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Abstract: This paper presents a new stability analysis approach dedicated to a class of
nonlinear discrete-time multi input-multi output (MIMO) Takagi-Sugeno fuzzy control
systems (FCSs). The theorem presented in this paper offers sufficient conditions for the
global stability of the FCSs. The applicability of the theoretical results is illustrated by the
stable design of Takagi-Sugeno fuzzy controllers for the level control of spherical three
tank systems as nonlinear MIMO processes. Digital simulation results are included.
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1 Introduction

The stable design of fuzzy control systems (FCSs) is important because it
contributes to the fulfilment of very good performance. Many popular stability
analysis solutions concerning Takagi-Sugeno (T-S) FCSs are offered in this
context, and their usual formulation is done in the linear matrix inequality (LMI)
framework. The main features of these solutions are:

- The linearization can result in uncertainties and inaccuracies of fuzzy models.

- The quadratic Lyapunov functions may lead usually to conservative stability
conditions.
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- Although the LMIs are computationally solvable, they require numerical
algorithms implemented by software tools.

Some approaches to the stability analysis of multi input-multi output (MIMO) T-S
FCSs have been reported recently in the literature. Based on a novel fuzzy
Lyapunov-Krasovskii functional, a stability analysis and stabilization for a class of
discrete-time Takagi-Sugeno fuzzy systems is developed in [1]. A useful property
of the staircase membership functions and a set of linear-matrix-inequality (LMI),
the stability conditions for fuzzy control systems are offered in [2]-[4]. Sufficient
conditions for the exponential stability of type-1 and type-2 T-S FCSs are given in
[5]-[7] in fuzzy positive systems formulations. Fuzzy control design based on
adaptive control schemes are proposed in [8]-[11].

The new contribution of this paper with respect to the state of the art is a stability
analysis theorem dedicated to nonlinear MIMO processes controlled by T-S fuzzy
controllers (FCs). Our original proof of the stability analysis theorem is based on
the eigenvalues of the matrices of quadratic forms. Since these matrices are
actually vector functions of vector arguments, their eigenvalues are functions of
state variables. Similar approaches but with different stability formulations and
proofs are reported in [12]-[15].

The specific features of the stability analysis theorem proposed in this paper
concern the avoidance of both process linearization and the LMIs in the derivation
and proof of the stability conditions because there is no need to calculate common
positive definite matrices. Those are the reasons why the suggested approach
proves to be advantageous with respect to LMI-based stability analysis solutions.
Furthermore, the stability analysis method is formulated here so as to be well
suited for T-S FC designs dedicated to a wide class of nonlinear processes [16]-
[26].

This paper is organized as follows. Section 2 defines the structure of T-S FCSs
which control a class of nonlinear MIMO processes. Section 3 gives the stability
theorem for discrete-time MIMO FCSs. A case study presented in Section 4 offers
the stable design of T-S FCSs dedicated to the level control of spherical three tank
systems and digital simulation results. The conclusions are discussed in Section 5.

2 Fuzzy Control System Structure

The MIMO FCS structure is presented in Figure 1. Let X cR" (ne N, n>0)
be the universe of discourse. The nonlinear MIMO process is characterized by the
discrete-time input affine state-space model

X(t+1) =f(x(t)) + Bx(H)u(t), t e N, x(0) =x, € X,
y(t) = g(x(v)).

)
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Figure 1
MIMO FCS structure

Figure 1 illustrates: r — the reference input vector which is constant for stabilizing
control systems, y — the controlled output vector, xe X - the state vector,
X() =[x @) %) .. x ()] X the superscript T stands for matrix

transposition, t is the time variable (with the initial time moment t, =0), x, is the
initial condition vector, f:R" - R, B:R" —R™" — the continuous vector-
valued functions which describe the dynamics of the process,

f,(x(®)

f,(x(1)

f(x(t) = f,:R" >R, i=1.n,

f,(x(1)) @)

by (x(1))

b: (x(1))

B(x(1)) = b (x(©) =[0,(x(1) b (X(®) ... by (X(O)],

by (X(1)

and u(t) =[u,(t) u,(t) .. u, (t)]" — the control signal vector applied to the

process. The actuators and measuring instrumentation are included in the
nonlinear process.

