
Acta Polytechnica Hungarica Vol. 15, No. 2, 2018

 – 69 –

The Impact of Data Representationson

Hardware Based MLP Network

Implementation

Norbert Ádám, Anton Baláž, Emília Pietriková,

Eva Chovancová, Peter Feciľak

Faculty of Electrical Engineering and Informatics

Technical University of Košice

Letná 9, 042 00 Košice, Slovak Republic

norbert.adam@tuke.sk, anton.balaz@tuke.sk, emilia.pietrikova@tuke.sk,

eva.chovancova@tuke.sk, peter.fecilak@tuke.sk

Abstract: Artificial neural networks are massively parallel systems containing large

amounts of simple computing elements. Therefore, it is natural to try to implement them

using parallel computing architectures. This paper deals with an implementation of a three

layer multilayer perceptron artificial neural network. It summarises the impact of using

various forms of data representation on the performance of the hardware implementation –

a Kintex-7 XC7K325T-2FFG900C FPGA chip on a Xilinx Kintex KC705 board.

Keywords: fixed-point; floating-point; mlp; neural network; residue number system

1 Introduction

Artificial neural networks belong to the category of massively parallel

architectures. Therefore, it is natural to try to implement these structures –

interalia –as ASIC circuits (a notable example of this being the NI1000

architecture [1]), the CogniMem CM1K chip [2] or the SyNAPSE [3] chip with a

brain-inspired non-von Neumann computer architecture with a million neurons

and 256 million synapses. Most solutions provide high performance for the cost of

lower flexibility. The change of structure of an artificial neural network (such as

the number of neurons, the applied algorithm, etc.) requires to create a new block

design, meeting the requirements for artificial neural networks [4]. Currently,

significant effort is being invested in the implementations of artificial neural

networks on re-configurable computer platforms [5]. The term 're-configurable'

refers to the capability of achieving the required system properties [6] beyond

those of the conventional architectures (such as the von-Neumann architecture).

N. Ádámet al. The Impact of Data Representations on Hardware Based MLP Network Implementation

 – 70 –

Field Programmable Gate Arrays (FPGA) belong to the category of re-

configurable hardware. They allow to designlogic circuits similarly to the way that

programmers write programs and their performance is comparable to the

performance of application-specific integrated circuits (ASIC).

When implementing artificial neural networks in FPGA chips, one has to take the

limiting factors of this implementation into account. This factor is the relationship

between area and precision. The issue is that greater precision requires a higher

number of logical structures required for their implementation. Precision itself is a

very important factor of the speed of convergence of the artificial neural network

to the desired output. Single precision representation of numbers provides

sufficient precision (i.e. in terms of minimal quantization error and minimal

misclassification rate); however, due to the limited hardware resources of FPGA

chips, it is less efficient than in case of fixed point numbers.

2 Multilayer Feedforward Networks

The basic architecture of the multilayer perceptron (MLP) feedforward artificial

neural network consists of three layers of neurons: the input, hidden and output

layers. In feedforward networks, the signal is led from the input of the unit to the

output strictly only forward.

2.1 Structure of Feedforward Multilayer Artificial Neural

Networks

Feedforward multilayer neural networks belong to the artificial neural networks,

which are used most often as universal means of classification and prediction. A

three-layer neural network (containing at least one layer of hidden neurons) can

simulate an arbitrary function F of type

𝐹: ℝ𝑛 →]0,1[(1)

where F is a continuous function with the projection of n dimensional space ℝ𝑛to

the]0,1[open interval.

With this, we have a universal tool for performing both regression analysis of

functions defined by a training set and for extrapolation of functional values

beyond the training set, i.e. a tool to solve generalisation problems (prediction and

classification).

Acta Polytechnica Hungarica Vol. 15, No. 2, 2018

 – 71 –

2.2 Backpropagation

The backward propagation of errors, or backpropagation (BP) proposed by

Rumelhart, et al. [7], is a common method of training artificial neural networks

and used in conjunction with an optimization method such as gradient descent.

The algorithm consists of two phases (Fig. 1): The forward phase where the

activations are propagated from the input to the output layer, and the backward

phase, where the error between the observed actual and the requested nominal

value in the output layer (desired output) is propagated backwards in order to

modify the weights and bias values.

