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Abstract: Depression widely affects global populations and is one of the leading causes of 

disability and suicide. Despite its prevalence, traditional diagnosis for depression is 

exceedingly associated with misidentification and over-estimation, due to its subjective 

nature. With advances in affective computing, computational approaches make it possible 

to discern depression through second party physiological indicators; people observing the 

behaviour of depressed individuals have measurable changes in their physiological signals. 

We explored Blood volume pulse (BVP), Galvanic Skin Response (GSR), Skin Temperature 

(ST) and Pupillary Dilation (PD) from observers as valid sources to indicate depression in 

others. The behaviour of individuals suffering from four levels of depression was shown in 

16 videos to 12 experimental observers whose physiological signals were recorded. We 

found that depression provokes visceral physiological reactions in observers that we can 

measure, resulting in neural network classification of 94% accuracy. In contrast, we also 

found that depression does not provoke strong conscious recognition (‘verbal’) in 

observers, which is only slightly over a chance level, at 27%. 

Keywords: depression detection; physiological signals; observers; galvanic skin response; 

skin temperature; blood volume pulse; pupillary dilation, affective computing 

1 Introduction 

Major depressive disorder, or ‘depression’ for short, is a common but serious 

mental disorder that widely affects populations around the world [1]. Its cause is 

believed to be a combination of genetics [2] and environmental factors [3], such 

as, major life changes, trauma, or long-lasting exposure to difficulties. It usually 

presents with persistent depressed mood, loss of interest and enjoyment, feelings 

of sadness, guilt or low self-esteem, poor concentration, and at its worst, suicidal 

actions [4]. According to the World Health Organization (WHO) [1], depression is 

one of the leading causes of disability, affecting more than 300 million people. 
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Since depression comes with some observable behavioural symptoms regarding 

the normal expression of emotions and general functioning [5], traditional 

diagnostic approaches for depression rely on subjective measures of behaviours. 

These methods are typically involved with self-reported questionnaires such as the 

Beck Depression Index (BDI) [6], or clinician-assisted interview style assessments 

such as the Hamilton Rating Scale for Depression (HAMD) [7], which score 

patients’ depression level by the severity of their symptoms. However, meta-

analyses of depression diagnosis have indicated the wide-spread existence of both 

over- and under-recognition [8] [9]. The central problem is that these diagnostic 

tools are subjective and biased, as they are heavily associated with patients’ 

sensitivity to symptoms and willingness to honestly reveal the symptoms [10]. 

Given that the accuracy of depression diagnosis correlates with reassessments and 

longer consultation time [8], these approaches can be time-consuming. To better 

serve the needs of the patient, medical profession and community, it is desirable 

that we find simpler and less subjective methods of depression diagnosis. 

To tackle the unreliable issues of subjective assessments of depression and other 

emotions, research has explored the possibility of measuring emotions objectively 

via human physiological signals along with self-assessment reports [11], based on 

the demonstration that physiological signals are highly correlated with subject 

assessments [12]. These measures are typically automated and involve affective 

sensors to study changes in galvanic skin response (GSR) [13], blood volume and 

heart rate activities [13]–[16], pupillary sizes and eye movements [17]. 

That emotion can be distinguished based on physiological signals relies on the 

human peripheral nervous system, which consists of, the somatic nervous system 

(SoNS), which controls voluntary body movement, and the autonomic nervous 

system (ANS). The ANS is responsible for involuntary activities and, without 

conscious awareness, it automatically regulates bodily functions such as heart rate, 

respiratory rate, and pupillary responses. The ANS consists of the sympathetic 

nervous system (SNS) and the parasympathetic nervous system (PNS). The PNS 

is responsible for activities during resting and digesting states. The SNS, 

dominates when a person is threatened or under stress. To get the body ready to 

cope with danger, it expands pupils, allowing more light to enter the eyes for 

better vision, and increases the respiratory rate and heart rate, providing better 

oxygenation and easier blood flow throughout the body. It is often known as the 

‘fight or flight’ system. Thus, we expect that SNS activation will change multiple 

physiological signals in the individuals undergoing such emotion. 