The i™ fuzzy control rule in the rule base of the T-S FC, referred to as

R',i=1..ng, Ngg > 2 (N, — the number of rules), is expressed as

R':IF X, (t) 1S X;; AND X, (t) IS X,, AND...ANDX, (t) IS X,, 3)
THENuU = u' (x(t)), i=1..n,

where )Zki are fuzzy sets with the universes X, k =1...n, corresponding to the

ki?
linguistic terms (L Ts) afferent to the state variables x., u' (x) is the control signal

produced by the rule R" with the firing strength o' =o' (x)

a'(X) = AND(rz (%) bz, (%) iz (%)), VX € X Fi=1.ngg,

O<a'(x)<1,

(4)
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where the function AND is a t-norm, and fy are the membership functions of the

fuzzy sets of LTs )Zki. An active region of the rule R' is defined as the set
XA ={xe X |a'(x) =0}

The control signal vector u is a function of o' and u' which depends on the
inference engine and on the defuzzification method. The weighted sum
defuzzification method produces the control signal vector u(x(t)) , which will also

be referred to as u(t) in the sequel for the sake of simplicity:

3 ol (x)u' (x(1)
u(x(t) = = - (5)

Ngp

PO

3 Stability Analysis Theorem

Let the process be characterized by the state-space model defined in (1), and let V
be a radially unbounded function V: X ->R, V(x) >0, Vxe X,x=0. The first

difference of the function V(x(t)) along the trajectory of (1), denoted by
AV (x(t)), is

AV (X(1)) =V (x(t +1)) =V (X(1)) - ©
Using the notation V, (x(t)) for the Lyapunov function candidate V (x(t)), which
is considered along the trajectory of the system (1) for u(t) =u'(x(t)), the first
difference of V, (x(t)) is AV, (x(t)):

AV, (x(1)) =V, (X(t +1) -V (x(1)), ¥ x € X . )

The following original stability analysis theorem is derived on the basis of
Lyapunov’s theorem for discrete-time systems using the formulation given in
[27]:

Theorem 1. Let the FCS be described by the discrete-time input affine MIMO
system modelled in (1), the T-S FC characterized by equations (3)—(7), and x=0
be an equilibrium point of (1). If there exists

VX >R, V(x(t)) = x" (t) P x(t), continuous in X, (8)
where P € R™ is a positive definite matrix such that
AV, (X()) <0, Yxe X, i=1.ng, 9)

then x =0 is stable.
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Proof. The hypotheses of the theorem result in

AV, (X(1)) =V, (X(t +1) -V, (X(1)) <0, Vxe X, i=1.ng. (10)
The term X(t +1) is next substituted from (1) into (10):

AV, (x(1)) = V; (F (x(1)) + B(x()u' (1)) - V; (x(1))

= [F(x(1)) + Bx()U' (O PIF(x(®) +B(x(®)u' ()]

=x"(0) Px(t) = [fT (x(1)) + (u' ()" BT (x(©))] P [f (x(1))

+ B O]-X" () Px(®) =[fT (x()P (1)
+(U' (1) BT (x(D)PILF (x(1)) + B(x(®)u' ()] - X" (t) P x(t)

=T (x(0))PF (x()) + T (x(t))PB(x(D)u' ()

+(U' ()" BT (x(D)PF (x(1) + (u' (1)) BT (x())PB (x(t))u' (t)

X" Px(t)<0, i =1..ng.

The multiplication of (11) by a'(x(t)) and the calculation of the sum result in

" (XOIP XN () + [ (PRS0 (xO 0

« S0 O B GONPF () () o
« S0 O B (ONPBOCO O (xO)

-1 O PXOI e () <O

Equation (12) is divided by niai(x(t))>0 and equation (5) is applied to
i=1

transform the resulted sums as follows:

T (X@)PF (x(1) + T (x©)PB(x(D)u(t) +u’ ()BT (x(1)PF (x(1))

i [(u'(1)" BT (x())PB(x(t)u' (t)o' (x(1)] (13)
i —x" (t) P x(t) <O.

