
Acta Polytechnica Hungarica Vol. 13, No. 3, 2016

Reprojection of the Conjugate Directions in the
ABS Class
Part I
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Abstract. In the paper we introduce a modification of the Kahan-Parlett ”twice is
enough” [20] algorithm for conjugate direction algorithms. We apply the developed
algorithm for the computation of conjugate directions in three subclasses of the ABS
methods. In this part of the paper we give theoretical results and a preliminary test
result as well. In the second part of our paper we test some elements of Subclass
S2, while in the third part Subclass S6 and S7 will be examined. In this last part we
give the conclusions regarding the reprojection of conjugate directions in the ABS
classes
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1 Introduction

A very important question in Linear Algebra is the error propagation of algorithms
and monitoring the error during the execution. There are many works in this field.
We refer to [3], [5], [7], [8], [9], [10], [11], [13], [14], [16], [20], [22], [23] , [24]
and others.

The reprojection technic can be applied in every class of the ABS methods. This
reprojection improves accuracy in general, but the rounding errors could vanish
these improvements. Therefore, it is very important to set up conditions for the
reprojection. For orthogonal vectors the ”twice is enough” method was developed
by Parlett and Kahan [20]. The reprojection technic cannot be applied trivially to
the conjugate direction methods like Lánczos [18], [19], Hestenes Stiefel [15] and
others.

– 7 –
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In this paper we develop a reprojection algorithm to conjugate directions and we
give the necessary theoretical results to apply it to different subclasses (S2 and S6)
of the ABS class.

We consider the classical conjugate gradient problem. A is supposed to be symmet-
ric positive definite matrix throughout this paper.

We have to mention that we do not consider AT A or AAT conjugate direction meth-
ods, such as the CG algorithm applied to normal equations, Craig’s method, CR,
GCR, ORTHOMIN, ORTHODIR, GMRES methods and so on. For these methods
see, for example [12], [1]. These problems and algorithms will be considered in a
following paper.

2 Theoretical background

In this section we give the conjugate reprojection version of the Parlett and Kahan
(PK) [20] method using the ABS class [1].

2.1 Parlett-Kahan type reprojection of conjugate directions in
the ABS class

First we present the scaled ABS class which will be used later frequently.

Let us consider the following scaled system

V T Ax =V T b

where A ∈ ℜm,n, V ∈ ℜm,m is an arbitrary non-singular matrix, b ∈ ℜm and x ∈ ℜn.

The class of the scaled ABS algorithm

Algorithm 1. Step 1 Set x1 ∈ℜn, H1 = I ∈ℜn,n where I is the unit matrix, i = 1,
and i f lag = 0.

Step 2 Let vi ∈ℜn be arbitrary save that v1, ...,vi be linearly independent. Compute
the residual error vector ri = Ax−b. If ri = 0, stop xi solves the system. Otherwise,
compute the scalar τi = vT

i ri and the vector si = HiAT vi.

Step 3 If si 6= 0, go to Step 4; if si = 0 and τi = 0, set xi+1 = xi, Hi+1 =Hi, i f lag=
i f lag+ 1, and if i < m, go to Step 6; otherwise, stop; if si = 0 and τi 6= 0, set
i f lag =−i and stop.

Step 4 Compute the search direction pi by

pi = HT
i zi

where zi ∈ℜn is arbitrary saving for zT
i HiAT vi 6= 0.
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Step 5 Update the approximate of the solution by

xi+1 = xi−αi pi

where the step size αi is given by

αi =
τi

vT
i Api

if i = m, stop and xi+1 is the solution of the equations.

Step 6 Update the matrix Hi by

Hi+1 = Hi−
HiAT vi ∗wT

i Hi

wT
i HiAT vi

(1)

where wi is arbitrary but the denominator must be non-zero.

Step 7 Set i = i+1 and go to Step 2.

The properties of this algorithm can be found in [1]. Further we do not use the index
i only if it is necessary.