Given that physiological responses maintained by the ANS can indicate 

individuals’ inner states without conscious awareness, physiological signals have 

been used as biomarkers for depression. For example, depressed patients have 

different eye gaze behaviours [18], lower Galvanic Skin Response (GSR) [19], 

reduced Heart Rate Variability (HRV) [20], and depressed brain activities as 

captured by Near Infrared Spectroscopy (NIRS) [21] and Electroencephalogram 

(EEG) [22]. These signals provide more objective and quantitative criteria, and 
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when combined with machine learning technologies, can play an essential role in 

providing an objective assessment for depression. 

Despite the physiological correlates of depressed patients, since individuals with 

depression tend to withdraw from social activities [1] [8], and so leaving them 

with less chance to access these facilities, our goal is to investigate physiological 

signals of observers to identify others’ depression level. Our previous work 

demonstrated the feasibility of using observers’ physiological signals as indicators 

of other individuals’ depression [23] using neural networks. Subtle cues could be 

noticed by observers, which are reflected in observers’ physiological signals. We 

found that neural networks trained with physiological features can recognise other 

individuals’ depression levels with 92% accuracy. We extend this methodological 

and analytical approach, to ascertain whether neural networks trained on 

observers’ BVP and associated heart rate (HR) and heart rate variability (HRV) 

signals can identify other individuals’ depression. The identification of universal 

physiological indicators from observers watching depressed individuals could 

assist with earlier diagnosis, which, combined with known effective treatments, 

would decrease the burden for individuals and society. The use of physiological 

signals could also be applicable in other domains such as engineering [24]. 

This paper examines whether observers’ BVP and associated heart rate (HR) and 

heart rate variability (HRV) signals respond to depressed individuals and whether 

a computational model trained with single BVP signal, as well as, trained with a 

hybrid of four physiological signals (GSR, BVP, ST, and PD), could better 

recognise other individuals’ depression level. It details an experiment conducted 

to collect multiple physiological response signals from experiment participants 

who watched videos of people with various levels of depression and includes 

selecting optimally useful features from the response signals. The paper concludes 

with a summary of the findings and suggests directions for future work. 

2 Experimental Design 

Our aim is to detect other individuals’ depression using observers’ Blood Volume 

Pulse (BVP), Galvanic Skin Response (GSR), Skin Temperature (ST) and 

Pupillary Dilation (PD) signals, both singly and in combination. Following a 

similar experimental design to our previous work [23], we selected sixteen videos 

from the 2014 Audio-Visual Emotion Challenge (AVEC 2014) dataset as stimuli 

[25] in which individuals with four depression severities read aloud a paragraph in 

German. We recruited 12 participants as observers to watch the video stimuli, 

while we recorded their BVP, GSR, ST, and PD. We also collected observers’ 

conscious subjective depression prediction of the individuals in the videos via a 

survey. A schematic diagram of the equipment setup is provided in Figure 1. 
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Figure 1 

A schematic diagram of the equipment setup 

2.1 Stimuli 

We used videos from the Northwind category of the AVEC 2014 dataset [25]. The 

Northwind category consists of 150 webcam video recordings of 4 categories of 

participants individually reading aloud a paragraph in German. Each recording 

was labelled with a single depression level derived from involved participants 

self-reported depression level indicated by the Beck Depression Inventory – II 

(BDI-II) [6]. This index gives depression scores ranging from 0 to 63 and groups 

the scores into four depression categories: 

 0 - 13 Indicates no or minimal depression 

 14 - 19 Mild depression 

 20 - 28 Moderate depression 

 29 - 63 Severe depression 

We chose 16 videos (see Table 1) with similar durations, from 36 s to 50 s (Ave = 

41.2, Standard Deviation = 3.8), evenly across the four depression categories. 

Table 1 

Stimuli videos selected from the testing set of Northwind tasks in AVEC 2014 

Video name 
Duration 

(sec) 
Depression level Category 

210_2, 249_1, 341_1, 

240_3 
43, 42, 39, 41 1, 4, 7, 11 no 

220_3, 242_1, 315_3, 

214_3 
39, 42, 40 43 15, 16, 17, 18 mild 

245_3, 218_3, 325_2. 

250_1 
40, 39, 39, 41 21 moderate 

226_2, 359_1. 315_2, 

237_1 
41, 45, 58, 47 30 severe 
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2.2 Participants 

Fourteen students who do not understand German and do not have prior training in 

depression recognition took part in the experiment. They were recruited to watch 

German-language depression videos as §2.4 Procedure below describes. Ethics 

Approval was obtained from the Australian National University Human Research 

Ethics Committee. Two subjects were excluded based on the predefined exclusion 

criteria for having a history of cardiovascular disease or technical failures of the 

sensors. The final sample consisted of 12 participants, six males, and six females, 

from 18 to 27 years in age (mean = 21.1, standard deviation = 2.8) with normal or 

corrected-to-normal vision and hearing. This sample size of participants is normal 

for publications as a preliminary study in medicine [26]. 