The pseudocode of the algorithm is as follows:

Assign all network inputs and output
 Initialize network weights (small random values, typically between -1 and 1)
 do
 for every pattern in the training set
 Present the pattern to the network
 //Propagated the input forward through the network:
 for each layer in the network
 for every node in the layer
 1. Calculate the weight sum of the inputs to the node
 2. Add the threshold to the sum
 3. Calculate the activation for the node
 end
 end
 //Propagate the errors backward through the network
 for every node in the output layer
 calculate the error signal
 end
 for all hidden layers
 for every node in the layer
 1. Calculate the node's signal error
 2. Update each node's weight in the network
 end
 end
 //Calculate Global Error
 Calculate the Error Function
 end
 while ((maximum number of iterations < than specified) AND (Error Function is > than specified))

Figure 1

Back-propagation algorithm

2.3 Activation Function

The individual neurons of the artificial neural networks use activation functions to

calculate their own activation (i.e. output value). The argument of the activation

function is the sum of the products of the weights and the outputs of the neurons

of the preceding layer (or layers), connected to the particular neuron. In the

N. Ádámet al. The Impact of Data Representations on Hardware Based MLP Network Implementation

 – 72 –

available literary sources, one may find multiple applicable activation functions.

The choice of the activation function may significantly influence the speed of the

learning phase. The choice of the activation function depends on the type of the

task we want to solve by using the artificial neural network. For the purpose of the

BP we may use functions, for which a first order derivative of the activation

function may be produced. In this paper we decided to use the logistic function,

the derivative of which is defined as y′ = f ′(𝑥) = y × (1 − 𝑦). This is the most

commonly used soft-limiting activation function. Because it squashes the input

range into]0,1[output range.

3 Configuration of the Applied Artificial Neural

Network

In addition to the applied target technology and platform, the overall performance

of the artificial neural network is significantly influenced also by the applied

algorithm, the form of data representation and the applied data structures. In this

paper, when determining the overall performance of the proposed architecture, we

will start out from the overall cost of implementing one forward and one backward

phase of neural network training per epoch. For the configuration of the neural

network, see Table 1.

The implemented neural network is aimed at the recognition of handwritten

numbers, based on the MNIST database (Fig. 2). The MNIST database of

handwritten digits has a training set of 60,000 samples (one epoch), and a test set

of 10,000 samples. The digits have been size-normalized and centered in a fixed-

size image.

The size of the individual figures – numbers ranging from 0 to 9 – is 28×28 pixels.

Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background

(white), 255 means foreground (black). Figure 2 shows a sample of handwritten

digits.

The pixel inputs were normalised into a [2−6; 1 − 2−6]closed interval. The

normalisation interval – other than [0; 1] – was selected due to the applied

activation function (sigmoid), the range of which is defined for the]0; 1[open

interval. These normalised values were then used as input values of the input layer

neurons. The required output values were also subjected to normalisation. The

output layer consisted of 10 neurons, representing digits 0 to 9.

We used one-hot encoding, i.e. only a single neuron shall have the maximum

value of 1 − 2−6, the other neurons will be set to the lowest value 2−6, since the

extreme values of 0 and 1 were otherwise unachievable, due to the sigmoid

function.

Acta Polytechnica Hungarica Vol. 15, No. 2, 2018

 – 73 –

Figure 2

MNIST digits (illustration)

The error function for training pattern p is given by

  

k

kopkpp ydE
2

,,,
2

1
 (2)

where 𝑑𝑝,𝑘 is the target output, and 𝑦𝑝,𝑜,𝑘 is the output layer output. If the error is

0.125 per output unit, the pattern error becomes

  078125.0125.0
2

1
10

1

2
 

k

pE (3)

And this value was used as a threashold for determining if a pattern is trained or

not. Weight change values were accumulated for a pattern p having 𝐸𝑝 >

0.078125, whereas a pattern is trained when 𝐸𝑝 ≤ 0.078125.

Table 1

Configuration of the artificial neural network

Number of layers 1 input layer, 1 hidden layer, 1

output layer

Connection of neurons between the hidden layers Full connection

Number of neurons in the input layer 28 × 28 = 768 neurons

Number of neurons in the hidden layer 500 neurons

Number of neurons in the output layer 10 neurons

Activation function applied to the neurons of the

input layer

Linear mapping

 xfy 

Activation function applied to the neurons of the

hidden and output layer

Sigmoid

   xexfy  11

Activation function applied to the neurons of the

output layer

Sigmoid

   xexfy  11

N. Ádámet al. The Impact of Data Representations on Hardware Based MLP Network Implementation

 – 74 –

4 Hardware Implementation of the Network

When designing the hardware, multiple aspects influencing the design have to be

taken into account [8], [9]. These aspects are related to the structure of the

artificial neural network, data representation, the set of operations, which have to

be supported by the hardware [10], the choice and the method of implementation

of the activation function, the method of storing and updating the data in the

network and the algorithm used when training/testing the network [11].

