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Abstract: This paper presents a new stability analysis approach dedicated to a class of 

nonlinear discrete-time multi input-multi output (MIMO) Takagi-Sugeno fuzzy control 

systems (FCSs). The theorem presented in this paper offers sufficient conditions for the 

global stability of the FCSs. The applicability of the theoretical results is illustrated by the 

stable design of Takagi-Sugeno fuzzy controllers for the level control of spherical three 

tank systems as nonlinear MIMO processes. Digital simulation results are included. 
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1 Introduction 

The stable design of fuzzy control systems (FCSs) is important because it 

contributes to the fulfilment of very good performance. Many popular stability 

analysis solutions concerning Takagi-Sugeno (T-S) FCSs are offered in this 

context, and their usual formulation is done in the linear matrix inequality (LMI) 

framework. The main features of these solutions are: 

- The linearization can result in uncertainties and inaccuracies of fuzzy models. 

- The quadratic Lyapunov functions may lead usually to conservative stability 

conditions. 
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- Although the LMIs are computationally solvable, they require numerical 

algorithms implemented by software tools. 

Some approaches to the stability analysis of multi input-multi output (MIMO) T-S 

FCSs have been reported recently in the literature. Based on a novel fuzzy 

Lyapunov-Krasovskii functional, a stability analysis and stabilization for a class of 

discrete-time Takagi-Sugeno fuzzy systems is developed in [1]. A useful property 

of the staircase membership functions and a set of linear-matrix-inequality (LMI), 

the stability conditions for fuzzy control systems are offered in [2]-[4]. Sufficient 

conditions for the exponential stability of type-1 and type-2 T-S FCSs are given in 

[5]-[7] in fuzzy positive systems formulations. Fuzzy control design based on 

adaptive control schemes are proposed in [8]-[11]. 

The new contribution of this paper with respect to the state of the art is a stability 

analysis theorem dedicated to nonlinear MIMO processes controlled by T-S fuzzy 

controllers (FCs). Our original proof of the stability analysis theorem is based on 

the eigenvalues of the matrices of quadratic forms. Since these matrices are 

actually vector functions of vector arguments, their eigenvalues are functions of 

state variables. Similar approaches but with different stability formulations and 

proofs are reported in [12]-[15]. 

The specific features of the stability analysis theorem proposed in this paper 

concern the avoidance of both process linearization and the LMIs in the derivation 

and proof of the stability conditions because there is no need to calculate common 

positive definite matrices. Those are the reasons why the suggested approach 

proves to be advantageous with respect to LMI-based stability analysis solutions. 

Furthermore, the stability analysis method is formulated here so as to be well 

suited for T-S FC designs dedicated to a wide class of nonlinear processes [16]-

[26]. 

This paper is organized as follows. Section 2 defines the structure of T-S FCSs 

which control a class of nonlinear MIMO processes. Section 3 gives the stability 

theorem for discrete-time MIMO FCSs. A case study presented in Section 4 offers 

the stable design of T-S FCSs dedicated to the level control of spherical three tank 

systems and digital simulation results. The conclusions are discussed in Section 5. 

2 Fuzzy Control System Structure 

The MIMO FCS structure is presented in Figure 1. Let nRX   ( Nn , 0n ) 

be the universe of discourse. The nonlinear MIMO process is characterized by the 

discrete-time input affine state-space model 
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Figure 1 

MIMO FCS structure 

Figure 1 illustrates: r – the reference input vector which is constant for stabilizing 

control systems, y – the controlled output vector, Xx  – the state vector, 

Xtxtxtxt T

n  ])(...)()([)( 21x ; the superscript T stands for matrix 

transposition, t is the time variable (with the initial time moment 00 t ), 
0x  is the 

initial condition vector, ,: RRn f  mnn RR :B  – the continuous vector-

valued functions which describe the dynamics of the process, 
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and T

m tututut )](...)()([)( 21u  – the control signal vector applied to the 

process. The actuators and measuring instrumentation are included in the 

nonlinear process. 