+ Ngp

Zl:a‘ (x(1))
The expression of AV (x(t)) results from (1) and (6):
AV (x(1)) =V (F(x(1)) + B(x(t))u(t)) -V (x(1))
=[F(x(®) +BX®U®I" P [f(x()) + BX®)u(t)]-x" (t) Px(t)
=[f" (x(©))P +u" (OB" (x(t))PILF (x(1)) + B(x®)u(®)] - x" (t) P x(t)
=fT (x@)PF (x(0) + 7 (x(©))PB(x(t))u(t) +u’ ()BT (x(D)PF (x(1))
+u’ ()BT (x(t))PB(x(t)u(t) —x" (t) P x(t) < 0.

(14)
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In the following we prove that

%‘,[(ui ()" BT (x®)PB(X(®)u' (t)er' (X(1))]

u' (t)B" (x(t))PB(x(t))u(t) < = - (15)

Ngg

Zai (x(®)

The terms u” ()B” (x(t) P B(x(D)u(t) and (u'(1))" B (x(©))P B(x(D)u'(t) are
quadratic forms because the matrix

M(x(1)) =B (x(1)) P B(x(t)) e R™" (16)
is symmetric. The matrix M(x(t)) has the following spectral decomposition
(Jordan decomposition):

M(x(1)) = L(x(1) A(X®) T (x(1)) = i[% X@®)7; (XO)v] (xO)]: n
where

A(X(1)) = diag (A, (X(1)), 2 (X(0)),+0 Ay (X(1))) - (18)
A (x(t)), j=1..m, are the eigenvalues of M(x(t)) . The orthogonal matrix
Fx@) =[r.(x(®©) v, (x(©) .. v, (x(©)] (19)

consists of the eigenvectors y, (x(t)) of M(x(t)).

Considering the linear transformation

uTu=w=[w w, .. w1, w=y}u j=1l.m, (20)
equations (16), (17) and (20) lead to

u’ (t) BT (x(1)) P B(x(®) u(t) = u" (t) M(x(1)) u(t)

=u’ (1) D(x(1) A(x(0) T" (x(1)) u(t) = (W(D)" AX(D) w(t)
- 2{%,— (XOWE ()]

(21)

The expression of w; from (20) is substituted into (21) leading to the following
result:

u' (1) B (x(1)) P B(x(®) u(t) = i{k ; XAy | (X))} (22)
The following relationship results from (22) by replacing u(t) with u'(t):

(u' ()" BT (x(1)) PB(x()) u'(t) = i{K ; (XO)y ] (x@©)u' (O3 (23)
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The expression of u(t) is substituted from (5) into the right-hand side of (22), and
the sums are manipulated as follows:

Za (x@)u' (t)
u' (t) BT (x(t)) P B(x(t)) u(t) = Z{7L Oy x@)| He—— I}

Zai (x(1)) (24)

[Z[a (X7} (xO (t)]J
—Z ) D

Nrg

Y el (x() 3o ()

The application of Cauchy-Buniakovski-Schwarz’s inequality to the Second
fraction in the right-hand side of (24) leads to

m

0" (1) B7 (x(®) P B u® < 311D S o iy xenu' 013
RO

(25)
and next to
Zf{k (XY (x®)U' O o' (x(t))}
u' (t) BT (x(t)) P B(x(t)) u(t) < 2= (26)

> o (x(0)

The multiplication of (23) by o' (x(t)), the calculation of the sum and the division

by nz“:ai (x(t)) >0 result in the expression of the right-hand side of (15):

i=1

I () B (x(O)PB(x(O)u' Ot (<) 330, (O (KO OF e (<)}

_ i

Nrg Nrg

2o (x(1) PXACO)

i O (O (O OF o' (x(@)}

=1 i<l

3 al(0)

(27)
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Therefore equations (26) and (27) demonstrate the inequality (15). The inequality
(15) is applied to (13) and (14), which result finally in

AV (x(t)) <0. (28)

Therefore, the equilibrium point at the origin will be stable. The proof is now
complete. Concluding, Theorem 1 offers sufficient stability conditions concerning
the class of fuzzy control systems defined in Section 2.