2.3 Measures and Sensors 

2.3.1 Blood Volume Pulse (BVP) 

Blood Volume Pulse (BVP) indicates the volume of blood running through the 

vessels over time [27]. It can be measured by a photoplethysmographic (PPG) 

sensor using infra-red light through the skin surface and measures the reflected 

light. With every beat, the heart pushes a volume 

of blood causing a wave which travels from the 

heart, and returns to the heart. As the surge of 

blood dissipates, the signal falls. The direct pulse 

wave then bounces back from the lower body, 

causing a secondary wave, which appears as a 

second rise in the signal. The signal then drops 

until the next heartbeat. A typical BVP signal is 

illustrated in Figure 2, which consists of the 

systolic peak (Figure 2-I), dicrotic notch (2-II), 

diastolic peak (2-III) and diastolic point (2-IV). 

BVP can provide information on changes in SNS 

activation, which are influenced by emotional context. For example, BVP is 

negatively correlated with stress and positively correlated with sadness [28]. We 

can derive other cardiovascular measures from BVP, such as heart rate (HR) and 

heart rate variability (HRV). HR is a useful predictor of emotional valence and 

can distinguish between positive and negative emotions [29]. HRV refers to the 

temporal, beat-to-beat variations, in the consecutive heartbeats, and can indicate 

mental effort and emotions [28]. 

We placed an Empatica E4 wristband on the wrist of the non-dominant hand of 

observers [30], which recorded BVP with a sampling rate of 64 Hz [31]. 

 

Figure 2 

A typical BVP waveform 
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2.3.2 Galvanic Skin Response (GSR) 

Galvanic Skin Response (GSR) measures electrical conductivity of the skin, 

which varies due to the amount of sweat [32]. Stress or danger stimulates glands 

to produce salty sweat, which increases skin conductivity [33]. GSR is composed 

of two separate electro dermal activities: the tonic component is slow-moving and 

shows the general activity of the perspiratory glands caused by body or external 

temperature, while the phasic component is a faster distinctive waveform in the 

signal, and is considered to be linearly correlated with the intensity of arousal in 

mental state [11]. In this study, we recorded participants’ wrist GSR using an 

Empatica E4 wristband with a sampling rate of 4 Hz [31]. 

2.3.3 Skin Temperature (ST) 

Skin Temperature (ST) fluctuates due to vasodilatation of peripheral blood vessels 

induced by increased activity of the SNS. It is negatively correlated with 

unpleasant emotions such as stress [34] and fear [35] because blood is redirected 

to vital organs as a protection measure. In this study, we recorded participants’ 

wrist ST using an Empatica E4 wristband with a sampling rate of 4 Hz [31]. 

2.3.4 Pupillary Dilation (PD) 

Pupillary Dilation (PD) provides indications of changes in mental states and of 

mental activities [36]. Pupil size was found to respond to emotionally stimuli. The 

pupil is significantly bigger after positively or negatively arousing stimuli than 

after neutral stimuli [37]. We used The EyeTribe, an affordable, non-intrusive and 

precise eye tracker [38], to record pupil size at 60 Hz. Python code was written to 

analyse data collected by the EyeTribe SDK software [39]. 

2.4 Procedure 

The experiment was conducted with each participant in the same quiet experiment 

room. Participants were given a written set of instructions and guidance from the 

experiment instructor before they provided written informed consent. An 

Empatica E4 sensor [31] was attached to the wrist of each participant’s non-

dominant hand [30], and eye gaze calibration for the eye tracker was performed. 

Participants then filled in a questionnaire to collect demographic and health 

characteristics that may affect cardiovascular and pupillary responses. Each 

participant then watched 16 videos and was asked at the end of each video to 

respond to a question of “How would you like to rank the patient’s depression 

level?” on a four-item scale of “None, Mild, Moderate, Severe” that matches with 

the BDI-II [6] scale. A five-second gap was provided between videos. The videos 

were presented in an order balanced way to avoid the effects of presentation order. 