The i
th

 fuzzy control rule in the rule base of the T-S FC, referred to as 

2 ,...1 ,R  RBRB

i nni  (
RBn – the number of rules), is expressed as 
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where 
kiX

~
 are fuzzy sets with the universes nkX ki ...1  ,  , corresponding to the 

linguistic terms (LTs) afferent to the state variables 
ix , )(xiu  is the control signal 

produced by the rule iR  with the firing strength )(xii   

,1)(0
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where the function AND is a t-norm, and 
kiX

~  are the membership functions of the 

fuzzy sets of LTs 
kiX

~
. An active region of the rule iR  is defined as the set 

}0)(|{=  xx
iA

i XX . 

The control signal vector u  is a function of i  and iu  which depends on the 

inference engine and on the defuzzification method. The weighted sum 

defuzzification method produces the control signal vector ))(( txu , which will also 

be referred to as )(tu  in the sequel for the sake of simplicity: 
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3 Stability Analysis Theorem 

Let the process be characterized by the state-space model defined in (1), and let V 

be a radially unbounded function RXV : , 0xxx   , ,0)( XV . The first 

difference of the function ))(( tV x  along the trajectory of (1), denoted by 

))(( tV x , is 

))(())1(())(( tVtVtV xxx  .      (6) 

Using the notation ))(( tVi x  for the Lyapunov function candidate ))(( tV x , which 

is considered along the trajectory of the system (1) for ))(()( tt i xuu  , the first 

difference of ))(( tVi x  is ))(( tVi x : 

A

iiii XtVtVtV  xxxx   )),(())1(())(( .    (7) 

The following original stability analysis theorem is derived on the basis of 

Lyapunov’s theorem for discrete-time systems using the formulation given in 

[27]: 

Theorem 1. Let the FCS be described by the discrete-time input affine MIMO 

system modelled in (1), the T-S FC characterized by equations (3)–(7), and 0x   

be an equilibrium point of (1). If there exists 

)(  )())((  ,: tttVRXV T xPxx  , continuous in x,    (8) 

where nnR P  is a positive definite matrix such that 

RB

A

ii niXtV ...1  ,   ,0))((  xx ,     (9) 

then 0x   is stable. 
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Proof. The hypotheses of the theorem result in 

RB

A

iiii niXtVtVtV ...1  ,   ,0))(())1(())((  xxxx .            (10) 

The term )1( tx  is next substituted from (1) into (10): 

....1  ,0)(  )(

)())(())(())(())(())(())((

)())(())(())(())((

)(  )()]())(())(([ ]))(())((

))(([)(  )()]())((

))(([  ))](())(())(([)(  )(

)]())(())(([  )]())(())(([

))(())())(())((())((

RB

T

iTTiTTi

iTT

TiTTi

TTi

TTiTT

iTi

i

i

ii

nitt

ttttttt

ttttt

ttttttt

ttttt

tttttt

tttttt

tVtttVtV

















xPx

uxPBxBuxPfxBu

uxPBxfxPfxf

xPxuxBxfPxBu

PxfxPxuxB

xfPxBuxfxPx

uxBxfPuxBxf

xuxBxfx

            (11) 

The multiplication of (11) by ))(( ti
x  and the calculation of the sum result in 
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Equation (12) is divided by 



RBn

i

i t
1

0))((x  and equation (5) is applied to 

transform the resulted sums as follows: 
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The expression of ))(( tV x  results from (1) and (6): 
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In the following we prove that 
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The terms )())((  ))(()( tttt TT uxBPxBu  and )())(( ))(())(( tttt iTTi uxBPxBu  are 

quadratic forms because the matrix 

mmT Rttt  ))((  ))(())(( xBPxBxM                (16) 

is symmetric. The matrix ))(( txM  has the following spectral decomposition 

(Jordan decomposition): 
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The expression of 
jw  from (20) is substituted into (21) leading to the following 

result: 
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The expression of )(tu  is substituted from (5) into the right-hand side of (22), and 

the sums are manipulated as follows: 
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The application of Cauchy-Buniakovski-Schwarz’s inequality to the second 

fraction in the right-hand side of (24) leads to 
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The multiplication of (23) by ))(( ti
x , the calculation of the sum and the division 
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Therefore equations (26) and (27) demonstrate the inequality (15). The inequality 