We shall use two formulas of the HT projection matrix. One of them can be obtained
from (1) and the other is

HT
= I−W ∗Q−T ∗V T ∗A (2)

where W and V contain w1, ...,wi and projection vectors v1, ...,vi respectively com-
puted and Q−T = (W T ATV )−T until the actual step. For (2) see formula (7.20) or
(7.59) of [1].

Now we are able to present the ABS PK type conjugate direction method. First we
define the error vectors. Let the error vector e′= x′− p satisfy e′T Ae′≤ εzT Az where
x′ is the approximation of p = HT z and e” = x”− p satisfy e”T Ae” ≤ εzT Az where
x” is the approximation of p = HT x′ and ε is some tiny positive ε independent of z
and A.

Let κ be any fixed value in the range [1/(0.83− ε),0.83/ε] . Using the notation of
the algorithm ”twice is enough” we give.

Algorithm 2. ABS Conjugate Direction of Parlett Kahan type (ABS CD PK)

Case 1. If x′T Ax′ > zT Az/κ accept x = x′ and e = e′, otherwise compute x” = HT x′

to get x” with error e” and go to Case 2.

Case 2. If x”T Ax”≥ x′T Ax′/κ accept x = x” and e = e”.

Case 3. If x”T Ax” < x′T Ax′/κ accept x = 0 and e =−p.

As in the different subclasses the projection matrix H is calculated with different
formulas and the theorems which ensure the accuracy of the ABS CD PK algorithm
will be given there.
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2.2 The class of the conjugate direction ABS algorithm (S2)

In this section, we study the S2 subclass of scaled ABS algorithm. Instead of the
original equation Ax = b, where A ∈ ℜm,n, b ∈ ℜm, x ∈ ℜn consider the scaled
equations

V T Ax =V T b (3)

where V = (v1, · · · ,vm) ∈ℜm,n is a non-singular matrix. The subclass S2 generates
conjugate directions is defined by the formula

vi = pi

Note that we still have two arbitrary vectors zi and wi.

We recall Theorem 8.6 of [1] which state that the S2 subclass generates conjugate
directions.

Theorem 1. Let A be symmetric and positive definite. Then the subclass S2 where
vi = pi generates A conjugate search vectors and the iterate xi+1 minimizes over the
linear variety x1 +Span(p1, ..., pi) the convex quadratic function

F(x) = (x− x∗)T A(x− x∗)

where x∗ is the unique minimum point of F(x).

Note that it is a special case of Theorem 7.17 in [1].

Now we prove a theorem which shows the effect of the reprojection with ABS CD PK.

Theorem 2. The vector x computed by the ABS CD PK algorithm ensures that

eT AeT ≤ εzT AzT +O(ε2)

and∣∣pT
0 Ax

∣∣≤ κε pT
0 Ap0xT Ax+O(ε2).

Proof. We present those steps of the proof only which use the H projection matrix.
The other parts of the proof are the same as in [20].

Case 1.

eT Ae = e′T Ae′ ≤ εzT Az∣∣pT
0 Ax

∣∣= ∣∣pT
0 Ax′

∣∣= ∣∣pT
0 A(e′− p)

∣∣= ∣∣pT
0 Ae′− p0Ap

∣∣= ∣∣pT
0 Ae′

∣∣ because of the con-
jugacy the second term is zero. Now, by applying the Cauchy–Schwartz inequality
we get

∣∣pT
0 Ae′

∣∣≤ ∥∥pT
0 A1/2

∥∥∥∥A1/2e′
∥∥=

(
pT

0 A1/2A1/2 p0
)(

e′T A1/2A1/2e′
)

=
(

pT
0 Ap0

)(
e′T Ae′

)
≤
(

pT
0 Ap0

)
ε
(
zT Az

)
=(

pT
0 Ap0

)
εκ

(
x′T Ax′

)
= εκ

(
pT

0 Ap0
)(

xT Ax
)

because of the true branch of Case 1.

