
Acta Polytechnica Hungarica Vol. 3, No. 1, 2006

 – 107 –

A Canonical Form of RT-Level FSM Controlled
Data Path Descriptions for Formal Verification

Péter Keresztes
Széchenyi István University
Egyetem tér 1, H-9026 Győr, Hungary
keresztp@sze.hu

Abstract: The paper proposes a new canonical form for RT-level descriptions, which can
be systematically generated from both the specification and the structural description. The
verification can be executed with the comparison of the two generated canonical form
descriptions.

1 Introduction

When it comes to the designing of digital systems, a description in accordance
with a well-chosen canonical form provides grounds for the efficient methods of
the formal verification and the symbolic simulation, alike. The logic (gate-level)
synthesis, along with the verification and the symbolic simulation are all based on
the canonical forms, which borrows its tools from the classic switching algebra. In
the aspect of their application on computer design systems, particularly successful
was Roth’s cube algebra, which is based on a new wording of Boole’s canonical
forms [1].

The descriptions of the register transfer level have up to the present lacked the
universality and heuristic power, which characterises the switching algebra. Thus,
the canonical forms employed on the register level could only be applied to a
restricted scale of tasks. To this category belongs, for instance, the Taylor-
polynomial method, which is capable of verifying the register-level structures of
arithmetic expressions, but has its limits within this very class [2], [3].

The implementation of the register transfer level canonical description suggested
by the author of the present paper is conditional on the same requirements as those
forming the principle of the most part of designing methods. The data-path
structure is controlled by a synchronous finite state machine (FSM), as a controller
built around a core. The structure must clearly reflect that in a specific state of the
FSM, as an interval:

P. Keresztes A Canonical Form of RT-Level FSM Controlled Data Path Descriptions for Formal Verification

 – 108 –

1 Which sub-paths of the data-path are switched active by the
multiplexers,

and

2 Into which registers and on what conditions occurs entering of data.

On condition that the structure's description meets the requirements above, the
canonical form, as suggested by this paper, can be prepared.

At the same time, an identical canonical description is gained from the algorithm-
level specification, which is a behavioural description, formulated in one of the
high level programming languages. If the canonical description, gained from the
structure, and the behavioural description are provably homomorphous, – even at
the expense of certain permissible transformations – the verification process can
be considered successful.

2 Decomposition of Sequential Behavioral
Descriptions

We decompose the program, constituted by sequential statements, into a
hierarchical structure of modules, between the statements modifying the control,
as bordering points. In the sequential subset of VHDL-processes the control
branch statements are the following:

begin end

wait until

for . . loop.end loop

while . . .loop . . . end loop

if . . . then . . .else . . . end if

The example below is the abstract style VHDL behavioural description of a
hardware unit in charge of carrying out the algorithm of square root calculation.
Figure 1 shows the way we decompose the description into modules, and the way
these modules and their attachments constitute the state-graph of an abstract state
machine. It is important to formulate the variable-assignment statements of the
description through functions that are implemented by the components (function-
units) of the hardware structure.

Acta Polytechnica Hungarica Vol. 3, No. 1, 2006

 – 109 –

library work; use
work.sqrtpack.all;

entity SQRT_UNIT is

 port (START : in bit;

 READY : inout bit := '1';

 RESET : in bit;

 pe : in real := 0.0;

 px : in real:= 0.0;

 py : inout real := 0.0;

 ph1, ph2 : in bit);

end SQRT_UNIT;

architecture BEH of SQRT_UNIT
is

 begin

 process

 variable e, x, y, cy, ny, v : real :=
0.0;

 variable d : real := 1.0;

 variable f : bit := '1';

 variable g : bit;

 begin

 wait until START = '1';