(15) is applied to (13) and (14), which result finally in 

0))((  tV x .                   (28) 

Therefore, the equilibrium point at the origin will be stable. The proof is now 

complete. Concluding, Theorem 1 offers sufficient stability conditions concerning 

the class of fuzzy control systems defined in Section 2. 

4 Case Study 

The case study applies Theorem 1 to the design of T-S FCSs dedicated to the level 

control of spherical three tank systems. The process structure presented in Figure 

2 illustrates the three spherical tanks, T1, T2 and T3, with the same radius R, in 

series connection by two connecting pipes of inner area S. All three tanks are 

equipped with piezo-resistive pressure sensors (viz. the level sensors LS1, LS2 

and LS3) to measure the liquid levels. The FC actuates (by means of the pumps P1 

and P2) the flow rates qp1 and qp2 in order to control independently the levels in 

the tanks T1 (h1) and T2 (h2), and the following constraints imposed to the levels 

result from the process structure: 

3...1  ,20  iRhi
.                  (29) 

A typical control objective pointed out in [13] is to keep the liquid levels h1 and h2 

at the imposed levels while the liquid level in the tank T3 (h3) is uncontrollable. 

The level sensors give the measured levels hm1, hm2 and hm3 used by the FC. The 

connecting pipes and tanks are equipped with manually adjustable valves and 

outlets to simulate clogs and leaks. 

 

Figure 2 

FCS and process structure 
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The simplified FCS structure is presented in Figure 3, where 
T

eeeeee ddd ]111[ 332211 d  is the disturbance input vector, 

Trr ][ 21r  is the reference input vector, 
ie  

2...1  ,  ihkrure imiihiii
,                 (30) 

are the control errors grouped in the control error vector Tee ][ 21e , 
1e , 

2e  

and 
3e  are the deterministic disturbance inputs are the positions of the valves V1, 

V2 and V3, 1,,0 321  eee
, with the notations 0 for the completely close valves 

and 1 for the completely open valves, and 3...1  , ikmi
, are the sensor gains. 

Using the notation 3...1  ),2()(  ihRhhA iii
, for the transversal section area 

of sphere (i.e., tank) i at height (liquid level) hi, the first principle mathematical 

model of the process proposed in [13] is discretized, and the following disturbed 

discrete-time process model is used in T-S FC design: 
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      (31) 

where SV is the inner area of outflow pipes, and kp1 and kp2 are the actuator gains. 

The relation between the variables in the model (31) and the variables in the 

discrete-time input affine MIMO state-space model (1) are 

TTT hyhyeexx ][  ,][][ 22112121  yex .              (32) 
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Figure 3 

Simplified FCS structure 

Figure 3 shows that the MIMO FC consists of two separately designed T-S FCs, 

FC1 and FC2. The fuzzification in FC is done using the input membership 

functions presented in Figure 4. 

 

Figure 4 

Input membership functions 

The inference engine employs the MIN t-norm for the AND operator as specified 

in Section 2. The inference engine is assisted by the following complete rule base 
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where Tuu ][ 21u , and the rule consequents 9...1  ,][ 21  iuu Tii

ku , are 

determined as follows on the basis of Theorem 1. More inputs can be considered, 

but this leads to the complication of the FCS structure and of the design, and rule 

base reduction techniques should be used [28]-[31]. The Lyapunov function 

candidate 
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is chosen in order to design stable FCSs for this MIMO process. For 0d   the 
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        (35) 

The control laws in the rule consequents of MIMO FC are designed to fulfil the 

condition (9) in Theorem 1, which leads to 

9...1  ,0))(())(())(()1(  itttFtV i

T

i euege .               (36) 

The condition (36) is important because it supports the formulation of the rule 

base of MIMO FC summarized in Table 1 and proved in Appendix 1. But the 

controller design depends on the process, and different expressions of Lyapunov 

function candidates can be used in other applications [32]-[41]. 

