, and there is no control feedback between them. 

 
Figure 5 

Merging subsequent FSM states with data-independent transactions 
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To get closer to the canonical form, a merging of these states is proposed. Figure 
5 shows the simpler case, when there is no such signal which is stored in state n1 
and used in state n2. In a more complex case, when a value of a signal is stored in 
a register, and it is used in the next state, the register after merging is eliminated. 
(Figure 6) 

 
Figure 6 

Merging subsequent FSM states with a common signal, which is stored in state n1 for state n2 

8 Generation of the Structural Canonical Form of 
Square-Root Unit 

The following series of tables from Table 3 to Table 7 illustrates the verification 
flow of the hardware implementation of square-root procedure. The intermediate 
forms and the application of the three transformation steps lead to the structural 
canonical description. 

Table 3 is the result of placement of state-independent transactions. For example 
the transaction w3 <= Fi(w2) was placed in state 1, because w3 is stored in ph2 
phase of the state 1. The result of node eliminations is shown in Table 4. For 
example w6 is eliminated, since w6 is driven by w2 in state 2, and w6 is used in 
the driver MD(d, w6, w7) in the same state. So w2 substitutes w6 in driver of 
w11. 

The result of merging state ’2’ and state ‘3’ are shown in the Table 5. The Figure 
5 which shows the state-transition graf of the implemntation, proofs that ‘2’ and 
‘3’ are subsequent and loopless states. Since the targets w11 and w12 are driven in 
both states, after the merging both of them have to duplicated. 
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Target/state    0   1  2  3  4  5 
w3  Fi(w2)     
w6    w2  0.5   
w7    w4  py   
w8    w4 w11   
w9    w11  w4   
w10    Cm(w17,w1)   
w11   MD(d,w6,w7) MD(m,w6,w7)   
w12   AS(a,w8,w9) AS(s,w8,w9)   
w13    AS(s,0.0,w12)   
w14    Cm(12, 0.0)   
w16   w12  w5  
w17    w12 when w14 

= ’1’ else w13 
  

       
w1  pe     
w2   px     
w4   w3    w5 
w5    w11   
w15     w10   
py   w16  w16  

Table 3 
Result o the placement of the state independent transactions 

Target/state   0  1  2  3  4   5 
w11   MD(d, w2, 

w4) 
MD(m, 0.5, py)   

w12   AS(a, w4, 
w11) 

AS(s, w11, w4)   

w14    Cm(12,  0.0)   
w17    w12 when w14 

= ’1’ else AS(s, 
0.0, w12) 

  

       
w1  pe     
w2  px     
w4  Fi(w2)    w5 
w5    w11   
w15    Cm(w17,w1)   
py   w12  w5  

Table 4 
Result of the node elimination 
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Table 6 is the result of the attempt, the goal of which to find a consistent cross-
reference list between the nodes of the canonical description of the structure and 
the signals of the canonical specification. If the nodes of Table 5 are replaced by 
the signals of the cross-regference list, Table 7 is derived. It is obvious, that the 
structural canonical description covers the canonical specification, because the 
corresponding signals appear in every correspondig cells of the table, where the 
driver is specified. 

Target/state  0  1 2 3  4  5 
w11_1   MD(d, w2, w4)   
w11_2   MD(m, 0.5, py)   
w12_1   AS(a, w4, w11_1)   
w12_2   AS(s, w11_2, w4)   
w14   Cm(w12_2,  0.0)   
 
w17 

  w12_2 when w14 = 
’1’ else 
AS(s, 0.0, w12_2) 

  

      
w1  pe    
w2   px    
w4  Fi(w2)   w5 
w5     w11_2   
w15    Cm(w17,w1)   
py   w12_1   w5  

Table 5 
Result of the merging state ‘2’ and state’3’ 

Signals from the 
structural 
desription 

Signals from the canonical 
behavioural description 

w1 e1 
w2 x1 
w4 cy1 

w11_1 v1 
w12_1 v2 
w17 d2 

w12_2 d1 
w11_2 ny1 

w5 cy2 
w15 f1 
w14 g1 

Table 6 
Equivalence between the signals of the structure and the signals of specification 
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Target/state   s0   s1  s2 s3 s4 
v1   MD(d,x1,cy1)   
ny1   MD(m,0.5,py)   
v2   AS(a,cy1,v1)   
d1   AS(s,ny1,cy1)   
g1   Cm(d1, 0.0)   
d2   d1when g1 = ’1’ 

else AS(s,0.0,d1) 
  

      
e1   pe    
x1   px    
cy1   Fi(x1)   cy2 
cy2   ny1   
f1   Cm(d2,e1)   
py   v2 cy2  

Table 7 
Application af signal equivalences as a final step of verification 

Conclusions 

The new canonical form detailed above seems to be capable of developing an 
algorithm and an automatic verification system. The work intended to work out an 
implementation of the algorithm has been started. 
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