Case 2.
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∣∣pT
0 Ax

∣∣= ∣∣pT
0 Ax”

∣∣= ∣∣pT
0 A(e”+ p)

∣∣= ∣∣pT
0 Ae”+ pT

0 Ap
∣∣= ∣∣pT

0 Ae”
∣∣

as the second term is zero because of the conjugacy

=
(

pT
0 A1/2A1/2 p0

)(
e”T A1/2A1/2e”

)
≤
(

pT
0 Ap0

)
ε (x′Ax′)

and again from the true branch we get

≤
(

pT
0 Ap0

)
ε (x”Ax”)≤ κε

(
pT

0 Ap0
)
(xAx)

On the other hand(
eT Ae

)
= (x”− p)T A(x”− p) (4)

where p =
(
I−W ∗Q−T ∗PT ∗A

)
x′ therefore

x”− p = e”+ p+
(
I−W ∗Q−T ∗PT ∗A

)
x′− p

= e”+
(
I−W ∗Q−T ∗PT ∗A

)
(e′+ p)− p and because of the conjugacy

= e”+ p+
(
I−W ∗Q−T ∗PT ∗A

)
e′− p = e”+He′. Substituting it in (4) we get(

eT Ae
)
=
(
e”+He′

)T A
(
e”+He′

)
= e”T Ae”+ e′T HAe”+ e”AHe′+ e′T HAHe′

≤ ε

κ
zT Az+‖e′‖

∥∥H
∥∥‖A‖‖e”‖+‖e”‖‖A‖

∥∥H
∥∥‖e′‖+

‖e′‖
∥∥AH

∥∥‖A‖∥∥HH
∥∥‖e′‖.

Suppose that
∥∥H

∥∥≤ K then

≤ ε

κ
zT Az+K ‖A‖‖e′‖‖e”‖+K ‖A‖‖e′‖‖e”‖+K2 ‖A‖2 ‖e′‖2 ≤

ε

κ
zT Az+2K ‖A‖εzT Az∗ εx′T Ax′+K2 ‖A‖2

ε2(zT Az)2.

As now x′T Ax′ ≤ 1
κ

zT Az we can continue

≤ ε

κ
zT Az+2K ‖A‖ ε2

κ

(
zT Az

)2
+ ε2K2 ‖A‖2 (zT Az

)2
=

ε

κ
zT Az+2K ‖A‖ε2

(
zT Az

)2 ( 1
κ
+K ‖A‖

)
= ε

κ
zT Az+O(ε2)

≤ εzT Az+O(ε2)

as κ > 1 will be suggested to use.

Case 3. As
∣∣pT

0 Ax
∣∣ = 0, it is enough to prove that bT p = bT a = 0, where a =

(I−W ∗Q−T ∗PT ∗A)e′ and bT = e′T (W ∗Q−T ∗V T ∗A). Indeed,

bT p = e′T (W ∗Q−T ∗V T ∗A)∗
(
I−W ∗Q−T ∗PT ∗A

)
x′

= e′T (W ∗Q−T ∗V T ∗A−W ∗Q−T ∗V T ∗A∗W ∗Q−T ∗PT ∗A)x′ = 0.

The proof for the case bT a = 0 is similar to bT p = 0.

Note that the term which contains ε2 can influence the estimation if ‖A‖ is big. This
phenomena will be observed during the tests of different algorithms.
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Consider now the symmetric matrix projection case.

Symmetric matrices Hi are obtained for example with H1 = I where I is the unit
matrix and wi given by

wi =
Api

‖HiApi‖2
2

(5)

In this case (5) is well defined.

Theorem 3. If qi =
HiAT pi
‖HiApi‖2

.Then qT
i q j = 0 for i, j = 1, ...,n

Proof. Let j < i be. Then

qT
i q j =

pT
i HT

i H jAT p j

‖HiApi‖2
2

= pT
i HT

i AT p j ‖HiApi‖2
2 =

pT
i HiAT p j

‖HiApi‖2
2

= 0

because Hi is symmetric matrix Null(Hi) =
{

AT p1, ...,AT pi−1
}

and the denomina-
tor is different from zero. The same argument is valid for the case j > i.