Concluding, Theorem 1 is verified. Therefore the T-S FCS designed in this section 

is stable. 

The values of process parameters considered in this case study are 

, V/m 1  s), /(Vm 094.0
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21
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mmpp

V
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gRSS
              (37) 

and the sampling period was set to s 01.0sT . 

Three digital simulation scenarios were considered in order to illustrate the stable 

behaviour of our T-S FCS scenario 1 (reference inputs m 5.11 r  and m 5.12 r , 

and initial conditions m 1.0)0(1 h , m 9.1)0(2 h  and m 5.1)0(3 h  applied to 

T-S FCS), scenario 2 ( m 5.01 r , m 5.12 r , m 1.0)0(1 h , m 1.1)0(2 h  and 



R.-E. Precup et al. Stable Design of a Class of Nonlinear Discrete-Time MIMO Fuzzy Control Systems 

 – 68 – 

m 1)0(3 h  applied to T-S FCS) and scenario 3 ( m 5.01 r , m 5.12 r , 

m 1)0(1 h , m 1.0)0(2 h  and m 1)0(3 h  applied to T-S FCS). The trapezoidal 

function defined in [13] models the variations of deterministic disturbance inputs. 
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The digital simulation results obtained for the simulation scenarios 1, 2 and 3 are 

presented in Figures 5, 6 and 7, respectively. These results highlight the stable 

behaviour of the T-S FCS for different inputs and initial conditions. 

 

Figure 5 

Digital simulation results (scenario 1) 

 

Figure 6 

Digital simulation results (scenario 2) 

 

Figure 7 

Digital simulation results (scenario 3) 

Conclusions 

A new stability approach to nonlinear MIMO process characterized by discrete-

time input affine state-space models has been proposed. The approach has been 

applied to the stable design of a T-S FC for the level control of spherical three 

tank systems. Future research will be focused on the refinement of the stability 

analysis theorem in order to become less dependent on the process. 



R.-E. Precup et al. Stable Design of a Class of Nonlinear Discrete-Time MIMO Fuzzy Control Systems 

 – 70 – 

Acknowledgement 

This work was supported by a grant of the Romanian National Authority for 

Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-

0109. The cooperation between the Óbuda University, Budapest, Hungary, the 

University of Ljubljana, Slovenia, and the “Politehnica” University of Timisoara, 

Romania, in the framework of the Hungarian-Romanian and Slovenian-Romanian 

Intergovernmental S & T Cooperation Programs is acknowledged. 