At the end of the experiment, participants filled in the BDI-II [6] survey assessing 

their depression level. In total, the experiment took approximately forty minutes. 
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3 Methodology 

Following our previous work methodology [23], we first pre-processed the 

physiological responses of observers to remove noise and individual bias. We then 

computed features for the four recorded physiological signals before we trained 

neural networks with the most significant features selected by a genetic algorithm. 

An overall structure of our depression recognition system is illustrated in Figure 3. 

 

Figure 3 

An overall structure of our depression recognition system 

3.1 Pre-processing 

For all four physiological signals, we first extracted the raw signal for all 

observers when they were watching the full set of 16 videos, removing the noise 

caused by the movement of observers, which mostly happened at the beginning 

and the end of the recording when they were filling in the demographic 

questionnaire and post-experiment survey. We then applied a cubic spline 

interpolation to the missing pupil size data caused by occasional eye blinks. This 

procedure was employed on the left and the right pupil data separately. 

To reduce the between-participant differences, we then separately normalised 

BVP, GSR, ST, left and right PD to the range between 0 and 1 with a min-max 

normalisation scaler as shown in (1): 

𝑆𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =
𝑆 − min(𝑆)

max(𝑆) − min(𝑆)
 (1) 

Where 𝑆𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑  is the min-max scaled data of signal 𝑆 , and max(𝑆)  and 

min(𝑆) are the maximum and minimum value of signal 𝑆. 

After normalisation, to remove noise artefacts, we applied a lowpass Butterworth 

filter to BVP, GSR and ST with an order of 6 and a cut-off frequency of 0.5 Hz, 

0.2 Hz [13] and 0.3 Hz [40] to form the Low Pass (LP) BVP, LP GSR, and LP ST 

data, respectively. We also filtered the left and right PD data with a 10-point Hann 

moving window. The average pupillary size of the normalised left and right pupil 

data was then calculated. 
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Following this, we further segmented both the normalised and filtered signals by 

each video watching session, so that each segmented physiological data set 

corresponds to one observer’s physiological state invoked by his or her experience 

of watching one video. 

3.2 Feature Extraction 

After pre-processing the raw signals, we generated time- and frequency-domain 

features that characterise the changes in the physiological signals over the time 

observer participants spent on watching each video. 

3.2.1 Blood Volume Pulse (BVP) Features 

According to the literature of using BVP for emotion recognition [41], we first 

calculated the following six time-domain features from the LP BVP. 

1) Minimum 4) Standard deviation 

2) Maximum  5) Variance 

3) Mean  6) Root mean square 

Let Ri be the i
th

 systolic peak, RRi be the interval between peak Ri+1 and Ri, and 

RRdiff 𝑖 be the differences between intervals RRi+1 and RRi (as Figure 4 shows). 

Heartbeats defined as the systolic peaks of the LP BVP as illustrated as Rn in 

Figure 4 were then identified adapting a peak detection technique devised by Van 

Gent et al [42]. We calculated a moving average using a window of 0.8 seconds 

before and after each data point. Regions of Interest (ROI) are then marked 

between two diastolic points where the amplitude of the signal is larger than the 

moving average. Systolic peaks were detected at the maximum of each ROI. 

 

Figure 4 

BVP signal with systolic peaks, peak intervals and differences between intervals annotated 

To extract time-domain heart rate features, or heart rate variability, we computed 

the following 8 time-domain features that were previously shown to be correlated 

with external stimuli and mental states [43]–[45]. 

Inter beats interval (IBI)  𝐼𝐵𝐼 =  𝑅𝑅 (2) 
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Ave. beats per min (BPM) BPM =  (60 × Sampling Rate)/ 𝐼𝐵𝐼 (3) 

Standard deviation of intervals between heart beats (SDNN) 

𝑆𝐷𝑁𝑁 = √
∑ (𝑅𝑅𝑖 − 𝑅𝑅)𝑁

𝑛=1

𝑁 − 1
 (4) 

Standard deviation of differences of adjacent R-R intervals (SDSD) 

𝑆𝐷𝑆𝐷 = √∑ (𝑅𝑅𝑑𝑖𝑓𝑓𝑖
− 𝑅𝑅𝑑𝑖𝑓𝑓)

2
𝑁
𝑛=1

𝑁 − 1
 

    (4) 

Root mean square of differences of adjacent R-R intervals (rMSSD) 

𝑟𝑀𝑀𝑆𝑆𝐷 = √∑ (𝑅𝑅𝑑𝑖𝑓𝑓𝑖
)

2𝑁
𝑛=1

𝑁 − 1
     (5) 

Percentage of the differences greater than 20 ms (pNN20) 

Percentage of the differences greater than 50 ms (pNN50) 

Proportion of differences greater than 50 ms / 20 ms (pNN50/pNN20) 

As indicated in [46], the spectral features of heart rate signal are more robust for 

short time durations and less sensitive to missing heartbeats, so we also included 5 

frequency-domain features after we performed a Fast Fourier Transform (FFT) 

over the peak intervals to convert the signal into the frequency domain. 