 READY <= '0';

 wait for 1 ns;

 e := pe; x := px;

 cy := Fi(x);

 wait for 1 ns;

while f = '1' loop

 v := MD(div, x, cy);

 v := AS(add, cy, v);

 ny := MD(mult, 0.5, v) ;

 d := AS(sub,ny,cy);

 g := Cm(d, 0.0);

 if g = '0' then

 d := AS(sub, 0.0, d);

 end if;

 cy := ny;

 f := Cm(d, e);

 end loop;

 wait for 1 ns;

 py <= cy;

 READY <= '1';

end process;

end BEH;

P. Keresztes A Canonical Form of RT-Level FSM Controlled Data Path Descriptions for Formal Verification

 – 110 –

Figure 1

The decomposition of the square root algorithm into sequential modules

3 Generating Value-target Event-driven Data-flow
Blocks from Behavioural Description

Consider the variable-assignment statements of a sequential module and the
values ordered to the variables v1, v2, . . . vjvn by the sequence. Pick out the
value of vj next in line, resulting from the next-in-line variable assignment.
Formulate this in the following substitution expression:

vj(p+1) = E[. . .vk / vk(p) . . .]

A value next in line of variable vj can be calculated through the substitution of the
present values of the variables of the right hand side into the variable-assignment
statement. If we number the values of the variables of the sequence, from v1(0),
v2(0), . . . vj(0), . . .vn(0) up to those terminal values of maximum indexes v1(t), v2(t),
. . . vj(t), . . .vn(t), ordering one target to each and every value of each and every
variable, and on the other hand, we order to each variable-assignment an event-
driven concurrent statement,

wj(p+1) <= E [. . .vk /wk(p) . . .]

Acta Polytechnica Hungarica Vol. 3, No. 1, 2006

 – 111 –

then from these statements we attain an event-driven dataflow-block, which can
be ordered to the sub-sequence. This block is termed the value-target block (VTB)
of the sequential module.

The VTB at rest is

wj (t) = E [. . .vk / wk(t) . . .]

It is conceivable that if the initial value of the variable vj is equal to the initial
value of the target wj, ordered to it, then the value of vj, with which it leaves the
sequence module, is also equal to the terminal value of the target of the maximal
index. One sequence is therefore value-equivalent to the value-tracking block
gained from it. See a simple example:

SEQ1: begin

 for i in 1 to 4 loop

 a := a + 1;

 end loop;

end;

VTB1 : block

 begin

 a1 <= a0 + 1;

 a2 <= a1 + 1;

 a3 <= a2 + 1;

 a4 <= a3 + 1;

end block;

A more complex one:

SEQ2 : begin

 if e < 0 then a := b * c;

 d := a + b;

 elsif e = 0 then

 a := b;

 else

 d := a;

 end if;

 end;

VTB2 : block begin

 a1 <= b0 * c0 when
e0 < 0 else

 b0 when e0 = 0 else

a0;

 d1 <= a1 + b0 when
e0 < 0 else

 d0 when e0 = 0 else

a0;

 end block;

Now complement the abstract state-transition graph, attained from the square root
algorithm, with the VTBs of the particular modules. Hence will be obtained the
description in accordance with Figure 2. Hereafter, this is regarded as the
canonical form of the specification.

P. Keresztes A Canonical Form of RT-Level FSM Controlled Data Path Descriptions for Formal Verification

 – 112 –

4 Notations

In Figure 2 a possible form of FSM controlled value-target blocks are shown. The
meaning af notations which are used in the blocks can be explained by the
semantics of VHDL statements. Table 1 shows that form of canonical description
of the specification, which will be compared with the canonical form of the
structure.

Figure 2

The canonical form without time-refinement of the square root calculation's specification

Target/state s0 s1 s2 s3 s4
v1 MD(d,x1,cy1)

ny1 MD(m,0.5,py)
v2 AS(a,cy1,v1)
d1 AS(s,ny1,cy1)
g1 Cm(d1, 0.0)
d2 d1 when g1 = ’1’ else

AS(s, 0.0, d1)

e1 pe
x1 px
cy1 Fi(x1) cy2
cy2 ny1
f1 Cm(d2, e1)
py cy2

Table 1
Canonical form of specification. The simple- (<=) and the register-type (<<=) transactions are isolated

parts of the first column.