Of the above aspects, the performance of the neurohardware is affected especially

by the method of implementing the set of operations used in the learning phase of

the network and the activation function. The implementation per se is affected also

by the representation of the operands [12].

4.1 Floating Point Representation

Since the task described in section 3 deals with real numbers, it is natural to use

floating point representation for the operands. In digital computers, real numbers

are represented in accordance with standard IEEE-754, which defines three

formats: single precision format (32-bit), double precision format (64-bit) and

extended double format (80-bit).

The standard implementation of artificial neural networks uses the 32-bit floating

point representation of data – the float data type. The advantage of the

representation pursuant to standard IEEE-754 is the wide range of represented real

numbers. The disadvantage is the inaccuracy of the real number representation. It's

important to note that precision is about how exactly we can specify it (i.e.

machine precision) an accuracy is about how close a value is to what it is meant to

be; moreover, it is influenced by the applied rounding technique. A further

disadvantage of the representation of real numbers pursuant to standard IEEE-754

is the time cost of implementation of the arithmetic operations.

4.2 Fixed Point Representation

Fixed point representation is used to represent real numbers in the way known

from the decimal number system,±integerPart.fractionalPart.

When using a binary number system, we let IP be the number of bits used to

represent the integer part, including the sign bit. Let FP be the number of bits

assigned to represent the fractional part of the number. Then, the total number of

bits used to represent the real number may be expressed as 𝑊 = 𝐼𝑃 + 𝐹𝑃.The

range of numbersequals to – [−2𝐼𝑃−1, 2𝐼𝑃−1 − 2−𝐹𝑃], while machine precision ε

equals to 2−𝐹𝑃 (𝑢𝑙𝑝 = 2−𝐹𝑃).

Acta Polytechnica Hungarica Vol. 15, No. 2, 2018

 – 75 –

There are numerous forms of notation applicable to the fixed point number

representation. In this paper, we will use the Qw.i notation. In this notation, w

represents the word length in bits, i is the number of bits used to represent the

integer value. For example, Q32.9 describes a number with 9 integer bit and 23

fractional bits stored as a 32-bit 2's complement integer.

The disadvantage of the fixed point representation lies in the significantly lower

range of numbers, which may be represented using this format, in comparison

with the floating point representation, when using the same number of bits for

representation. The advantage of the fixed point representation is that we may use

integer arithmetic to implement operations on real numbers, which positively

influences the requirements on hardware resources.

An interesting data representation category is the residue number system.

4.3 Residue Number System

Data representations described above employ a linear and positional number

system, where the value of each symbol is influenced by the radix of the number

system and the position of the symbol in the symbol series. Another group of

numerical value representations are non-positional number systems. A significant

non-positional number system is the residue number system.

If q and r are the quotient and remainder, respectively, of the integer division of a

by m, that is, 𝑎 = 𝑞. 𝑚 + 𝑏, then, by definition, we have a ≡ b (mod m). The

number b is said to be the residue of a with respect to m, and we shall usually

denote this by 𝑟 = |𝑎|𝑚. The number 𝑚 is a modulus (aka base). The set of m

smallest values, {0, 1, 2, . . . , 𝑚 − 1}, that the residue may assume is called the set

of least positive residues modulo m.

For example, numbers of the set {1, 3, 5, 7, . . . , 2𝑖 + 1} belong to the residue class

mod 2, while for an arbitrary couple of numbers (a, b) of this set, the following

applies: a ≡ b (mod 2).

Let {𝑚1, 𝑚2, 𝑚3, . . . , 𝑚𝑁} be a set of N pairwise relatively prime moduli. Let their

product be M, i.e. 𝑀 = ∏ 𝑚𝑖
𝑁
𝑖=1 . Then every number 𝑋 < 𝑀 has a unique

representation in the residue number system, which is the set of residues {|𝑋|𝑚𝑖
 :

1 ≤ i ≤ N}. The number M is called the period (aka dynamic range) of the RNS,

because the number of numbers that can be represented is M. For unsigned

numbers, that range is [0, M-1]. For example, the decimal number X, represented

in the conventionally weighted number system as X = 23 may be expressed as

〈1, 2, 3〉2,3,5 in a system with a period of M = 30 (𝑚1 = 2, 𝑚2 = 3, 𝑚3 = 5),

where 1 is the result of the operation X mod 2, 2 is the result of the operation X

mod 3, while 3 is the result of the operation X mod 5. Representations in a system

in which the moduli are not pairwise relatively prime will be not be unique: two or

more numbers will have the same representation (Tab. 2)

N. Ádámet al. The Impact of Data Representations on Hardware Based MLP Network Implementation

 – 76 –

Number conversion to RNS and from RNS, the standard arithmetic operations of

addition/subtraction and multiplication are easily implemented [13], depending on

the choice of the moduli, but division is much more difficult.