4 Case Study

The case study applies Theorem 1 to the design of T-S FCSs dedicated to the level
control of spherical three tank systems. The process structure presented in Figure
2 illustrates the three spherical tanks, T1, T2 and T3, with the same radius R, in
series connection by two connecting pipes of inner area S. All three tanks are
equipped with piezo-resistive pressure sensors (viz. the level sensors LS1, LS2
and LS3) to measure the liquid levels. The FC actuates (by means of the pumps P1
and P2) the flow rates ¢, and g, in order to control independently the levels in
the tanks T1 (h,) and T2 (h,), and the following constraints imposed to the levels
result from the process structure:

O<h <2R, i=1.3. (29)

A typical control objective pointed out in [13] is to keep the liquid levels hy and h,
at the imposed levels while the liquid level in the tank T3 (h3) is uncontrollable.
The level sensors give the measured levels hy,;, hy, and hy,s used by the FC. The
connecting pipes and tanks are equipped with manually adjustable valves and
outlets to simulate clogs and leaks.

nioor
. .
[

Figure 2
FCS and process structure

— 64—



Acta Polytechnica Hungarica Vol. 9, No. 2, 2012

The simplified FCS structure is presented in Figure 3, where
d=[d,=1-p, d,=1-pn, d,=1-p,]" is the disturbance input vector,

r=[r, r,]" isthe reference input vector, e,

e =r—uy,=r—kh, i=1.2, (30)

1 I mi

are the control errors grouped in the control error vector e=[e;, e,]", u, W,
and ., are the deterministic disturbance inputs are the positions of the valves Vi,
Vi and Vs, 0<p,, 1y, ey <1, With the notations O for the completely close valves
and 1 for the completely open valves, and k _, i =1...3, are the sensor gains.

Using the notation A(h.) = nh (2R—h.), i =1...3, for the transversal section area

of sphere (i.e., tank) i at height (liquid level) h;, the first principle mathematical
model of the process proposed in [13] is discretized, and the following disturbed
discrete-time process model is used in T-S FC design:

- I(ml (t) [Ssgn( n-& (t) _ Ups (t) )
(uhl(t)/kml (t)) kml(t) km3 (t)

n _el(t) _ uha(t) n _el(t) _
\/29 I OO0 |+dsSy 29 K0 Koa (D)u, ()],

et+1)=

— kmz (t) _ Uphs (t) _ r,—¢6 (t)
) = 0w 0 o
\/Zg|u“3(t)—r2_e2(t)|+ eZSV 29 rz_ez(t)

kms (t) kmz (t) kmz(t)
48, 292280 _y o ]
! kmz(t) 2 2 '
k0 0n®  U® [ Un® U

s ) = Lm0k kL ) kmg(t))\/ 290 k)

Ups(t)  Up, (1) Ups(t) U (1) | Ups (1)
AT kmz(t))J 2910 k@ %P0

hl(t) =n _el(t)'
hy(t) =1, —&, (t), (31)

where Sy is the inner area of outflow pipes, and ky; and ki, are the actuator gains.
The relation between the variables in the model (31) and the variables in the
discrete-time input affine MIMO state-space model (1) are

X:[Xl Xz]T :[el ez]T =¢, y:[yl :hl Y, :hz]T' (32)
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Figure 3

Simplified FCS structure

Figure 3 shows that the MIMO FC consists of two separately designed T-S FCs,
FC1 and FC2. The fuzzification in FC is done using the input membership
functions presented in Figure 4.

1 \ I.."