High frequency power (HFP): ranging from 0.15 to 0.5 Hz 

Low frequency power (LFP): in a range between 0.04 and 0.15 Hz 

Very low frequency power (VLFP) in a range between 0.003 and 0.04 Hz 

LF/HF ratio (LFHF): the ratio of LFP over HFP 

Respiratory Rate (RSP): max power in frequency range of 0.1-0.25 Hz 

3.2.2 Galvanic Skin Response (GSR) Features 

Sixteen time-domain features were calculated from both the normalised GSR and 

LP GSR separately, based on the following statistical methods: 

a) Minimum e) Variance 

b) Maximum  f) Root mean square 

c) Mean  g) Mean of absolute values of first difference 

d) Standard deviation  h) Mean of absolute values of second difference 
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GSR consists of a tonic component (also called DC level) and a phasic component 

(also called the skin conductance response, SCR) [11]. DC level shows the long-

term slow variation in the signal, indicating general activity of perspiratory glands 

caused by body or external temperature, while SCR reflects relatively faster 

responses to external stimuli. To extract the DC level component, we used a very 

low pass Butterworth filter with a cut-off frequency of 0.08 Hz to obtain the Very 

Low Pass signal (VLP). We further acquired a detrended SCR signal without DC 

component by removing continuous piecewise linear trend in both LP and VLP 

signal. Afterward, we calculated the following frequency-domain features: 

 Number of SCR occurrences for VLP, LP and normalised GSR 

 Mean of amplitudes of SCRs for VLP, LP and normalised GSR 

 Ratio of SCR occurrences in VLP to occurrences in LP 

3.2.3 Skin Temperature (ST) Features 

For ST, we used a similar feature extraction approach as for the GSR signal. We 

calculated 16 time-domain features which include the minimum, maximum, mean, 

standard deviation, variance, root mean square, means of the absolute values of 

the first and second difference of the normalised and LP ST signal. Subsequently, 

we applied a very low pass Butterworth filter with a cut-off frequency of 0.08 Hz 

to the normalised ST signal to form the VLP ST signal. We finally calculated the 

numbers and amplitudes of peak occurrences for VLP and LP ST signals as well 

as the ratio of peak occurrences in VLP to those in LP as features. 

3.2.4 Pupillary Dilation (PD) Features 

Similar to the GSR and ST signals, for PD, we first calculated the following 8 

features from the normalised left PD, normalised right PD, and average PD 

separately: minimum, maximum, mean, standard deviation, variance, root mean 

square, means of the absolute values of the first difference and means of the 

absolute values of the second difference. We then applied a very low pass 

Butterworth filter with a cut-off frequency of 0.08 Hz to the normalised left, right 

and average PD signal to form the left VLP PD, right VLP PD, and average VLP 

PD. Numbers and amplitudes of peak occurrences for left, right and average VLP 

and LP PD signals, as well as the ratio of peak occurrences in VLP to those in LP 

for the left, right and average signals, were subsequently extracted as 

features. Thus, we collected a total of 104 features from the four physiological 

signals: 19 (BVP) + 23 (GSR) + 23 (ST) + 39 (PD). 

3.3 Feature Selection 

Our previous work [23] indicated that neural networks (NNs) trained with subsets 

of features selected by Genetic Algorithm (GA) [47] perform better at depression 

prediction than without feature selection. A full set of features may include 
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redundant / irrelevant features that outweigh more useful features. To make a 

direct comparison to our prior work, we used a GA feature selection method. 

The initial population for the GA was set to use all features. A candidate 

chromosome was defined as a binary string where the index for a bit represented a 

feature, and the bit value indicated whether the feature was used for classification. 

