
Acta Polytechnica Hungarica Vol. 7, No. 1, 2010

 – 73 –

Single Input Operators of the DF KPI System

Norbert Ádám
Faculty of Electrical Engineering and Informatics
Technical University of Košice
Letná 9, 042 00 Košice, Slovak Republic
norbert.adam@tuke.sk

Abstract: The DF-KPI system is a multiprocessor system based on the dynamic data flow
computing model, where each dyiadic instruction requires dynamic matching of its
operands. This process is associated with the processing units of the DF-KPI system. The
processing units are designed as a dynamic multi-function pipelined unit with LOAD,
FETCH, OPERATE, MATCHING and COPY segments. In this article, an architecture
design at a logical level of the dynamic multi-function pipelined unit, which handles
processing of operand matching for single input data flow operators is suggested.

Keywords: data flow, operand matching, data flow graph, single input data flow operators

1 Introduction

One of the solutions to the problem of reaching higher computer system
performance is the concept of high performance parallel computer systems'
architecture. Computer systems based on the von Neumann computer principle try
to solve these requirements by increasing the performance of particular computer
segments. However, possibilities of this kind of speed-up are conditioned by the
technological potential [5], [6], [7], [12]. Better results in increasing computer
system performance can be achieved by computers based on the data flow
computing model. In contrast to control flow architectures, such as the von
Neumann model, data flow architectures use the availability of data to fetch
instructions, rather than the availability of instructions to fetch data [2]. The data
flow computation model enables us to use the program’s natural parallelism,
which, in turn, shortens the time required to perform a calculation. The advantage
of data flow computing (or computers) is that it allows the detection of parallelism
at the level of machine instructions, just like the application of data-level
parallelism. The disadvantage is the complicated operand-matching control
mechanism, increased communication between processing units and the relatively
large program storage requirements. But it is possible to bypass all disadvantages
of this architecture and get huge computing capacity systems by means of

N. Ádám Single Input Operators of DK KPI System

 – 74 –

appropriate architecture design, for example: reconfigurable chip area for
processing units, interconnection networks, as are the hypercube, pyramid etc.,
and by elimination of redundant calculations at the level of program to data flow
graph translation, making use of an efficient computation management micro-
program with a well designed operand matching algorithm.

2 Data Flow Computers

In the field of the development of high performance new generation computers,
architectures based on the data flow computation model are in a parallel computer
class of their own. Computational process control in the data flow computation
model is implemented by the stream of operands (data) prepared to execute
program instructions.

Even though theories exist about data flow models [2], [3], [8], [11], many
architectures have been proposed [2], [10], [11]. These can be classified as static
and dynamic (or tagged-token) architectures according to the related approach to
the model.

The characteristic property of data flow computers is that the data flow program
instructions are waiting passively for the arrival of a certain combination of
arguments, which are made available as a data control stream in a data-driven
sense [3]. The waiting interval, where a program instruction waits for the arrival
of operands, represents its selection phase, during which the allocation of
computing resources occurs. The fundamental idea behind the data flow
computational model is the mapping of tasks (Fig. 1) to the computing elements,
which can increase the rate of parallelism. In general, it is necessary to decompose
the computational process into smaller communicating processes represented by
the data flow program [4].

The data flow program, which uses the data flow computational model, is
represented by its machine representation, called a data flow graph. Data flow
graphs are directed graphs that show the data dependencies between the respective
instructions (operators). Their nodes represent instructions and the arcs connecting
these nodes represent the operands of these instructions. An instruction can be
executed if all the tokens on the incoming arcs are available: that is, if all the
operands of the instruction are available.

The implementation of the data flow computer architecture depends on the form of
execution of the data flow program instructions, which is implemented as a
process of receiving, processing and transmission of activation symbols (data
tokens).

Acta Polytechnica Hungarica Vol. 7, No. 1, 2010

 – 75 –

Figure 1

Tasks mapping to the computing elements of the computer system

The following are the types of pure data flow architectures, depending on the
concept of processing of data tokens or on the scope of architectural support for its
implementation:

• Static models (Figure 2)

• Dynamic models (Figure 3)

The static data flow model was proposed by Dennis and his research group at MIT
[3]. In the static approach a node (instruction) can be executed only when all of
the tokens are available on its input arcs and no tokens exist on any of its output
arcs [8]. This model is capable of using data parallelism and pipelining
techniques; therefore this model has found use in applications with regular
computing structures. The general organization of the static data flow machine is
depicted in Fig. 2.