In the error backpropagation algorithm, the operation of division is used only

when evaluating the logical activation function. For the implementation of the

activation function we used an approximation, eliminating the need of performing

a division.

Table 2

The result of comparing in pairs with the final result

N pairwise relatively prime moduli relatively non-prime moduli

 𝑚1 = 2 𝑚2 = 3 𝑚1 = 2 𝑚2 = 4

0 0 0 0 0

1 1 1 1 1

4 0 1 0 0

5 1 2 1 1

5 Neural Network Blockset Design

In this work, we decided to implement the artificial neural network on an FPGA

chip. The following chapter contains the list of related works (partially in

chronological order), aimed at the implementation of artificial neural networks in

hardware.

5.1 Related Works

In [14], the authors researched whether FPGA chips were appropriate for

speeding-up floating point calculations. They came to the following conclusion:

„…if we can achieve comparable performance from a pure floating-point

application, it is a good indication that applications which require a few floating

point operations intermixed with fixed-point computations can now be considered

as implementation targets for reconfigurable computing. Furthermore, these

results indicate that if device density and speed continue to increase,

reconfigurable computing platforms may soon be able to offer a significant

speedup to pure floating-point applications“.

Iwata, et al. [15] implemented a BP algorithm using a 24 bit floating point number

representation.

The paper written by Holt & Hwang suggests, that an 8 and 16-bit number

representation is sufficient for the implementation of BP in hardware [16].

Acta Polytechnica Hungarica Vol. 15, No. 2, 2018

 – 77 –

For MLP networks using the BP algorithm, Holt and Baker [17] pointed out that

in fixed point number representations, 16 bits are the least to maintain

functionality of the network, on condition of normalising the input data to the

interval [0,1] and using a sigmoid activation function.

Hammerstrom [18] proposed a neuro-architecture based on an 8 to 16-bit fixed

point representation.

Aibe, et al. [19]implemented a probabilistic neural network (PNN). They used

floating point representation of operands.

The ASIC implementation of an MLP network using floating point representation

for weights and biases is the work of Ayela, et al. [20].

Moussa. et al. demonstrated implementations of MLP on FPGAs using fixed and

floating point representations [21].

Wang, et al. [22] proposed a re-configurable architecture for the VLSI

implementation of the BP algorithm based on systolic fields.

The authors of [23] focused on the efficient implementation of multiplication in a

Maxout network. They trained a set of state-of-the-art neural networks (Maxout

networks) on three benchmark datasets: MNIST, CIFAR-10 and SVHN. During

the training, they used the following number representations: Goodfellow, et al.

Format [24] (32 bits for propagations, 32 bits for parameter updates), single

precision floating point (32 bits for propagations, 32 bits for parameter updates),

half precision-floating point (16 bits for propagations, 16 bits for parameter

updates), Fixed point (20 bits for propagations, 20 bits for parameter updates) and

dynamic fixed point (10 bits for propagations, 12 bits for parameter updates). For

each of those datasets and for each of those formats, they assess the impact of the

precision of the multiplications on the final error after training. The authors of this

work came to the conclusion that it is possible use a lower precision number

representation not only during the life phase of the network, but also during the

training phase. For example, their results achieved on the Startix V Altera FPGA

chip suggest that a 10 bit number representation for propagation and a 12-bit

representation for the parameter updates of the Maxout network are sufficient.

Gupta, et al [25] studied the effect of limited precision on neural network training

and proposed a Xilinx Kintex325T FPGA based hardware accelerator. Their

results showed that deep networks could be trained using only 16-bit wide fixed-

point number representation with stochastic rounding.

Park & Sung, et al. [26] developed an FPGA based fixed-point deep neural

network (DNN) system using only on-chip memory. They used Xilinx XC7Z045

for the implementation. They tested the solution to recognise MNIST handwritten

digits. Due to the memory limitations, they used fixed pointrepresentation for

data, 3 bits for the input and hidden layers, 8 bits for the output layer, more

sensitive to quantisation.