The presence (1) or absence (0) of every possible feature was determined based on 

a fitness function, which is the depression recognition performance of an NN. An 

example of such representation is demonstrated in Figure 5. All settings for the 

GA used in the hybrid classification system can be found in Table 2. 

 

 
Vector of best features 

selected by GA 
1 0 1 1 … 

       

× Vector of derived features 0.2 0.3 0.5 0.1 … 

       
       
 

Vector for best features 

selected by GA 
0.2 0 0.5 0.1 … 

Figure 5 

GA representation of features 

Table 2 

GA settings 

GA Parameter Value 

Population size 100 

Crossover rate 0.8 

Mutation rate 1/(length of the chromosome) 

Crossover type Uniform crossover 

Mutation type Uniform mutation 

Selection type Stochastic uniform selection 

3.4 Neural Network Classifiers 

In this study, we were interested in determining the depression recognition 

capability achieved by a combination of BVP, GSR, ST, and PD measurements as 

monitored signals. Assessment of overall usefulness of signals is also important as 

fewer sensors are required if only a single signal is needed to achieve similar 

recognition capability. Thus, we trained five NN classifiers with the following five 

conditions: 1) BVP+GSR+ST+PD: using a subset of features selected by GA from 

all features extracted from all four signals; 2-5) each of BVP/GSR/ST/PD singly: 

using a subset of features selected by GA from features extracted from the 
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BVP/GSR/ST/PD signal. We note that when each physiological signal was used, 

the classifier was retrained and retested using the same validation scheme. 

All five NNs performed a 4-class classification indicating 4 depression severities 

using 4 output neurons. The first NN was set to have a sigmoid hidden layer of 

100 neurons after we tested the first NN with different hidden neuron size from 10 

to 200 and found 100 to be optimal. With a similar approach, the other four NNs 

use 50 neurons. All NNs were trained with a commonly used optimizer, the Adam 

optimizer [48] using backpropagation with the Cross-Entropy loss function. 

As noted in [23], that in the context of continuous physiological data, training a 

classifier on random splits of data is not appropriate, we used the leave-one-

participant-out validation method. For each run, we took physiological features 

from one observer as the testing set, and those from the remaining participants as 

the training set. We repeated this process for all observers, each time leaving out 

physiological features from a different observer as the testing set. We averaged the 

performance as the final results reported. 

3.5 Evaluation Measures 

To validate the effectiveness of our models, we used precision, recall, and F1-

score as evaluation measures. For a specific depression level L, precision is 

defined as the proportion of individuals that are correctly predicted with 

depression level L and actually have that level of depression; recall is the 

percentage of depressed individuals that are correctly predicted with depression 

level L among all individuals labelled with depression level L; and F1-score takes 

the harmonic mean of precision and recall defined as 2 ×
PrecisionL×𝑅𝑒𝑐𝑎𝑙𝑙𝐿

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐿+ 𝑅𝑒𝑐𝑎𝑙𝑙𝐿
. 

As multiclass depression labels were also predicted by our models, we calculated 

the average precision, recall, and F1 score for all depression levels as a whole, to 

give a view on the general prediction performance. Also, we computed the overall 

accuracy, which is the number of individuals correctly predicted with their 

corresponding depression levels by the model over total number of individuals. 

4 Results and Discussion 

4.1 Observers Subjective Prediction 

As Table 3 shows, observers are not good at consciously identifying the 

depression severity of other individuals in videos. The overall accuracy was 27%, 

which is slightly over the prima-facie chance level of 25% since there were four 

options for observers over balanced numbers of video stimuli. This is consistent 
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with earlier findings about the accuracy of people’s conscious judgments on the 

veracity of smiles [49], anger [50] and deceiving behaviours [51], which are all 

only marginally higher than chance level. Thus a prediction barely over chance in 

general is not surprising. However, the low recognition accuracy could be 

exacerbated by our observer participants being recruited from a naïve population 

who had not previously received any training regarding depression diagnosis. 

Future research should explore the accuracy of conscious judgments from 

psychologists who are trained to diagnose depression patients. 

Table 3 

Results of depression prediction from observers’ subjective verbal responses 

Depression level 
Subjective Prediction 

Precision Recall F1 score 

None 0.31 0.33 0.32 

Mild 0.18 0.21 0.19 

Moderate 0.23 0.25 0.24 

Severe 0.42 0.29 0.35 

Average 0.29 0.27 0.28 

Overall Accuracy 0.27 

The average ratios of consciously identifying healthy individuals and severely 

depressed individuals correctly were 33% and 29% respectively, higher than those 

of identifying depressed individuals in the middle ranges, at 21% and 25%. This 

could imply that people are better at identifying healthy individuals and depressed 

patients with severe symptoms, but worse at differentiating depression levels. 