Figure 2

The general organization of the static data flow model

The Active Store contains the activation frames of instructions, representing the
nodes in data flow graph. Each activation frame contains the operation code, slots
for the operands and the destination address. An operand slot contains also a
presence (check) bit to determine the availability of the operand.

N. Ádám Single Input Operators of DK KPI System

 – 76 –

The Update Unit performs the update of the activation tokens and checks whether
the instruction is executable. If the feasibility condition is fulfilled, the unit sends
the instruction through the instruction front to the instruction fetch unit.

The Fetch Unit fetches and sends a complete operation packet containing the
corresponding operation code, data, and destination list to the Processing Unit and
also clears the presence bits.

The Processing Unit performs the operation, forms the result packets and sends
them to the Update Unit.

The dynamic data flow model was proposed by Arvind at MIT [1] and by Gurd
and Watson at the University of Manchester [4]. The operator represented by a
node is executable in the dynamic data flow model (Fig. 3) if all the input edges
contain tokens, the symbols of which are identical. Each edge may contain more
than one labeled token in this model. When executing a node, the tokens
belonging together are removed from the input edges and a token with the
corresponding symbol of the output edge is generated. The dynamic dataflow
model uses both loop parallelism and recursive parallelism, which appear
dynamically during program run-time. Such an architecture must support the
process of operand matching (merging).

Figure 3

The general organization of the dynamic data flow model

The Matching Unit represents a memory which performs matching of tokens at the
operator’s input. The tokens are merged only if the token is destined for a double
input operator, which initiates the operand matching process. If a match exists, the
corresponding token is extracted from the Token Queue and the matched token set
is passed on to the Fetch Unit. If no match is found, the token is stored in the
Matching Unit and waits for a a partner.

The Fetch Unit performs a selection of the prepared instructions from the Program
Memory and generates executable packages for the Processing Unit.

Acta Polytechnica Hungarica Vol. 7, No. 1, 2010

 – 77 –

The Program memory is the instruction memory of the data flow program.

The Processing Unit processes operations defined in the executable packages and
produces result tokens, then sends them to the Matching Unit via the Token
Queue.

The Token Queue transports the input of tokens from the Processing Unit to the
Matching Unit.

3 The DF KPI System

The DF-KPI system [6], being developed at the Department of Computers and
Informatics at the Faculty of Electrical Engineering and Informatics of the
Technical University of Košice, has been designed as a dynamic system with
direct operand matching. The combination of the local control flow model (von
Neumann’s principle) with the global data flow model allows us to effectively
organize the parallel implementation of functional program. The architecture
model of the DF-KPI computer is a part of a data flow complex system, which
includes support components for data flow computing environment for the
implementation of the defined application targets.

The structural organization (Fig. 4) of the DF-KPI computer architecture model
consists of the following components:

Coordinating Processors (CP) are intended to manage, coordinate and process
instructions of the data flow program, based on the presence of their operands,
which are enabled at the CP.DI input port of the coordinating processor - either
from its CP.DO output port or from the CP.DO output ports of other CPs through
an interconnection network, or from a Data Queue Unit and from the Frame Store.
The structure of the CP is a dynamic pipelined multiple-function system,
composed of LOAD, FETCH, OPERATE, MATCHING and COPY segments.

The Data Queue Unit (DQU) is a unit designed to store the activation symbols
(data tokens), which represent operands waiting for matching during program
execution.

The Instruction Store (IS) is a memory of instructions of the data flow program, in
the form of a proper data flow graph.

The Frame Store (FS) is a memory of matching (pairing) vectors, by means of
which the CP detects the presence of operands to perform the operation defined by
the operator (node) in the data flow graph. The short description of the item
format of MV matching vector in the FS is <FS>::= <AF><V>, where AF is a flag
of the operand's presence (Affiliation Flag) and V is the value of the given
operand.

N. Ádám Single Input Operators of DK KPI System

 – 78 –

Supporting components of the data flow system are needed to create a realistic
computing environment. In the given architecture they are formed by the
following:

Figure 4

The DF-KPI system

The Main computer (HOST) provides standard functions of the computer system
during data flow computing process.

The Information Technology unit is a unit used to create dedicated application
environments (virtual reality, diagnostics, e-learning).

The I / O processors for fast direct inputs/outputs into the data flow module
(standard I/Os are implemented by the main computer).