Let Qi = [q1, ...,qi] be then we can obtained a block form of the projection matrix
Hi+1

Hi+1 = H1−QiQT
i . (6)

It is important to note that the conjugate directions pi, i = 1, ...,n are generated
by orthogonal column vectors of Qi. Now we can only choose vectors zi arbitrary.
As the matrix update (8.24) of [1] takes an important role in some algorithms we
present it now:

Hi+1 = Hi−
HiAT pi pT

i
pT Api

(7)

where we used the idempotency of Hi. We present the chosen cases both for the
symmetric and non-symmetric matrix projection cases in PART II of our paper.

3 The Hegedűs-Bodócs (HB) class of biorthogonaliza-
tion algorithms (S6)

In this section we consider the subclass S6 of the ABS class. The HB biorthogo-
nalization algorithms was first published in [14]. Recently a more detailed paper in
this topic was published [13]. The main results of this section is Theorem 8.30 of
[1] which proves how the HB algorithms constitute a part of the ABS class.

Theorem 4. Consider the HB recursions with basis vectors si, qi satisfying condi-
tion

sT
i SiAQqi 6= 0
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for all possible i , where

ST
i = I−

i−1

∑
j=1

Au jvT
j

vT
j Au j

and

Qi = I−
i−1

∑
j=1

u jvT
j A

vT
j Au j

where

v j = S js j

and

u j = Q jq j

for j = 1, ..., i− 1. Consider the following parameter choices in the scaled ABS
class: H1 = I, vi and zi given by

vi = ST
i si

zi = Qiqi

and wi a multiple of zi. Then these parameter choices are well defined and moreover
the following identity is true

pi = Qiqi.

Note that

HT
i zi = zi.

therefore, based on the theoretical results the reason of the multiplication zi by the
projection matrix HT

i is to have the possibility of the reprojections. As we show
in our next paper the reprojection gives much better accuracy for the HB conjugate
algorithms too.

It is important to note, that in this paper we suppose that the matrix A is positive
definite symmetric matrix, consequently pi =Qiqi = ST

i si that is the arbitrary vectors
vi = pi are defined as in the previous section. It means that Theorem 2 is valid for
the Subclass S6 too.

Note also that the vectors zi are still arbitrary.

In all algorithms listed below we also inserted the ABS versions to simplify the im-
plementation. Many different versions of the HB algorithms follow from Theorem
8.30 of [1]. In the following definitions, for the sake of brevity, we leave out the
index i wherever it is possible.
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Algorithm p=H ABS(v,u,Repr) (p is the conjugate direction)

ABSv = v

ABSz = u

ABSw = ABSz

p = HT ∗ABSz

s = HAT p

i f abs(s)< 3eps then % linear dependency

disp(′the matrix A is singular′)

stop

endi f

i f Repr == 1 then %Reprojection is needed if Repr equals to one

p = HT p

end

pt p = ABSv∗Ap

pp = p/pt p

H = H− HAT ∗ABSv∗pT

pT ∗AT ∗ABSv .

Now we consider the following cases:

A) Hestenes–Stiefel algorithm in S6 (HBHSABS). The algorithm is defined by for-
mulas (8.124) , (8.125), and the vectors si and qi are defined by (8.135) and (8.136)
in [1].

Algorithm P=H HS ABS(A,b,Repr,ReprHB,HB)

where A,b define the linear system, Repr,ReprHB and HB are control parameters,
see below.

Step 1 Initialize: Choose S1 = Q1 =C1 = K1 = E where E is the n-dimensional unit
matrix.

Let ν = τ = 1 be.