N. Ádámet al. The Impact of Data Representations on Hardware Based MLP Network Implementation

 – 78 –

In [27], the authors proposed a roofline-model-based method for FPGA

acceleration of convolutional neural networks. In this method they first optimize

CNN’s computation and memory access. For data representation, they used 32-bit

floats. They implemented the design using the Vivado HLS (v2013.4)

environment on a Xilinx VC707 board.

Nakahara & Sasao [28] proposed a hardware implementation of a deep

convolutional neural network (DCNN), based on a residue number system. Since

the 2D convolutional operation performs massive multiply-accumulation, they

propose to use nested RNS (NRNS), which recursively decompose the RNS. In

the DCNN using the NRNS, a 48-bit multiply-accumulation unit is decomposed

into 4-bit ones realized by look-up tables of the FPGA. The DCNN using the

NRNS was implemented on a Xilinx Virtex VC707 evaluation board.

6 Our Proposal

The FPGA (Field Programmable Gate Array) is a kind of logical integrated

circuits. It is a programmable gate array used to design digital systems [29].

FPGAs have a wide variety of uses [30]. The main idea is the use of

programmable logic elements to perform simple logical functions. These elements

are called look-up tables (LUTs) – they may perform arbitrary logical functions

with a specific number of inputs and a single output.

Currently, there are many FPGA vendors. Xilinx, Altera, Actel and Atmel belong

to the most popular. The FPGA structure depends on the vendor; however, the

idea behind the FPGA remains the same – to use a logical block array based on

look-up tables and registers. In this work, we used the Xilinx Kintex KC705

development board as an implementation platform.

In the sections below, we describe the implementation of a MLP network with

error backpropagation in a Kintex-7 XC7K325T-2FFG900C FPGA chip [31],

utilising a Xilinx Kintex KC705 [32] board.

The structure of the proposed neuro-accelerator is depicted in figure 3. In addition

to the proposed (ffnn) IP module, the proposed hardware contains supporting

components necessary for the following: to control the input and output of the IP

module (microblaze_0 : MicroBlaze soft processor), to connect the ffnn module

with the soft processor (microblaze_0_axi_periph : AXI Interconnect), to control

interrupts (microblaze_0_axi_intc : AXI Interrupt Controller), to access memory

(axi_dma_0 : AXI Direct Memory Access), module to control access to DDR3

SDRAM memory (mig_7series_0 : Memory Interface Generator), to measure the

time required to perform the operations both on the soft processor and on the

proposed module (axi_timer_0 : AXI Timer), to provide console access to the

Acta Polytechnica Hungarica Vol. 15, No. 2, 2018

 – 79 –

system (axi_uartlite_0 : AXI Uartlite), a debugging module (mdm_1 : MicroBlaze

Debug Module) and a local MicroBlaze memory (microblaze_0_local_memory).

Figure 3

The NeuroAccelerator

6.1 Implementation using Floating Point Representation

Decreasing / increasing the number of bits used for number representation

decreases / increases accuracy of the calculations [33]. The minimum bit count

necessary to represent the numerical information – while maintaining the

necessary level of accuracy and the meeting requirement of convergence of the

artificial neural network to the solution – is significantly influenced by the type of

the artificial neural network and its algorithm.

In this work, we used an MLP network with error backpropagation. We performed

two experiments with the aim to find out the impact of using float and double data

types on the overall performance of the artificial neural network.

For the purpose of implementing error backpropagation, we used the

"Vivado(TM) HLS – High-Level Synthesis from C, C++ and System C Version

2016.3" tool. The source code of the hardware structure was created in C++. In the

first experiment, we used the float (32-bit) data type. A summary of the results of

the experiment is available in Table 3.

When using the float data type, due to the memory requirements of the algorithm

and the resources of the FPGA chip available for the implementation of this IP, we

could use at most 300 neurons in the hidden layer. The remaining hardware

resources were used for the implementation of the support components of the chip.

The misclassification rate for a network with this configuration, using the test set

of 10,000 patterns was 3.76%.