3.1 Instruction Format

Each instruction is represented by an operator of the data flow program. Data flow
operators are generally classified as single input, double input and N (N ≥ 3) input
operators. In the case of single input operators, the input is formed by one
operand, which meets the condition of the data availability firing rule, meaning

Acta Polytechnica Hungarica Vol. 7, No. 1, 2010

 – 79 –

operand matching is not necessary. In the case of N input operators, the operator
will be executed if all input operands are present, which are then merged in
matching segment, based on the matching vector MV. The instruction set of the
DF-KPI architecture consists of instructions represented by the single input
operators (ACCEPT, IF, KILL, OUT, RET, SEL, UN_OP), double input
(BIN_OP, CASE, DEF, GATE, LOAD, SEND, TUP) and N (N ≥ 3) input
(APPLY, CONSTR). The ACCEPT operator is an entry operator of the data flow
program and subprograms. The IF operator represents a two-way branch and the
CASE operator represents a multi-way switch. The KILL operator is used for
consumption of input operand without any response. The OUT operator is the last
operator and RET is a return operator of the data flow program or subprograms.
The SEL operator selects data from the data structure defined by the CONSTR
operator. The UN_OP single input operator and the BIN_OP double input operator
represent unary and binary arithmetic operations. The DEF operator defines the
program constant. While LOAD creates copies of the data and address part of the
input operand, the TUP operator creates copies only of the data section of a data
token. Running the program or subprogram is launched by the APPLY operator. A
more detailed description of these operators is in [6].

The format of the data flow instructions is as follows:

<DFI>::= <OC> <{DST, [IX]}n>

where OC is the operation code; LI is a literal (e.g. number of copies of the result);
DST represents the target address for operation result; IX is a matching index for
the operations.

The data flow program instruction represented by a data token is stored in the
Instruction Store at the address defined by DST field. The data token has the
following format:

<DT>:: = <P> <T, V> <MVB> <{DST, [IX]}>

where P is the priority of the data token; T represents the data type of operand
with a value V; MVB defines a base address of matching vector in the Frame
Store and DST specifies a destination address of the resulting DT data token. The
structure of the DST field is the following:

<DST>:: = <MF> <IP> <ADR>

where MF is a matching function, with a defined set of labels {M, B}, M stands
for matching (of two DTs), B stands for bypass (without DT matching); IP defines
an input port {L(eft), R(ight)}; ADR is the address of the operator or function.

If the operands enter the two-input or multi-input operators, operand matching
occurs. The DF-KPI architecture uses the direct operand matching control
mechanism. It is based on the allocation of a Matching Vector in the Frame Store
according to the activation code (procedure, call). Allocated Matching Vectors are

N. Ádám Single Input Operators of DK KPI System

 – 80 –

represented as a matching record in the Frame Store. The format of the Matching
Vector in the Frame Store is as follows:

<SS [BACT +H + IX +1]> :: =

<RC, MVS> <BOLD> < DSTRET> <D{[BNEW] {D}} >

where BACT is a pointer to the current top record; H is the size of a header of
record; MVS defines the size of a matching vector; RC is the reference counter;
BOLD is a pointer to the previous token; DSTRET specifies the return address; BNEW
defines the base address for new matching record and D represents an operand
value.

The RC field is set according to the size of the matching vector at compile-time.
After the function associated with the operator has fired, the value of RC is
decremented. If RC = 0, the Matching Vector in the frame store is released.

3.2 Operand Matching

As mentioned above, data tokens convey information about the status of the
calculation. Their location at the input edges of a node (operators) in the data flow
graph means the presence of the operand for a defined and enforceable instruction.
The presence of a data token at the output edge of a node reflects the presence of
the outcome of operations performed by the operator defined instructions.

The processing of a data flow graph is subject to the rules of firing an instruction
(an instruction is executable if all of its operands are available) and activation (an
instruction is activated when it is fired and the resources required for activation
are available).

One of the most important steps based on the dynamic data flow model is direct
operand matching [4], [8]. The concept of direct operator matching represents the
elimination of the costly process (in terms of computing time) related to
associative searching of the operands. In this scheme, a matching vector is
dynamically allocated in the Frame Store memory for each token generated during
the execution of the data flow graph. The current location of a matching vector in
the Frame Store is determined at compile time, while the Frame Store location is
determined after the program starts. Each calculation can be described using an
instruction address (ADR) and the pointer to the matching vector MVB in the
Frame Store. The <MVB, ADR> value pair is part of the token. A typical action is
the searching for the operands pair in the Frame Store. The matching function
provides searching for the tokens marked identically. After the operand has
arrived to the Coordinating Processor, the matching function detects if a
commonly entered operand is present in the Frame Store. Detection is performed
according to matching IX index. If the operand is not there yet, it is stored in the
Frame Store, in the Matching Vector specified by base address of the MVB
operand, into the item specified by index IX.