Compute

r1 = b−A∗ x;

s1 = r1;

q1 = r1;

Step 2 (cycle for the dimension)

for i=1,...,n

– 14 –



Acta Polytechnica Hungarica Vol. 13, No. 3, 2016

vi = ST
i si; ui = Qiqi

if ReprHB == 1 (Reprojection if ReprHB equals to one)

vi = ST
i vi ui = Qiui

endif

if HB == 1 ( use the original version of the HS method in [13]

P(:, i) = ui
norm(u,2) (store the conjugate direction vector)

else

call p=H ABS(v,u,Repr )

P(:, i) = pi
norm(p,2) (store the conjugate direction vector)

endif.

Step 3 Compute Si+1, and Qi+1 by

Si+1 = Si−
Aui∗vT

i
vT

i Aui
Qi+1 = Qi−

ui∗vT
i A

vT
i Aui

Compute the next arbitrary si+1 and qi+1 vectors

si+1 = si−
µisT

i Csi
vT

i Aui
Aui qi+1 = qi−

τiqT
i Kqi

vT
i Aui

AT vi

endfor.

B) Version of the HS method (S6CioccoHSDM). The algorithm is defined by for-
mulas (3.3), (3.4) and (2.15) of [13].

Algorithm P=H HSDM ABS(A,b,Repr,HB)

Step 1 Initialize: Choose the positive definite Hermitian matrices C = K = E as
preconditioners where E is the n-dimensional unit matrix. Let x be an arbitrary
vector which is not the solution of the linear system of equations. As C and K are
unit matrices they are omitted from the formulas below.

Compute

r1 = b−A∗ x;

v1 = r1

u1 = r1

q1 = r1;

x = x+ vT
1 r1

vT
1 Au1

u1.

Step 2

for i= 1 : n

if HB == 1 ( use the original version of the HS method in [13]
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P(:, i) = ui
norm(ui,2)

(store the conjugate direction vector)

else

call p=H ABS(v,u,Repr )

P(:, i) = pi
norm(pi,2)

(store the conjugate direction vector)

endif

ri+1 = ri−
rT
i1∗ri

vT
i Aui

Aui qi+1 = qi−
qT

i ∗qi
vT

i Aui
AT vi

vi+1 = ri+1 +
rT
i+1ri+1

rT
i ri

vi ui+1 = qi+1 +
qT

i+1qi+1

qT
i ∗qi

ui

x = x+
vT

i+1∗ri+1

vT
i+1Aui+1

ui+1

endfor.

The next algorithm is an alternative numerical formulation of the previous one that is
of H HSDM ABS. It is defined by formulas (2.2), (3.1) and (3.2) of (S6CioccoHSDMM).

Algorithm P=H HSDMM ABS(A,b,ReprHB,Repr,HB)

Step 1 Initialize: Define PL = E and PR = E where E is the n-dimensional unit
matrix. Let x be an arbitrary vector which is not a solution of the linear system of
equations. Compute

r = b−A∗ x

rABS =−r

q = r ;

Step 2 (cycle for the dimension)

for i = 1 : n

r = PLr q = PRT q

v = PLT r u = PRq

if ReprHB == 1

v = PLT v u = PRu

end

if HB == 1 ( use the original version of the HS method in [13]

P(:, i) = ui
norm(ui,2)

(store the conjugate direction vector)

else

call p=H ABS(v,u,Repr)

P(:, i) = pi
norm(pi,2)

(store the conjugate direction vector)

endif.
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Step 3 update the matrices

PL = PL− AuvT

vT Au PR = PR− uvT A
vT Au

end.

Note that the difference between the two algorithms from above is the reorthogonal-
ization possibility in the second one. We shall have better accuracy in the solution
with this reorthogonalization.

C) Lánczos type recursion in HB (S6CioccoLancz). The algorithm is defined by
formulas (8.124) , (8.125), and the vectors si and qi are defined by (8.139) and
(8.140) in [1]. It is enough to define the basis vectors.

Algorithm H Lánczos ABS(A,b,Repr,HB)

Step 1 Initialize: Choose S1 = Q1 =C1 = K1 = E where E is the n-dimensional unit
matrix. As C1 and K1 are unit matrices they are omitted from the formulas below.

Let ν = τ = 1 be. Similarly we omit nu and τ from the formulas.