Acta Polytechnica Hungarica Vol. 3, No. 1, 2006

 – 113 –

The simple transaction v1 <= MD(d, x1, y1) given in a box ordered to state s2 of
FSM can be expressed as follows:

 v1 <= MD(d, x1, y1) when fsm_state = s1 else anyvalue;

The transaction for v1 is a non-register-type statement.

An other transaction, for example cy1 <<= Fi(x1) given in the fsm-state s1
together with the other transaction with the same target in fsm-state s4, (cy1 <<=
cy2) can be interpeted as follows:

 cy1 <= Fi(x1) when fsm_state = s1 and fsm_phase = ph2 else

 cy2 when fsm_state = s4 and fsm_phase = ph2 else

 cy1;

The two transactions for cy1 constitute register-type statement. It has to be
emphasided that each register type transaction is executed by a phase of an FSM
state. The phase has to be an inner time interval of the of the FSM state.

5 Characteristics of the Proposed Canonical Form
Description

Two sequential descriptions can be fully equivalent in spite of the number of
variables or the order of statements within them being different. The canonical
form described above shows some very important features. These are the
following:

1 Unaffected by the number of the variables of the specification's equivalent
forms.

2 Unaffected by the order of statements in the modules' equivalent forms.

3 Unaffected by the number of FSM states deriving from hardware
limitations.

4 Unaffected by the allocations of function-unit, register and multiplexer,
which derive from hardware limitations.

The first characteristic derives from the fact that the description orders the target-
signals to the values of the variables, which means that the canonical forms of two
equivalent sequential modules are identical, irrespective of the difference between
the number of their respective variables. The second feature derives from the fact
that we convert the modules into data-flow blocks composed of concurrent
statements, and thus the canonical forms of equivalent sequential modules
applying different orders of statements are also identical. The third characteristic

P. Keresztes A Canonical Form of RT-Level FSM Controlled Data Path Descriptions for Formal Verification

 – 114 –

derives from the fact that the states, whose number has been increased because of
the necessity generated by the hardware limitations, can be contracted during the
transformations of the canonical form that describes the structure. The fact that
units lose their identities during the transformations of the structure-describing
canonical form, and appear in the changed canonical description only through
their functions (similarly to the way they do in the canonical description of the
specification) accounts for the fourth characteristic.

6 Process of Verification of a RT-level Unit

The RT-level structure to be verified is shown in Figure 3, Figure 4, and Table 2.
The description has to contain the structure of DATA-PATH (Figure 3) and the
state-transition graph of the FSM (Figure 4). The fuction units of the DATA-
PATH:

- One multiplier/divider unit (M/D)

- Two adder/subtractor units (A/S)

- Two comparators (Cm)

- A special look-up table unit for deriving of initial approximation of
square-root. (Fi)

Above these components the DATA-PATH contains 6 registers and 7
multiplexers. Table 2 shows the initial form of the structural description to be
verified. There is a part of the targets which contain outputs of multiplexers and
function units, while another part of them contain outputs of registers. These parts
are isolated in the left side of the list. There are state-independent transactions in
the structure, and they are isolated in the left side of the list.