N. Ádámet al. The Impact of Data Representations on Hardware Based MLP Network Implementation

 – 80 –

Table 3

Hardware utilization of FFNN for data type Float

Timing

[ns]

Hidden Layer

[neurons]
BRAM_18K DSP48E FF LUT

8.61

(116MHz)

200 525 (58%) 75 (8%) 8596 (2%)
88011

(43%)

250 533 (59%) 75 (8%) 8604 (2%) 107227 (52%)

300 533 (59%) 75 (8%) 8627 (2%) 126487 (62%)

350 1045 (117%) 75 (8%) 8638 (2%) 145703 (71%)

In our second experiment we tried to find out: the impact of using the double data

type on the network configuration; the performance of the hardware

implementation; and the achievable misclassification rate. A summary of the

results of the experiment is available in Table 4.

Table 4

Hardware utilization of FFNN for data type Double

Timing

[ns]

Hidden Layer

[neurons]
BRAM_18K DSP48E FF LUT

8.68

(115MHz)

100 528 (59%) 158 (18%) 12583 (3%)
91477

(44%)

150 536 (60%) 158 (18%) 12613 (3%) 129928 (63%)

200 1048 (117%) 158 (18%) 12624 (3%) 168347 (82%)

In this case, the maximum number of neurons in the hidden layer was set to 150

neurons. The remaining hardware resources were used for the implementation of

the support components of the chip. The misclassification rate for a network with

this configuration amounted to 4.51%.

6.2 Implementation using Fixedpoint Representation

In this phase of the design we tried to find out what was the lowest bit count

required to sufficiently train an MLP network, using floating point decimal data

representation.

A summary of the results is available in the chart above (Fig. 4) – from this it is

evident that up to 17 bits, the misclassification rate stays below 5%. Beyond this

level, the misclassification rate grew fast. Another finding of the experiment was

that when using 300 hidden neurons, the integer part of the fixed point

representation did not exceed the value of 2. Therefore, in this implementation, we

started out from the data representation using the Q17.2 two’s complement form.

Acta Polytechnica Hungarica Vol. 15, No. 2, 2018

 – 81 –

Figure 4

Misclassification rate

The overall hardware implementation costs are available in Table 5.

Table 5

Hardware utilization of FFNN for data type Q17.2

Timing

[ns]

Hidden Layer

[neurons]
Name BRAM_18K DSP48E FF LUT

8.58

(116MHz)
300 Utilization 555 (62%) 48 (5%) 5926 (3%)

11749

(5%)

The misclassification rate for a network with this configuration, using the test set

of 10,000 patterns was 4.97%.

6.3 Implementation using the Residue Number System

Based on the results of the fixed pointdata representation experiment, we found

that the lowest number of bits, which may be used to train the network with a

misclassification rate below 5% was 17 bits. We used this information when

implementing the ffnn IP module, based on calculations using the residue number

system. As it is known, the operations of addition, subtraction and multiplication

can be easily implemented in residue number systems. Due to the character of the

residue number system and the aforementioned operations, these operations do not

require carrybit propagation, therefore their execution is faster than the execution

of these operations using fixed point number representation. Summaries of the

time characteristics of selected mathematical operations using the residue number

system and in a positional binary system were presented in [34].

N. Ádámet al. The Impact of Data Representations on Hardware Based MLP Network Implementation

 – 82 –

However, division and comparison are more complex in this system. In the error

backpropagation algorithm, the operation of division is used only to calculate the

value of the logistic function. In the next chapter, we describe the solution to

eliminate division from the error backpropagation.

6.3.1 Activation Function Implementation

It is important to note that the performance and precision of networks depend on

the efficient implementation of the activation function on FPGA chips [35]. In

MLP networks, the most common activation function is the sigmoid function.

Direct implementation of sigmoid activation function on FPGA is difficult due to

its division and exponential function. The operation of division and the

implementation of an exponential function are time-consuming; moreover, they

require also significant hardware resources [36].

According to [37], to decrease the requirements hardware resources and the time

necessary to evaluate the function, the following may be used: uniform lookup

table methods (LUT), linear approximation methods, piecewise linear

approximation method (PWL), piecewise linear approximation of a nonlinear

function (PLAN) approximation, A-law approximation, Allipi and Storti-Gajani

approximation, piecewise second-order approximation and lookup table method

with linear interpolation method. Compared to the approximation methods,

solutions using LUT provide high speed, though at a cost of higher memory

requirements.

Approximation methods have lower memory requirements. When combined with

fixed point number representation, the speed differences are not as significant in

comparison with the LUT methods [38].

In our proposal, we used the PLAN approximation of the sigmoid activation

function, as published in [38]. To increase speed, we used only first-order

functions for the approximation. The approximation of the function output was

based on the evaluation of a linear function, used for the approximation of the

sigmoid in a defined interval of input values (Table 6). We have set the

coefficients with a precision of 𝑢𝑙𝑝 = 2−12.