References 

[1] L. Wu, Z. Su, P. Shi P, J. Qiu: A New Approach to Stability Analysis and 

Stabilization of Discrete-Time T-S Fuzzy Time-Varying Delay Systems, 

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 

Vol. 41, No. 1, 2011, pp. 273-286 

[2] H. K. Lam: LMI-based Stability Analysis for Fuzzy-Model-based Control 

Systems Using Artificial T-S Fuzzy Model, IEEE Transactions on Fuzzy 

Systems, Vol. 19, No. 3, 2011, pp. 505-513 

[3] M. Narimani, H. K. Lam, R. Dilmaghani, C. Wolfe: LMI-based Stability 

Analysis of Fuzzy-Model-based Control Systems Using Approximated 

Polynomial Membership Functions, IEEE Transactions on Systems, Man, 

and Cybernetics, Part B: Cybernetics, Vol. 41, No. 3, 2011, pp. 713-724 

[4] H. K. Lam, M. Narimani: Quadratic-Stability Analysis of Fuzzy-Model-

based Control Systems Using Staircase Membership Functions, IEEE 

Transactions on Fuzzy Systems, Vol. 18, No. 1, 2010, pp. 125-137 

[5] S. Jafarzadeh, M. S. Fadali, A. H. Sonbol: Stability Analysis and Control of 

Discrete Type-1 and Type-2 TSK Fuzzy Systems: Part I. Stability Analysis, 

IEEE Transactions on Fuzzy Systems, Vol. 19, No. 6, 2011, pp. 989-1000 

[6] S. Jafarzadeh, M. S. Fadali, A. H. Sonbol: Stability Analysis and Control of 

Discrete Type-1 and Type-2 TSK Fuzzy Systems: Part II. Control Design, 

IEEE Transactions on Fuzzy Systems, Vol. 19, No. 6, 2011, pp. 1001-1013 

[7] M. S. Fadali, S. Jafarzadeh: Fuzzy TSK Positive Systems: Stability and 

Control, Proceedings of American Control Conference (ACC 2011), San 

Francisco, CA, 2011, pp. 4964-4969 

[8] I. Škrjanc, S. Blažič, D. Matko: Direct Fuzzy Model-Reference Adaptive 

Control, International Journal of Intelligent Systems, Vol. 17, No. 10, 2002, 

pp. 943-963 

[9] M. Kratmüller: Combining Fuzzy/Wavelet Adaptive Error Tracking 

Control Design, Acta Polytechnica Hungarica, Vol. 7, No. 4, 2010, pp. 

115-137 

[10] Y.-S. Huang, D.-S. Xiao, X.-X. Chen, Q.-X. Zhu, Z.-W. Wang: H 

Tracking-based Decentralized Hybrid Adaptive Output Feedback Fuzzy 



Acta Polytechnica Hungarica Vol. 9, No. 2, 2012 

 – 71 – 

Control for a Class of Large-Scale Nonlinear Systems, Fuzzy Sets and 

Systems, Vol. 171, No. 1, 2011, pp. 72-92 

[11] M. A. Khanesar, M. Teshnehlab: Model Reference Fuzzy Control of 

Nonlinear Dynamical Systems Using an Optimal Observer, Acta 

Polytechnica Hungarica, Vol. 8, No. 4, 2011, pp. 35-54 

[12] R.-E. Precup, S. Preitl, I. J. Rudas, M. L. Tomescu, J. K. Tar: Design and 

Experiments for a Class of Fuzzy Controlled Servo Systems. IEEE/ASME 

Transactions on Mechatronics, Vol. 13, No. 1, 2008, pp. 22-35 

[13] R.-E. Precup, M.-L. Tomescu, E. M. Petriu, S. Preitl, J. Fodor, D. 

Bărbulescu: Stability Analysis of a Class of MIMO Fuzzy Control Systems. 

Proceedings of 2010 IEEE International Conference on Fuzzy Systems 

(FUZZ-IEEE 2010), Barcelona, Spain, 2010, pp. 2885-2890 

[14] R.-E. Precup, M.-L. Tomescu, S. Preitl, E. M. Petriu, C.-A. Dragoş: 

Stability Analysis of Fuzzy Logic Control Systems for a Class of Nonlinear 

SISO Discrete-Time Systems, Preprints of 18
th

 IFAC World Congress, 

Milano, Italy, 2011, pp. 13612-13617 

[15] R.-E. Precup, E. M. Petriu, C.-A. Dragoş, R.-C. David: Stability Aanalysis 

Results Concerning the Fuzzy Control of a Class of Nonlinear Time-

Varying Systems, Theory and Applications of Mathematics & Computer 

Science, Vol. 1, No. 1, 2011, pp. 2-10 

[16] S. Blažič, I. Škrjanc, D. Matko: Globally Stable Direct Fuzzy Model 

Reference Adaptive Control, Fuzzy Sets and Systems, Vol. 139, No. 1, 

2003, pp. 3-33 

[17] A. Palcu, S. Nădăban, A. Şandru: Some Remarks on the Boson Mass 

Spectrum in a 3-3-1 Gauge Model, Romanian Journal of Physics, Vol. 56, 

Nos. 5-6, 2011, pp. 673-681 

[18] D. Hládek, J. Vaščák, P. Sinčák: Multi-Robot Control System for Pursuit-

Evasion Problem, Journal of Electrical Engineering, Vol. 60, No. 3, 2009, 

pp. 143-148 

[19] Gy. Hermann, J. K. Tar, K. R. Kozlowsky: Design of a Planar High 

Precision Motion Stage, in: Robot Motion and Control 2009, K. R. 