4.2 Classification based on All Physiological Signals 

All features derived from observers’ BVP, GSR, ST, and PD signals were 

provided to NNs with GA for feature selection. Performance of the classifications 

was calculated based on the average results of 10 runs and shown in Table 4. 

Table 4 

Results of depression prediction from NN trained with BVP, GSR, ST, and PD features selected by GA 

compared with our previous study trained with GSR, ST and PD features selected by GA 

Depression level 
Our previous study [23] This study 

Precision Recall F1 score Precision Recall F1 score 

None 0.92 0.95 0.94 0.90 0.98 0.94 

Mild 0.93 0.89 0.91 0.94 0.92 0.93 

Moderate 0.88 0.90 0.89 0.95 0.92 0.93 

Severe 0.95 0.95 0.95 0.98 0.96 0.97 

Average 0.92 0.92 0.92 0.94 0.94 0.94 

Overall Accuracy 0.92 0.94 
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As can be seen above, the overall prediction accuracy across all four depression 

levels was much higher than observers’ conscious judgments, at 94%. Statistical 

analysis was conducted on the results using the Student’s t-test since models 

trained with different physiological features share normality and equality of 

variances across comparison groups. In accordance with the Student’s t-test, the 

model trained with BVP, GSR, ST, and PD features produced significantly better 

depression recognition rates than the conscious evaluation of observers (p < 

0.005). This could indicate that although humans are not good at consciously 

detecting the depression severity of others, they can emotionally sense depression 

in others. Their physiological changes provoked by depression from others can be 

effectively detected by computational classifiers such as neural networks. The 

superior detecting ability of human unconscious physiological responses over 

conscious judgments is also found in other research in which the realness of two 

basic emotions are examined [22] [23]. Taken together, it could suggest that 

unconscious responses from instinctive human ability, which has been adaptively 

evolved by natural selection, can make effective use of cues to identify depressed 

individuals without being influenced by conscious biases. 

Compared to our previous work, where only three physiological signals, GSR, ST, 

and PD were examined, our improved model received a statistically significantly 

better overall accuracy (p < 0.01). Our improved model also outperformed in 

recognising depression at mild, moderate, and severe levels with higher F1 scores 

(p < 0.01). This may imply that BVP and associated HR and HRV signals improve 

identifying depression severity of depressed individuals when combined with 

other physiological signals. 

However, this model obtained a slightly less precision rate when the video 

individuals do not have depression, meaning that fewer video individuals with no 

depression were correctly identified with no depression and thus more video 

individuals with no depression were overestimated to have some levels of 

depression. It could indicate that while BVP improves the recognition rate of 

depressed individuals, it may also over-recognise depression in healthy 

individuals. This should be investigated and overcome for clinical applications. 

Further, similar to clinical depression diagnosis where the middle levels of 

depression are harder to correctly identify [52], our model performed slightly 

worse in predicting depression levels of individuals with mild and moderate 

depression severity than those with none and severe depression level, reflected by 

the lower F1-scores of mild and moderate depression level. This result is also 

found in observers’ subjective predictions and our previous work [23] [53], 

indicating the difficulty of accurately recognising middle levels of depression. 

Future research can consider exploring the feasibility of analysing more complex 

physiological signals, such as brain activity tracking with electroencephalogram 

(EEG) [54]–[56] or functional near-infrared spectroscopy (fNIRS) [52], to detect 

more subtle cues in observed stimuli. 
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4.3 Classification based on Individual Physiological Signal 

To evaluate the classification capability of models with fewer physiological 

signals, features derived from individual physiological signals were provided to 

the NN model with GA feature selection. Performance of the classifications were 

calculated based on the average results of 10 runs and presented in Table 5. 