Table 6

PLAN approximation of sigmoid activation function

Interval Function Form
Absolute

approximation error

[𝟐; 𝟑[𝑦 = 𝑓(𝑥) = 0.07110596 ∗ 𝑥 + 0.74377441 0.0051893

[𝟏; 𝟐[𝑦 = 𝑓(𝑥) = 0.14950562 ∗ 𝑥 + 0.58935547 0.0078025

]−𝟏; 𝟏[𝑦 = 𝑓(𝑥) = 0.23828125 ∗ 𝑥 + 0.50000000 0.0072125

[−𝟐; −𝟏] 𝑦 = 𝑓(𝑥) = 0.14950562 ∗ 𝑥 + 0.41058350 0.0078635

[−𝟑; −𝟐[𝑦 = 𝑓(𝑥) = 0.07110596 ∗ 𝑥 + 0.25610352 0.0053031

Acta Polytechnica Hungarica Vol. 15, No. 2, 2018

 – 83 –

6.3.2 Choice of the Residue Number System Parameters

The error backpropagation algorithm uses addition and multiplication operations.

In the binary positional system, the result of adding two n bit numbers is a sum

having at most n+1 bits, the result of their multiplication is the product having 2n

bits. In a residue number system, carrybit propagation does not occur. The range

and the precision of the calculation are functions of the periodM. In the previous

section we showed that when using 17 bits (1b sign + 16b modulus), the

misclassification rate remains under 5%. The result of the multiplication of two

17-bit signed numbers is a 34-bit number (1b sign + 33b modulus).

To cover the required range of 34-bit signed numbers, we used the R residue

number system with moduli {11,23,31,73,89,127,128}. Note that these moduli

have to be pairwise relatively prime. The system period is 𝑀 = 828340264576,,
i.e. 𝑀 > 234.

When transforming a binary number in fixed pointnumber representation Q17.2 to

the residue number system, we used the properties of addition and multiplication

in the residue number system. The following example shows the procedure of

transforming a binary number into the R system with the set of moduli {5,7}.

Example: Consider the system R with the set of moduli 𝑚1 = 5, 𝑚2 = 7. M = 35.

Let 𝑋 = (26)10. Then, by using binary decomposition: 𝑋 = 1 × 24 + 1 × 23 +
1 × 21 Moreover: 𝑋 =𝑅 〈1 × 24 + 1 × 23 + 1 × 21〉 = 〈1 × 24〉 + 〈1 × 23〉 +
〈1 × 21〉 = 〈1〉 × 〈24〉 + 〈1〉 × 〈23〉 + 〈1〉 × 〈21〉 Thus 𝑋 =𝑅 〈|1|5 × |24|5 +
|1|5 × |23|5 + |1|5 × |21|5, |1|7 × |24|7 + |1|7 × |23|7 + |1|7 × |21|7〉 =
〈1 × 1 + 1 × 3 + 1 × 2,1 × 2 + 1 × 1 + 1 × 2〉 = 〈|6|5, 5〉 = 〈1,5〉.

6.3.3 Implementation of BP Algoritm in Residue Number System

Residue number systems do not have metrics. Therefore, the comparison of two

numbers represented in such a system is time-consuming. When comparing

numbers, we may first transform the residue number system representation to a

positional system, perform the comparison or – under certain circumstances – the

comparison may be performed also by subtracting the two numbers and

determining the sign of the operation [39]. Further algorithms are available in

[13].

Table 7

Hardware utilization of FFNN for RNS R with moduli set {11,23,31,73,89,127,128}

Timing

[ns]

Hidden

Layer

[neurons]

Name BRAM_18K DSP48E FF LUT

8.18

(122MHz)
300 Utilization 500 (56%)

336

(40%)

38519

(9,4%)

145337

(71%)

N. Ádámet al. The Impact of Data Representations on Hardware Based MLP Network Implementation

 – 84 –

We chose to use the reverse transformation to a binary number system. The

overall hardware implementation costs are available in Table 7.

With this solution, the misclassification rate amounted to 4.01%.

6.4 Comparison of the Solutions

We compared our solution with an implementation running on a desktop computer

with an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz processor. In this paper,

when determining the overall performance of the proposed architecture, we will

start out from the overall cost of implementing one forward and one backward

phase of neural network training per epoch.The results are available in Table 8.