Kozlowsky (Ed.), Springer-Verlag, Berlin, Heidelberg, 2009, pp. 371-379 

[20] R. E. Haber, R. M. del Toro, A. Gajate: Optimal Fuzzy Control System 

Using the Cross-Entropy Method. A Case Study of a Drilling Process, 

Information Sciences, Vol. 180, No. 14, 2010, pp. 2777-2792 

[21] J. A. Iglesias, P. Angelov, A. Ledezma, A. Sanchis: Evolving Classification 

of Agents’ Behaviors: A General Approach, Evolving Systems, Vol. 1, No. 

3, 2010, pp. 161-171 



R.-E. Precup et al. Stable Design of a Class of Nonlinear Discrete-Time MIMO Fuzzy Control Systems 

 – 72 – 

[22] Gy. Mester: Intelligent Mobile Robot Motion Control in Unstructured 

Environments, Acta Polytechnica Hungarica, Vol. 7, No. 4, 2010, pp. 153-

165 

[23] K. Y. Chan, C. K. Kwong, T. S. Dillon, Y. C. Tsim: Reducing Overfitting 

in Manufacturing Process Modeling Using a Backward Elimination-based 

Genetic Programming, Applied Soft Computing, Vol. 11, No. 2, 2011, 

1648-1656 

[24] N. J. Cotton, B. M. Wilamowski: Compensation of Nonlinearities Using 

Neural Networks Implemented on Inexpensive Microcontrollers, IEEE 

Transactions on Industrial Electronics, Vol. 58, No. 3, 2011, pp. 733-740 

[25] N. Kasabov, H. N. A. Hamed: Quantum-Inspired Particle Swarm 

Optimisation for Integrated Feature and Parameter Optimisation of 

Evolving Spiking Neural Networks, International Journal of Artificial 

Intelligence, Vol. 7, No. A11, 2011, pp. 114-124 

[26] O. Linda, M. Manic: Uncertainty-Robust Design of Interval Type-2 Fuzzy 

Logic Controller for Delta Parallel Robot, IEEE Transactions on Industrial 

Informatics, Vol. 7, No. 11, 2011, pp. 661-670 

[27] J. J. E. Slotine, W. Li: Applied Nonlinear Control, Prentice-Hall, 

Englewood Cliffs, NJ, 1991 

[28] P. Baranyi, K. F. Lei, Y. Yam: Complexity Reduction of Singleton-based 

Neuro-Fuzzy Algorithm, Proceedings of IEEE International Conference 

System, Man, and Cybernetics (SMC’00), Nashville, TN, USA, 2000, pp. 

2503-2508 

[29] P. Baranyi, D. Tikk, Y. Yam, R. J. Patton: From Differential Equations to 

PDC Controller Design via Numerical Transformation, Computers in 

Industry, Vol. 51, No. 3, 2003, pp. 281-297 

[30] Zs. Cs. Johanyák, Sz. Kovács: Fuzzy Rule Interpolation Based on Polar 

Cuts, in: Computational Intelligence, Theory and Applications, B. Reusch 

(Ed.), Springer-Verlag, Berlin, Heidelberg, New York, 2006, pp. 499-511 

[31] Zs. Cs. Johanyák: Student Evaluation Based on Fuzzy Rule Interpolation, 

International Journal of Artificial Intelligence, Vol. 5, No. A10, 2010, pp. 

37-55 

[32] L. Horváth, I. J. Rudas: Modeling and Problem Solving Methods for 

Engineers, Academic Press, Elsevier, Burlington, MA: 2004 

[33] A. Palcu: Charged and Neutral Currents in a 3-3-1 Model with Right-

Handed Neutrinos, Modern Physics Letters A, Vol. 23, No. 6, 2008, pp. 