Table 5 

Results of depression prediction from NN trained with single physiological signal with GA 

Depressio

n level 

BVP GSR ST PD 

Prec

isio

n 

Rec

all 

F1 

scor

e 

Prec

isio

n 

Rec

all 

F1 

scor

e 

Prec

isio

n 

Rec

all 

F1 

scor

e 

Prec

isio

n 

Rec

all 

F1 

scor

e 

None 0.90 0.81 0.85 0.92 0.94 0.93 0.87 0.83 0.85 0.91 0.92 0.91 

Mild 0.84 0.92 0.88 0.89 0.81 0.85 0.84 0.83 0.84 0.92 0.91 0.91 

Moderate 0.90 0.95 0.92 0.87 0.87 0.87 0.80 0.81 0.81 0.93 0.92 0.92 

Severe 0.90 0.86 0.88 0.87 0.93 0.90 0.84 0.86 0.85 0.95 0.92 0.94 

Average 0.89 0.89 0.88 0.89 0.89 0.89 0.84 0.83 0.84 0.93 0.92 0.93 

Overall 

Accuracy 
0.89 0.89 0.84 0.93 

When features from only one physiological signal were available, depression 

patterns were best recognised from PD features, with an average F1 score and an 

overall accuracy of 93%. These results were ≥4% higher than models trained with 

other individual signals. BVP features and GSR features contributed similarly to 

depression recognition in general, while ST features were less accurate. We also 

performed statistical analyses on the average F1 score and the overall accuracy of 

each pair of models trained with different single physiological signals separately. 

The Student’s t-test has shown a significant difference between models trained 

with PD and models trained with BVP, GSR, or ST (p < 0.01). This is consistent 

with the literature [57] where pupil size was prominent among other signals in 

detecting stress, revealing some physiological signals convey more informative 

features to classifiers. It also indicated that models trained with ST features were 

significantly less likely to predict depression level (p < 0.01). No significance was 

found between models trained with BVP and GSR features (p > 0.1). 

The contribution of each signal to the prediction of each depression level can also 

be seen in Table 5 based on the precision, recall, and F1 score of each depression 

level. PD was the best in recognising all depression levels except the “None” 

category, achieved by having the highest precision and F1 score (p<0.005). On the 

other hand, when identifying individuals with no depression levels, GSR obtained 

the best result across precision, recall, and F1 score (p<0.05). Taken together, it 

possibly shows that while PD is a valid indicator of other individuals’ depression 

state, GSR is more useful to recognise healthy individuals. 

Although models trained with PD-only features obtained an acceptable 

recognition performance, when compared with the models trained with a hybrid of 

four physiological signals, BVP, GSR, ST and PD, it performed slightly worse, 
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reflected by lower precision rates, recall rates and F1 scores across all four 

depression levels. Statistical significance was found for recognition performances 

of mild, moderate, and severe depression between PD and a hybrid of 4 signals (p 

< 0.05) but no significance was found when observed individuals were healthy. 

This phenomenon also happened in [58] [59] where a combination of multiple 

signals outperforms models trained with individual signals separately. It is 

probably because we as human beings use a combination of different modalities in 

our body to express emotions and thus our physiological signals have been 

evolving and favoured by natural selection to function as a whole [60]. 

6 Limitations, Future Work and Conclusions 

Observers in this study are naïve individuals who do not have depression 

diagnosis experience and do not understand German, which is the language 

spoken by the individual in the videos. Future research should recruit clinicians 

who are skilled in diagnosing depression and German speakers to evaluate the 

effect of domain knowledge and language understanding on depression prediction. 

Stronger conclusions could be drawn in subsequent studies, with more observers 

involved. Different neural network settings and structures could also be explored. 

Other directions for future work include studying how generalizable our results 

are in more realistic environments such as in daily social interactions. Finally, use 

of more complex physiological signals, such as, brain activity tracking, with EEG 

and fNIRS, could also be investigated, to perform better recognition. 

Conclusions 

In this article, we explored the use of physiological signals from observers, to 

detect depression severity, of other individuals. We investigated the utility of 

BVP, GSR, ST, and PD from observers (singly and in combination) to predict the 

depression level of individuals they observed in videos. The results show that the 

combination of these four signals achieved an NN classification accuracy of 94%, 

outperforming models trained in our previous work, which did not include BVP 

and associated HR and HRV signals and models trained using individual signals 

separately. We also identified PD as the most promising physiological source for 

depression recognition, as well as, the potential of GSR for recognising healthy 

individuals among depressed patients. Future research and implementation of the 

findings in this area are likely to be beneficial in assisting with more objective and 

earlier depression diagnosis, which combined with the use of known effective 

treatments, could decrease the burden of depression for individuals and society. 
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