Acta Polytechnica Hungarica Vol. 3, No. 1, 2006

 – 115 –

Figure 3

RT-level structure of square-root calculation unit

Figure 4

The graf of counter-based FSM, which controls the data-path of square-root calculation unit

P. Keresztes A Canonical Form of RT-Level FSM Controlled Data Path Descriptions for Formal Verification

 – 116 –

Target/state 0 1 2 3 4 5
w3 Fi(w2)
w6 w2 0.5
w7 w4 py
w8 w4 w11
w9 w11 w4
w10 Cm(w17,w1)
w11 MD(d,w6,w7) MD(m,w6,w7)
w12 AS(a,w8,w9) AS(s,w8,w9)
w13 AS(s,0.0,w12)
w14 Cm(12, 0.0)
w16 w12 w5
w17 w12 when w14 = ’1’ else w13

w1 pe
w2 px
w4 w3 w5
w5 w11
w15 w10
py w16 w16

Table 2
The source of the structural canonical description, which is derived from the implementation

7 Transformation Steps of the Verification Process

The application of the following transformation steps leads to the canonical form
of structural description which can be compared with the canonical form of the
specification. They are based on the semantical equivalency of some parts of the
structural description and corresponding abstract data-flow expressions. The name
of each step is a reference to the structural analogy of the given transformation.

7.1 Placement of State-Independent Transactions into States

The first step of transformation is the placement of the state-independent
transactions into those states, in which the target of the transaction, or the target of
another transaction which is driven by it is stored in a register. This step is based
on the recognition that the target-value of a state-independent transaction is ‘don’t
care’ in those states, in which it is not stored.

Acta Polytechnica Hungarica Vol. 3, No. 1, 2006

 – 117 –

For example, given a state independent transaction

wi <= EXPi

and wi is used in state nl as follows:

 nl : wj <= EXPj(. . . wi . . .), wk <<= wj.

In this case the result of the placement is the following:

 S[nl] : wi <=EXPi wj <= EXPj(. . . wi . . .) wk <<= wj

7.2 Node Elimination

In the second phase of the transformations those targets are eliminated inside a
given FSM state, which are not stored in the given state, and they are used at the
right side of another target. It can be shown, that this step can eliminate all the
nodes, the signals represented by which do not belong to a behavioural
description. Assume that in fsm-state nl the following transactions are given:

 nl : wi <= wj wk <= EXP(. . . wi . . .)

The result of the node elimination is as follws:

 S[nl] : wk <= EXP(. . . wj . . .)

7.3 Merging Subsequent Loopless States

The number of FSM states in canonical specifications is minimum, but in the
structural description because of the hardware constraints it can be much higher.
The FSM states that are introduced only because of the contraints of the number
of function units are subsequent, and there is no control feedback between them.

Figure 5

Merging subsequent FSM states with data-independent transactions

P. Keresztes A Canonical Form of RT-Level FSM Controlled Data Path Descriptions for Formal Verification

 – 118 –

To get closer to the canonical form, a merging of these states is proposed. Figure
5 shows the simpler case, when there is no such signal which is stored in state n1
and used in state n2. In a more complex case, when a value of a signal is stored in
a register, and it is used in the next state, the register after merging is eliminated.
(Figure 6)

Figure 6

Merging subsequent FSM states with a common signal, which is stored in state n1 for state n2

8 Generation of the Structural Canonical Form of
Square-Root Unit

The following series of tables from Table 3 to Table 7 illustrates the verification
flow of the hardware implementation of square-root procedure. The intermediate
forms and the application of the three transformation steps lead to the structural
canonical description.

Table 3 is the result of placement of state-independent transactions. For example
the transaction w3 <= Fi(w2) was placed in state 1, because w3 is stored in ph2
phase of the state 1. The result of node eliminations is shown in Table 4. For
example w6 is eliminated, since w6 is driven by w2 in state 2, and w6 is used in
the driver MD(d, w6, w7) in the same state. So w2 substitutes w6 in driver of
w11.

The result of merging state ’2’ and state ‘3’ are shown in the Table 5. The Figure
5 which shows the state-transition graf of the implemntation, proofs that ‘2’ and
‘3’ are subsequent and loopless states. Since the targets w11 and w12 are driven in
both states, after the merging both of them have to duplicated.