387-399 

[34] B. Danković, S. Nikolić, M. Milojković, Z. Jovanović: A Class of Almost 

Orthogonal Filters, Journal of Circuits, Systems, and Computers, Vol. 18, 

No. 5, 2009, pp. 923-931 



Acta Polytechnica Hungarica Vol. 9, No. 2, 2012 

 – 73 – 

[35] J. Vaščák, L. Madarász: Adaptation of Fuzzy Cognitive Maps – A 

Comparison Study, Acta Polytechnica Hungarica, Vol. 7, No. 3, 2010, pp. 

109-122 

[36] Z.-Y. Zhao, W.-F. Xie, H. Hong: Hybrid Optimization Method of 

Evolutionary Parallel Gradient Search, International Journal of Artificial 

Intelligence, Vol. 5, No. A10, 2010, pp. 1-16 

[37] J. K. Tar, I. J. Rudas, J. F. Bitó, J. A. Tenreiro Machado, K. R. Kozlowski: 

Adaptive Tackling of the Swinging Problem for a 2 DOF Crane – Payload 

System, in: Computational Intelligence in Engineering, I. J. Rudas, J. 

Fodor, J. Kacprzyk (Eds.), Springer-Verlag, Berlin, Heidelberg, 2010, pp. 

103-114 

[38] O. Linda, M. Manic: Fuzzy Force-Feedback Augmentation for Manual 

Control of Multi-Robot System, IEEE Transactions on Industrial 

Electronics, Vol. 58, No. 8, 2011, pp. 3213-3220 

[39] K. Y. Chan, T. S. Dillon, C. K. Kwong: Modeling of a Liquid Epoxy 

Molding Process Using a Particle Swarm Optimization-Based Fuzzy 

Regression Approach, IEEE Transactions on Industrial Informatics, Vol. 7, 

No. 1, 2011, pp. 148-158 

[40] A. Sadighi, W.-J. Kim: Adaptive-Neuro-Fuzzy-based Sensorless Control of 

a Smart-Material Actuator, IEEE/ASME Transactions on Mechatronics, 

Vol. 16, No. 2, 2011, pp. 371-379 

[41] A. E. Ruano, C. L. Cabrita, P. M. Ferreira, L. T. Kóczy: Exploiting the 

Functional Training Approach in B-Splines, Preprints of 1
st
 IFAC 

Conference on Embedded Systems, Computational Intelligence and 

Telematics in Control (CESCIT 2012), Würzburg, Germany, 2012, pp. 

127-132 

Appendix 1. Proof of stability condition 

Theorem 1 is applied as follows in order to formulate the rule base of the MIMO 

FC for the spherical three tank system using the FCS structure given in Fig. 3. 

Since the design of the rule consequents is based on controller regions in the input 

space of the MIMO FC and on inequalities. Let the universe of discourse be 

]2,2[]2,2[ X , and X 0e . The Lyapunov function candidate defined in 

(37) is considered, and it is a continuously differentiable positive function on X . 

The control laws in the rule consequents of MIMO FC are designed in order to 

fulfil (36). Therefore the following analysis is done for all rules. 

Rule 1R . e1 IS P and e2 IS P. So ]2,0[]2,0[1 AX . Accepting these conditions, 

equation (36) is transformed into 

AXV 11   ,0)(  ee .                   (38) 

We choose 1

1u  and 1

2u  and we introduce the control laws in Table 1. So 
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because the terms in the modulus in the left-hand sides of (40) and (41) are in fact 

levels and they fulfil the constraints (29). Equations (39)–(41) lead to (38). 

Rule 2R . e1 IS N and e2 IS N. So ]0,2[]0,2[2 AX . Accepting these 

conditions, equation (36) is transformed into 

AXV 22   ,0)(  ee .                   (42) 

We choose 2

1u  and 2

2u , and we introduce the resulted control laws (that belong to 

the rule consequents) in Table 1. Therefore 
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Equations (40) and (41) hold for this rule, too. Equations (40), (41) and (43) lead 

to the fulfilment of the condition (42). 