0.833 ;
H_ 0667 ———
. - ¥
7z 05 e
,,,,, \ .
p 0333 __\ :
0.167 : —

g 2 -1333 -04847 0 06467 1333 2

Figure 4
Input membership functions

The inference engine employs the MIN t-norm for the AND operator as specified
in Section 2. The inference engine is assisted by the following complete rule base
as Ny =9:

R':IFe ISP ANDeg, ISP THEN u=u,,

R?:IFe, ISN AND e, IS N THEN u=u,,

R®:IF e ISN AND g, IS P THEN u=u,,

R*:IFe ISP ANDe, IS N THEN u=u,, (33)
R°:IFe ISP AND e, IS Z THEN u=u,,

R°:IFe ISZ AND e, IS P THEN u=u,,

R":IFe ISN AND e, IS Z THEN u=u,,

R®:IFe ISZ AND e, IS N THEN u=u,,

R°:IFe ISZ AND e, IS Z THEN u =u,,
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where u=[u, u,]", and the rule consequents u, =[u; u)]",i=1.9, are

determined as follows on the basis of Theorem 1. More inputs can be considered,
but this leads to the complication of the FCS structure and of the design, and rule
base reduction techniques should be used [28]-[31]. The Lyapunov function
candidate

V:R* >R, V(e) =0.5e? +0.5¢2 (34)

is chosen in order to design stable FCSs for this MIMO process. For d =0 the
time derivative of V (e) along the trajectory of (31), referred to as V (e), is

V(t+D) =g (t)e(t+1) +ee,(t+1) =A(jl(zt))k/m|l<(t)(t))

n _el(t) _ uh3(t) I _el(t) _ uh3(t) _
s 1 ey s

+ €, (t)kmz (t) [—S Sgn(uhS(t) _ P _ez(t))\/zg | uh3(t) _ r _ez(t) |

(35)

A(th(t) / kmz (t)) km3 (t) kmz(t) km3 (t) I(m2 (t)
-6 (t) _
+Sy./29 ) Kpa2 (D)U, (1)].

The control laws in the rule consequents of MIMO FC are designed to fulfil the
condition (9) in Theorem 1, which leads to

V. (t+1) = F(e(t) + g" (e()u; () <0, i =1...9. (36)

The condition (36) is important because it supports the formulation of the rule
base of MIMO FC summarized in Table 1 and proved in Appendix 1. But the
controller design depends on the process, and different expressions of Lyapunov
function candidates can be used in other applications [32]-[41].

Concluding, Theorem 1 is verified. Therefore the T-S FCS designed in this section
is stable.

The values of process parameters considered in this case study are
S =0.005m?, S, =0.005m? R=1m, g=9.8m/s’,
k,, =k,, =0.094 m*/(Vs), k., =k,,, =1V/m,

@7

and the sampling period was setto T, =0.01s.

Three digital simulation scenarios were considered in order to illustrate the stable
behaviour of our T-S FCS scenario 1 (reference inputs r, =1.5m and r, =1.5m,

and initial conditions h, (0)=0.1m, h,(0)=1.9m and h,(0)=1.5m applied to
T-S FCS), scenario 2 (r,=0.5m, r, =1.5m, h,(0)=0.1m, h,(0)=1.1m and
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h,(0)=1m applied to T-S FCS) and scenario 3 (r,=0.5m, r,=15m,
h,(0)=1m, h,(0)=0.1m and h,(0) =1m applied to T-S FCS). The trapezoidal
function defined in [13] models the variations of deterministic disturbance inputs.

Table 1

Rule base of MIMO FC

R' Premise Consequent
el eZ ul u2
RI P P 25\ JoR /K, (2S/gR +8, 2gr2k‘7e2)/kpz
m2
RZ N N ~28JgR /K, (~2S./gR +5, 2gr2k‘7€2)/kp2
m2
R® N P ~25JaR /K, (2S/oR +8, 2(;%)/1%2
m2
R®* P N 25\ JaR /K, (-2SJgR +S, 2gr2k’7‘%)/kpz
m2
(- Ssn(n - =) [yg s 5%,
R5 P Z 28 ligR/kpl r m3 m2 m3 m2
+8, [202 %)k,
km2
(6, + SsOn(2 2 - 12
RE Z P ™ (25\oR +S, 202 =) /K,
2g| L5 -8k, "
ml m3
(0~ Ssn(n -2 =%2) [pg e =%
R7 N Z —28\/97R/kp1 m3 m2 m3 m2
+s, 292752y /K,
Kna
(e, + SsOn(2—2 - 12)
R® Z N — ; " (-25/gR +S, /29r2k_7e2)/kp2
291578 Uy, "
kml kmS
(%*559”(%—%) (erSsgn(uﬂfﬁ) 29 uﬁ,ﬂ|
Rg Z Z ml m3 km3 I(m2 km3 kmz

n—e u
2 1 1 “h3 /k
J2915 5 = D

+5, [2g rzk_ieZ)/kpz

m2
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The digital simulation results obtained for the simulation scenarios 1, 2 and 3 are
presented in Figures 5, 6 and 7, respectively. These results highlight the stable
behaviour of the T-S FCS for different inputs and initial conditions.