Acta Polytechnica Hungarica Vol. 7, No. 1, 2010

 – 81 –

The operand matching process control at the operator input is influenced by the
process of matching, instruction execution and generation of a result at its output.
Using a compiler producing DFG output with forward searching that allows for
the detecting and eliminating of redundant computations and change order of
token processing, process control can be defined as the transition of activation
signs along the edges of the data flow graph (Fig. 5), between the “producer” (P)
operator and the “consumer” (C) operator.

Figure 5

The operand matching (a – P-single input, b – P-double input, c – P-double input/C-single input,
d – P-double input/C-double input, e – P-double input/C-u-single,v-double input)

The P and C operators can be single input, double input and management
operators respectively. Varying configurations of P and C operators are shown in
Fig. 5.

By processing the data flow graph the operators can be configured and connected
as follows:

P-single input, C-single input (PS/CS). This configuration doesn’t require operand
matching. The token produced by the P producer is absorbed by the C consumers
(Fig. 5a).

P-single input, C-double input (PS/CD). It requires operand matching on operator
C (Fig. 5a).

P-double input, C-single input (PD /CS). Operand matching occurres only on
operator P (Fig. 5b).

N. Ádám Single Input Operators of DK KPI System

 – 82 –

P-double input u×C-single input (PD /uCS). After processing the instruction
defined by double input operator P, the result is distributed among u single input C
operators. Operand matching occurs only with the operator P (Fig. 5c).

P-double input, v×C-double input (PD/vCD). The result is distributed between the
v double input C operators. Operand matching is activated with operator P and
operator C, too (Fig. 5d).

P-double input, u×C-single input, v×C-double input (PD/uCSvCD). The result of
the activated double input operator P is sent to u single input and v double input C
operators. Operand matching occurs with operator P as well as with double input
C operators (Fig. 5e).

In this article we describe the operand matching control for configuration shown
in Figure 5a.

3.3 Implementation of PS/CS and PS/CD Operators

The coordinating processor represents a dynamic pipeline system, which allows us
to switch between the Load (L), Matching (M), Copy (C), Fetch (F) and Operate
(O) states in a different order. The transitions between the states using a micro-
management program is shown by means of a state diagram (Fig. 6). The micro-
program manages the operand matching process.

Figure 6

The state diagram of the operand matching control process

The control signals shown in Fig. 6 have the following meanings: CP_free –
indicates the occupancy or availability of the coordinating processor; GetDT –
read token from DQU; PutDT – write token to DQU; Init – initialization of
pipelined system. The proposed architecture at a logical level of operand matching
control is show in Fig. 8. FIFO registers with the following specifications have

Acta Polytechnica Hungarica Vol. 7, No. 1, 2010

 – 83 –

been inserted to increase the throughput coefficient between the various stages of
coordinating processor (Fig. 8):

• Between the stages L and F → register LFR

• Between the stages F and O → register FOR

Single input operator processing is done by means of micro-operations defined for
each state (segment) of the dynamic pipelined multi-function unit of the current
coordinating processor (Fig. 8).

Figure 7

Micro-program for single input operators matching

The function isFree (X) tests the busy state of segment X. Micro-operations,
which can be executed in parallel, are placed in a single command block
(processing steps) in the program flowchart. Initialization of the coordinating
processor is done by sign Init = 1. The boot command of the data flow program
loads the data token from the DQU to the LOAD segment, sets the busy flag for
the LOAD segment to 1 (i.e. the LOAD segment is occupied) and blocks the
processing of the following tokens (GetDT = 0). If the next segment, the Fetch
segment, is free, the token is loaded into the Load/Fetch register. After that, the
micro program releases the LOAD segment and activates the loading of other
tokens into the coordinating processor.

N. Ádám Single Input Operators of DK KPI System

 – 84 –

The control mechanism determines the DF address operator based on the
LFR.DST.ADR address. The operator will be loaded from the instruction store
into the Fetch/Operate register. If the Operate segment is not busy (isFree
(Operate) = true), the operator is fetched from the Fetch/Operate register and
processed. In the next step, if the CP is not busy, the result of the operator
consumption and processing is available for processing in the same CP.
Otherwise, the result is to another CP through the interconnection network. If all
CPs are busy, the token is stored in the DQU.