Acta Polytechnica Hungarica Vol. 3, No. 1, 2006

 – 119 –

Target/state 0 1 2 3 4 5
w3 Fi(w2)
w6 w2 0.5
w7 w4 py
w8 w4 w11
w9 w11 w4
w10 Cm(w17,w1)
w11 MD(d,w6,w7) MD(m,w6,w7)
w12 AS(a,w8,w9) AS(s,w8,w9)
w13 AS(s,0.0,w12)
w14 Cm(12, 0.0)
w16 w12 w5
w17 w12 when w14

= ’1’ else w13

w1 pe
w2 px
w4 w3 w5
w5 w11
w15 w10
py w16 w16

Table 3
Result o the placement of the state independent transactions

Target/state 0 1 2 3 4 5
w11 MD(d, w2,

w4)
MD(m, 0.5, py)

w12 AS(a, w4,
w11)

AS(s, w11, w4)

w14 Cm(12, 0.0)
w17 w12 when w14

= ’1’ else AS(s,
0.0, w12)

w1 pe
w2 px
w4 Fi(w2) w5
w5 w11
w15 Cm(w17,w1)
py w12 w5

Table 4
Result of the node elimination

P. Keresztes A Canonical Form of RT-Level FSM Controlled Data Path Descriptions for Formal Verification

 – 120 –

Table 6 is the result of the attempt, the goal of which to find a consistent cross-
reference list between the nodes of the canonical description of the structure and
the signals of the canonical specification. If the nodes of Table 5 are replaced by
the signals of the cross-regference list, Table 7 is derived. It is obvious, that the
structural canonical description covers the canonical specification, because the
corresponding signals appear in every correspondig cells of the table, where the
driver is specified.

Target/state 0 1 2 3 4 5
w11_1 MD(d, w2, w4)
w11_2 MD(m, 0.5, py)
w12_1 AS(a, w4, w11_1)
w12_2 AS(s, w11_2, w4)
w14 Cm(w12_2, 0.0)

w17

 w12_2 when w14 =
’1’ else
AS(s, 0.0, w12_2)

w1 pe
w2 px
w4 Fi(w2) w5
w5 w11_2
w15 Cm(w17,w1)
py w12_1 w5

Table 5
Result of the merging state ‘2’ and state’3’

Signals from the
structural
desription

Signals from the canonical
behavioural description

w1 e1
w2 x1
w4 cy1

w11_1 v1
w12_1 v2
w17 d2

w12_2 d1
w11_2 ny1

w5 cy2
w15 f1
w14 g1

Table 6
Equivalence between the signals of the structure and the signals of specification

Acta Polytechnica Hungarica Vol. 3, No. 1, 2006

 – 121 –

Target/state s0 s1 s2 s3 s4
v1 MD(d,x1,cy1)
ny1 MD(m,0.5,py)
v2 AS(a,cy1,v1)
d1 AS(s,ny1,cy1)
g1 Cm(d1, 0.0)
d2 d1when g1 = ’1’

else AS(s,0.0,d1)

e1 pe
x1 px
cy1 Fi(x1) cy2
cy2 ny1
f1 Cm(d2,e1)
py v2 cy2

Table 7
Application af signal equivalences as a final step of verification

Conclusions

The new canonical form detailed above seems to be capable of developing an
algorithm and an automatic verification system. The work intended to work out an
implementation of the algorithm has been started.

References

[1] M. A. Breuer: Design Automation of Digital Systems, Prentice-Hall Inc,
1972

[2] M. Ciesielsky, P. Kalla, Z. Zeng and B. Rouzeyre: Taylor Expansion
Diagrams: A new Representation for RTL Verification, IEEE Intl. High
Level Design Validation and Test Workshop (HLDVT’01), 2001, pp 70-75

[3] P. Kalla, M. Ciesielsky, E. Boutillon, E. Martin: High Level Design
Verification Using Taylor Expansion Diagrams: First Results, IEEE Intl.
High Level Design Validation and Test Workshop (HLDVT’02), 2002, pp
13-17