7
B T S N T S Pyt N
. h -
- | —_
% ih % 1
= =)
05t 0.5
o ]
o 50 100 150 200 i 50 100 150 200
t[z] t[z]
Figure 5

Digital simulation results (scenario 1)

15 TE R S S e
-% 1 %1
=) =]
L R PR yoermmremean e 05
0 0
0 50 100 150 200 0 50 100 130 200
t [2] t[s]
Figure 6
Digital simulation results (scenario 2)
15 Y| SRILITSSVRREY
'E‘ — ..‘ 'n.
k=3 g |
-, ll L
=] 4 = H
uj i -'-d'- ..... = e = D 5
0 0
0 50 100 150 200 0 50 100 150 200
t[s] t[z]
Figure 7

Digital simulation results (scenario 3)

Conclusions

A new stability approach to nonlinear MIMO process characterized by discrete-
time input affine state-space models has been proposed. The approach has been
applied to the stable design of a T-S FC for the level control of spherical three
tank systems. Future research will be focused on the refinement of the stability
analysis theorem in order to become less dependent on the process.
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Appendix 1. Proof of stability condition

Theorem 1 is applied as follows in order to formulate the rule base of the MIMO
FC for the spherical three tank system using the FCS structure given in Fig. 3.
Since the design of the rule consequents is based on controller regions in the input
space of the MIMO FC and on inequalities. Let the universe of discourse be
X =[-2,2]x[-2,2], and e=0e X . The Lyapunov function candidate defined in

(37) is considered, and it is a continuously differentiable positive function on X .

The control laws in the rule consequents of MIMO FC are designed in order to
fulfil (36). Therefore the following analysis is done for all rules.

Rule R*. e; ISP and e, ISP. So X,* =[0,2]x[0,2]. Accepting these conditions,
equation (36) is transformed into

V,(e)<0, Vee X (38)

We choose ul1 and u§ and we introduce the control laws in Table 1. So
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. ek r— u ~u
V(€)= ——m_[ssgn(L %t s )2 gl h3 | 2S\gR]
' AUy, 7Ky ) Kni  Kns kml (39)

+ezkmz[_SSgn(uhs_rz—ez)ng|%_fz—ez|_zs [R].

AUy, TKy,) Kin King King Kz
The following inequalities hold:
ssgn(L =% _Ynsy Jog Bz8 u'” | <2S,/gR (40)
I(ml km3 kml
_sSgn(Em_rzk—ez)ng|:ns_rzk—ez|<zs . (1)
m3 m2 m3 m2

because the terms in the modulus in the left-hand sides of (40) and (41) are in fact
levels and they fulfil the constraints (29). Equations (39)—(41) lead to (38).

Rule R*. e; IS N and e, IS N. So X =[-2,0]x[-2,0]. Accepting these
conditions, equation (36) is transformed into

V,(€) <0, Vee X/ (42)
We choose u/ and uZ, and we introduce the resulted control laws (that belong to
the rule consequents) in Table 1. Therefore

. ek rL—e u r—-e u
V, (e) =1L _[Ssgn(L L 1) [og | L= |25 [gR]
2 A(uhllkml) kml I(m3 kml km3 (43)

L T ( eZ)\/ |ﬂ—“k‘—%|+2s\/gR].
m2

A( h2 /kmz) m3 I(m2 km3

Equations (40) and (41) hold for this rule, too. Equations (40), (41) and (43) lead
to the fulfilment of the condition (42).