Compute

r1 = b−A∗ x;

s1 = r1;

q1 = r1.

Step 2 (cycle for the dimension)

for i=1,...,n

vi = ST
i si; ui = Qiqi

if ReprHB == 1 (reprojection if ReprHB equals to one)

vi = ST
i vi ui = Qiui

endif

if HB == 1 (use the original version of the HS method in [13]

P(:, i) = ui
norm(u,2) (store the conjugate direction vector)

else

call p=H ABS(v,u,Repr, )

P(:, i) = pi
norm(p,2) (store the conjugate direction vector)

endif.

Step 3 Compute Si+1, and Qi+1 by

Si+1 = Si−
Aui∗vT

i
vT

i Aui
Qi+1 = Qi−

ui∗vT
i A

vT
i Aui

si+1, and qi+1 by
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si+1 = si−
sT
i qi

vT
i Aui

AT vi qi+1 = qi−
qT

i qi
vT

i Aui
Aui

endfor.

D) Method (S6Ciocco HSRM) defined by formulas (3.8), (3.9), (3.10) and (5.1) of
[13]

Algorithm H HSRM ABS(A,b,Repr,HB)

Step 1 Initialize: Choose PR=E, PQ=E where E is the n-dimensional unit matrix.

v1 = b−A∗ x

C = vT
1 v1E

K = vT
1 v1E.

Step 2 (cycle for the dimension)

for k= 1 : n

if k == 1

vk = b−A∗ x rrk = vk

uk = vk

if HB == 1

P(:,k) = ui/norm(ui,2)

endif

else

uk = PQuk

if HB == 1

P(:,k) = ui/norm(ui,2)

endif

endif.

Step 3

x = x+ vT
k vk

vT
k Auk

uk

λi = vT
k ∗ vk ϕi = λi

qT
k =

vT
k APQ

ϕi
PQ = PQ− K∗qkqT

k
qT

k ∗K∗qk

if HB == 0

call p=H ABS(v,u,Repr, )

P(:,k) = pi
norm(p,2) (store the conjugate direction vector)
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endif

endfor.

E) Method (S6Ciocco LDM) defined by (3.32), (3.33) and (5.1) of [13]

Algorithm H LDM ABS(A,b,Repr,HB)

Step 1

for k = 1 : n

if k == 1

r = b−A∗ x q = r

v = q u = r

au = A∗u av = AT ∗ v

al p = v′ ∗au bet = q′ ∗ r;sig = bet/al p

x = x+ sig∗u

if HB == 1

P(:,k) = u/norm(u,2)

else

call p=H ABS(v,u,Repr, )

P(:,k) = pk
norm(p,2) (store the conjugate direction vector)

end

else.

Step 2 Preparation for the next iteration

r = r− sig∗au q = q− sig∗av

bn = q′ ∗ r rat = bn/bet

v = q+ rat ∗ v u = r+ rat ∗u

au = A∗u av = AT ∗ v

al p = v′ ∗au bet = bn;sig = bet/al p

x = x+ sig∗u

if HB == 1

P(:,k) = u/norm(u,2)

else

call p=H ABS(v,u,Repr, )

P(:,k) = pk
norm(p,2) (store the conjugate direction vector)
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endif

endfor.

F) Finally algorithm (S6HS) is defined by ABSvi = ABSui = ABSzi = ui where
ABSvi,ABSui and ABSzi are the ABS class free parameter vectors.

Remark. In subclass S7 if we choose vi = Ari then the residual vectors ri are A
conjugate. The reprojection of the projection vectors does not give direct effect of
the residual vectors. Therefore, we think that the accuracy of the solution would not
grow very much. We present the test results of Subclass S6 and S7 in the third part
of our paper.

4 Original algorithms

We implemented the original Hestenes–Stiefel and Lanczos methods as well.

1) Hestenes–Stiefel method (HSCGMoriginal). See in [15] or page 125 of [1].