Figure 8

Pipeline system for processing of single input operators

Conclusions

This article presents the architecture design of the dynamic pipelined multiple-
function system at a logical level, which handles processing of operand matching
for single input data flow operators. Verification of proposal correctness can be
realized by simulation or technical realization using statistical formulas and tools.
At the Department of Computer and Informatics, a demand for realization of
simulation tool for DF-KPI (being developed by this department) system has been
recognized, within the scope of APVV-0073-07 and VEGA grant project No.
1/0646/09. Simulations are still to be performed at the level of the interconnection
network (matching memory and tables), as well as at the level of the entire system.
For system-level simulation compiler from a higher-level programming language
to DFG is to be used (functional languages are preferred). The currently developed
DF-KPI system with its principle of data processing and its parameters is intended

Acta Polytechnica Hungarica Vol. 7, No. 1, 2010

 – 85 –

for solving tasks requiring brute force. The development of the DF-KPI system is
focused on the fields of virtual reality [9] and computer security [13].

Acknowledgment

This work was supported by the Slovak Research and Development Agency under
the contract No. APVV-0073-07 and VEGA grant project No. 1/0646/09: “Tasks
solution for large graphical data processing in the environment of parallel,
distributed and network computer systems” and by Agency of the Ministry of
Education of the Slovak Republic for the Structural Funds of the EU under the
project Centre of Information and Communication Technologies for Knowledge
Systems (project number: 26220120020).

References

[1] Arvind, D. E. Culler: Dataflow Architectures. Annual Review in Computer
Science, 1986, Vol. 1, pp. 225-253

[2] J. Carlström, T. Bodén: Synchronous Dataflow Architecture for Network
Processors, Micro IEEE, Volume 24, Issue 5, Sept.-Oct. 2004, pp. 10-18,
ISSN 0272-1732

[3] J. B. Dennis: Data-Flow Supercomputers. Computer, Nov. 1980, pp. 48-56

[4] J. R. Gurd, C. C. Kirkham, I. Watson: The Manchester Prototype Data-
Flow Computer. Commun. ACM, Vol. 28, pp. 34-52, Jan. 1985

[5] Gy. Györök, M. Makó, J. Lakner: Combinatorics at Electronic Circuit
Realization in FPAA, Acta Polytechnica Hungarica, Vol. 6, No. 1, pp. 151-
160, 2009

[6] M. Jelšina: Design of Data Flow KPI Computer System (in Slovak). elfa
s.r.o., Košice, 2004, ISBN 80-89066-86-0

[7] M. Jelšina: Computer system architectures (in Slovak), elfa s.r.o., Košice,
2002. ISBN 80-89066-40-2

[8] B. Lee, A. R. Hurson: Issues in Dataflow Computing. Advances in
Computers, Vol. 37, Academic Press, Inc., San Diego, CA, 1993, pp. 285-
333

[9] B. Sobota, J. Perháč, M. Straka, Cs. Szabó: The Applications of Parallel,
Distributed and Network Computer Systems to Solve Computational
Processes in an Area of Large Graphical Data Volumes Processing (in
Slovak); elfa s.r.o., Košice, 2009, ps. 180, ISBN 978-80-8086-103-2

[10] S. Swanson, K. Michelson, A. Schwerin, M. Oskin: WaveScalar, Proc. of
the 36th International Symposium on Microarchitecture (MICRO-36 2003)
2003, pp. 291-302, ISBN 0-7695-2043-X

N. Ádám Single Input Operators of DK KPI System

 – 86 –

[11] B. Verdoscia, R. Vacarro: ALFA: A Static Data Flow Architecture, In
Proceedings of Fourth Symposium on the Frontiers of Massively Parallel
Computation, McLean, VA, USA, 1992, pp. 318-325

[12] L. Vokorokos: Data Flow Computer Principles (in Slovak), Copycenter,
spol. s.r.o., Košice, 2002. ISBN 80-7099-824-5

[13] L. Vokorokos, N. Ádám, A. Baláž, J. Perháč: High-Performance Intrusion
Detection System for Security Threats Identification in Computer
Networks, Computer Science and Technology Research Survey, Košice,
elfa, s.r.o., Letná 9, 042 00, Košice, Slovak Republic, 2009, 4, 4, pp. 54-61,
ISBN 978-80-8086-131-5