Rule R®.e; ISNand e, ISP. So X2 =[-2,0]x[2,0]. Therefore the condition (36)
is transformed into

V,(e)<0,Vee X2 (44)

We choose the expressions of the control laws u’ and uj, and these rule
consequents are introduced in Table 1. Therefore

. ek rL— u ~u
Vy() = ——m__[ssgn(fL L e )2 g% h3 |+23\/ R]
? AUy, 7Kpyy) Km  Kng kml (45)

ezkmz Ups -6 Ups P
+——2m2_ [ Gson(—te _2_72) og| e _2_"2|_2g [gR].
AU, 7K,y,) Kin King Kns Ko
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Equations (40), (41) and (45) lead to the fulfilment of (44).

Rule R*. e; ISP and e, IS N. So X =[0,2]x[-2,0]. Therefore the condition
(36) is transformed into

V,(e)<0,Vee X 2. (46)

We choose u;' and uj, and these rule consequents are introduced in Table 1. So

; ek r—e u r—-e u
Vi (€) = = [Ssgn(< — 12 [2g |2~ | 25 [gR]
) AUy ' Kny) Km  Kng Kt Kn (47)

e,k —e r,—e
§o_ e[ ggn (e 2)\/ e L2782 1 95 [gR],
A( h2/km2) km3 I(m2 I(m3 kmz

and equations (40), (41) and (47) lead to the fulfilment of (46).

Rule R®.e; ISP and e, IS Z. So X/ =[0,2]x[-0.5,0.5]. Therefore the condition
(28) is transformed into

V,(e)<0,Vee X/ (48)

We choose the forms of uf and u;, and these control laws are introduced as rule
consequents in Table 1. Therefore

&K -6 Uy Uh3
5()—A( T )[Ssgn( . m),/ g|i=% kml | 25./gR] )

_ e2 ka
AUy, 'Ky,)
Therefore equations (40) and (49) lead to the fulfilment of (48).

Rule R®.e;I1SZand e; ISP. So X =[-0.5,0.5]x[0,2] and the condition (36) is
transformed into

V,(e)<0,Vee X 2. (50)

We choose u’ and u?, and these rule consequents are introduced in Table 1. So

vs (e) == Efkml
Auy, 1Kyy) (51)
ezk Uhs -6 Ups rn-6
+———2mE[-§ Sgn( —)\/29 | == ——=—[-25{gR].
A( h2 /k ) m3 ka kmS kmz

Equations (41) and (51) lead to the fulfilment of (50).
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Rule R".e; ISNande; IS Z. So X2 =[-2,0]x[-0.5,0.5] and the condition (36)
is transformed into

V,(e)<0,Vee X2 (52)
We choose u? and u?, and these control laws (that belong to the rule
consequents) are introduced in Table 1. Therefore
eZl.zkml

AUy 1K) (53)
e,k

u r,—e u r,—e
#EE[gsgn (i1~ 2 2) 2g | 18~ T2 222|128 [gR],
A(th /kmz) km3 I(m2 I(m3 ka

and equations (41) and (53) lead to the fulfilment of (52).

Rule R®.e;ISZand e, ISN. So X =[-0.5,0.5]x[0,2] and the condition (36) is
transformed into

V,(e) <0,Vee X7 (54)

vs (e) ==

We choose the forms of uf and ug, and these control rules are introduced as rule
consequents in Table 1. Therefore

2
el I(ml

AU 1K) (55)

e2km2 Ups rn-6 Uhs -6
+————"=—[-Sson (—)\/29 | = —-———[+2S{0R],
A(uhz /kmz) I(m3 km2 km3 ka

vg (e) ==

and equations (41) and (55) lead to the fulfilment of (54).

Rule R®. e ISZand e, IS Z. So X =[-0.5,0.5]x[-0.5,0.5] and the condition
(36) is transformed into

V,(e) <0, Vee X (56)

We choose u? and u, and these rule consequents are introduced in Table 1. So

e12kml ezzkmz <0- (57)

V,(e) =— -
? A(uhl / kml) A(uhz /kmz)

Therefore equation (57) guarantees the fulfilment of (56).

Concluding, the formulation of the rule base of the MIMO FC for the spherical
three tank system (Table 1) was done such that to fulfil the condition (36). This
condition is fulfilled because we proved equivalent conditions for all rules.
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