Algorithm HS

Step 1 Initialize. Choose x1. Compute r1 = Ax1− b. Stop if r1 = 0, otherwise set
p1 = r1 and i = 1.

Step 2. Update xi by

xi+1 = xi−
pT

i ri

pT
i Api

.

Step 3. Compute the residual ri+1. Stop if ri+1 = 0.

Step 4 Compute the search vector pi+1 by

pi+1 = ri+1−
pT

i Ari+1

pT
i Api

pi.

Step 5 Increment the index i by one and go to Step 2.

2) Lánczos method (Lanczosoriginal). See [18], [19] or page 126 of [1].

Algorithm Lanczos

Step 1. Initialize. Choose x1. Compute r1 = Ax1− b. Stop if r1 = 0, otherwise set
p1 = r1, p0 = 0 and i = 1.

Step 2. Update the estimate of the solution by

xi+1 = xi−
pT

i ri

pT
i Api

.

Step 3. Compute the residual ri+1. Stop if ri+1 = 0. Step 4. Compute the search
vector pi+1 by

pi+1 = Api−
pT

i A2 pi

pT
i Api

pi−
pT

i−1Api

pT
i−1Api−1

pi−1
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Step 5. Increment the index i by one and go to Step 2.

5 Preliminary test results

In this section we only show how the ABS CD PK algorithm works. We leave the
intensive testing to the second and third part of the paper. To see the differences
among the originals, the ABS CD PK conjugate directions method and the uncon-
ditional reprojection in the ABS methods we give an example. The algorithms were
implemented in MATLAB version R2007b. The coefficient matrix is made by ran-
domly generated Symmetric Positive Definite matrix (SPD) by the MATLAB rand
function in [0,1]. Also the solutions of the constructed linear systems were gener-
ated randomly (by rand function) in [0,1]. The next figure shows the log(condition
number) versus the considered dimension of the SPD problems
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We chose the original Hestenes Stiefel, then the ABS CD PK algorithm with the
Hestenes Stiefel method and the unconditional reprojection case in the ABS S2 sub-
class. The κ = 100 was chosen for the ABS CD PK algorithm which was suggested
in [20]. The x axis shows the dimension while the y axis represents y =− log10(yB)
where yB = maxabs(PT AP−diag(PT AP))/norm(A), where norm(A) is the Frobe-
nius norm of A.
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where HS CG is the original Hestenes Stifel method see in [15] or page 125 of [20]
for example. The name S2HSsz (zi = ri, wi = AT pi) is the ABS symmetric version
of it.

The norms of residuals in the solutions in case Hestenes Stiefel original are 3.826e-
014 1.096e-013 6.628e-014 1.253e-013 6.889e-014 4.082e-014 7.418e-014 6.628e-
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014 8.988e-014 5.64e-014 5.27e-014.

While in case S2HSsz ABS CD PK are 3.905e-013 4.353e-013 4.696e-013 4.187e-
013 4.203e-013 4.264e-013 5.457e-013 4.942e-013 5.631e-013 6.169e-013 5.155e-
013

The numbers of the reprojections are 31 35 44 38 38 41 41 35 49 38 44.

The numbers of linear dependency (ABS) are 10 17 19 22 10 16 10 8 17 14 13.

Finally in case of the unconditionally reprojecting method (ABS reprojection) the
norms of residuals in the solutions are 4.092e-013 3.666e-013 5.04e-013 4.535e-013
4.49e-013 3.998e-013 5.749e-013 5.13e-013 4.951e-013 5.876e-013 5.498e-013

and the number of linear dependency (ABS) are 19 15 10 14 8 11 11 11 11 16 13.

The figures show the usefulness of the reprojection algorithm.

It can be seen that the S2HSsz ABS CD PK algorithm gives very good accurate
results with much less number of computations than reprojections in every step.

Conclusion
In the paper we developed Parlett-Kahan’s ”twice is enough” algorithm for conju-
gate gradient case in the ABS class. The preliminary example shows the validity of
our results. In the next two parts of the paper we intensively test many algorithms
in the ABS class.
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