Rule 3R . e1 IS N and e2 IS P. So ]0,2[]0,2[3 AX . Therefore the condition (36) 

is transformed into 

AXV 33  ,0)(  ee .                   (44) 

We choose the expressions of the control laws 3

1u  and 3

2u , and these rule 

consequents are introduced in Table 1. Therefore 

. ]2||2)(sgn[
)/(

  

]2||2)sgn([
)/(

)(

2

22

3

3

2

22

3

3

22

22

3

3

1

11

3

3

1

11

11

11
3

gRS
k

er

k

u
g

k

er

k

u
S

kuA

ke

gRS
k

u

k

er
g

k

u

k

er
S

kuA

ke
V

mm

h

mm

h

mh

m

m

h

mm

h

mmh

m















e

             (45) 



Acta Polytechnica Hungarica Vol. 9, No. 2, 2012 

 – 75 – 

Equations (40), (41) and (45) lead to the fulfilment of (44). 

Rule 4R . e1 IS P and e2 IS N. So ]0,2[]2,0[4 AX . Therefore the condition 

(36) is transformed into 

AXV 44  ,0)(  ee .                   (46) 

We choose 4

1u  and 4

2u , and these rule consequents are introduced in Table 1. So 
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             (47) 

and equations (40), (41) and (47) lead to the fulfilment of (46). 

Rule 5R . e1 IS P and e2 IS Z. So ]5.0,5.0[]2,0[5 AX . Therefore the condition 

(28) is transformed into 

AXV 55  ,0)(  ee .                   (48) 

We choose the forms of 5

1u  and 5

2u , and these control laws are introduced as rule 

consequents in Table 1. Therefore 
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Therefore equations (40) and (49) lead to the fulfilment of (48). 

Rule 6R . e1 IS Z and e2 IS P. So ]2,0[]5.0,5.0[6 AX  and the condition (36) is 

transformed into 

AXV 66  ,0)(  ee .                   (50) 

We choose 6

1u  and 6

2u , and these rule consequents are introduced in Table 1. So 
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Equations (41) and (51) lead to the fulfilment of (50). 
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Rule 7R . e1 IS N and e2 IS Z. So ]5.0,5.0[]0,2[7 AX  and the condition (36) 

is transformed into 

AXV 77  ,0)(  ee .                   (52) 

We choose 8

1u  and 8

2u , and these control laws (that belong to the rule 

consequents) are introduced in Table 1. Therefore 
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             (53) 

and equations (41) and (53) lead to the fulfilment of (52). 

Rule 8R . e1 IS Z and e2 IS N. So ]2,0[]5.0,5.0[8 AX  and the condition (36) is 

transformed into 

AXV 88  ,0)(  ee .                   (54) 

We choose the forms of 8

1u  and 8

2u , and these control rules are introduced as rule 

consequents in Table 1. Therefore 

],2||2)(sgn[
)/(

   

)/(
)(

2

22

3

3

2

22

3

3

22

22

11

1

2

1
8

gRS
k

er

k

u
g

k

er

k

u
S

kuA

ke

kuA

ke
V

mm

h

mm

h

mh

m

mh

m









e

           (55) 

and equations (41) and (55) lead to the fulfilment of (54). 

Rule 9R . e1 IS Z and e2 IS Z. So ]5.0,5.0[]5.0,5.0[9 AX  and the condition 

(36) is transformed into 

AXV 99  ,0)(  ee .                   (56) 

We choose 9

1u  and 9

2u , and these rule consequents are introduced in Table 1. So 
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Therefore equation (57) guarantees the fulfilment of (56). 

Concluding, the formulation of the rule base of the MIMO FC for the spherical 

three tank system (Table 1) was done such that to fulfil the condition (36). This 

condition is fulfilled because we proved equivalent conditions for all rules. 