If the sole criterion of performance is the speed of data training, the winner is the

Desktop CPU. However, if we consider also energy efficiency, the winner is the

MLP network implementation running on an FPGA chip. If we require higher

overall recognition precision, the binary positional system using the float data type

is a good candidate for representing data in the network, otherwise the use of a

fixed pointnumber representation is advisable.

The residue number system falls back behind the solution using fixed pointnumber

representation in terms of speed; however, it's misclassification rate is lower.

Table 8

Comparison of the solutions with an Intel i7-4790 CPU

Clock

frequency

[MHz]

Power

Consumption

[W]

Timing

(1 epoch, 1 iter)

[s]

Overall

Error-rate

(requested < 5%)

Desktop CPU

(float)
3.60GHz 84 (TDP) 28 3,76%

FPGA – float 116MHz 3.569 37 3,76%

FPGA –

double
115MHz 7.298 52 4,51%

FPGA – fixed 116MHz 3.123 30 4,97%

FPGA – RNS 122MHz 4.560 36 4.01%

Conclusions

This paper deals with the implementation possibilities of multilayer neural

networks aimed at the recognition of handwritten digits. The applied neural

network belongs to the artificial neural networks with supervised learning. We

used the error backpropagation algorithm as the training algorithm. The training

and testing set was taken from the MNIST database. As the target platform for the

hardware implementation, we used a Kintex-7 XC7K325T-2FFG900C FPGA chip

on a Xilinx Kintex KC705 board. We researched the impact of the choice of

number representation (floating point vs. fixed point decimal representation), the

impact of the number of bits used to represent the numbers in fixed point notation

Acta Polytechnica Hungarica Vol. 15, No. 2, 2018

 – 85 –

and the choice of the number system (conventionally weighted positional number

system vs. residue number system) on both the utilisation of hardware resources

and the neural network performance (training speed and misclassification rate). A

summary of our findings is available in Table 8.

Acknowledgement

This work was supported by KEGA Agency of the Ministry of Education,

Science, Research and Sport of the Slovak Republic under Grant No. 077TUKE-

4/2015 „Promoting the interconnection of Computer and Software Engineering

using the KPIkit“. This support is very gratefully acknowledged.

References

[1] M. Perron and L. Cooper, "The Ni1000: High Speed Parallel VLSI for

Implementing Multilayer Perceptrons," 1995.

[2] K. Berkolds, "Image Recognition with Hardware Neural Networks," in

Engineering for Rural Development, Jelgava, Latvia, 2016.

[3] S. Esser, A. Alexander, R. Appuswamy, P. Datta, D. Barch, A. Amir, J.

Arthur, A. Cassidy, M. Flickner, P. Merolla, S. Chandra, N. Basilico†, S.

Carpin†, T. Zimmerman, F. Zee, R. Alvarez-Icaza, J. Kusnitz, T. Wong, W.

Risk and McQui, "Cognitive computing systems: Algorithms and

applications for networks of neurosynaptic cores," in 2013 International

Joint Conference on Neural Networks (IJCNN), Dallas, 2013.

[4] J. Ban, M. Féder, M. Oravec and J. Pavlovičová, "Non-Conventional

Approaches to Feature Extraction for Face Recognition," Acta Polytechnica

Hungarica, vol. 8, no. 4, 2011.

[5] R. Lovassy, L. T. Kóczy and L. Gál, "Function Approximation Performance

of Fuzzy Neural Networks," Acta Polytechnica Hungarica, vol. 7, no. 4,

2010.

[6] G. Györök, "Reconfigurable Control in Robust Systems by FPAA," in

Intelligent Systems and Informatics, 2008: Proceedings of SISY 2008, 6th

International Symposium., Subotica, Serbia, 2008.

[7] D. Rumelhart, G. Hinton and R. Wiliams, "Learning internal representations

by error propagation," in Parallel distributed processing: explorations in the

microstructure of cognition, vol. 1, D. Rumelhart and J. McClelland, Eds.,

MA, USA, MIT Press Cambridge, MA, USA, 1986, pp. 318-362.

[8] Š. Hudák, Š. Korečko and S. Šimoňák, "Reachability analysis of time-critical

systems," in Petri Nets Applications, InTech, 2010, pp. 253-280.

[9] M. Novák and M. Biňas, "An architecture overview of the smart-home

N. Ádámet al. The Impact of Data Representations on Hardware Based MLP Network Implementation

 – 86 –

system based on OSGi," in SCYR 2011, Herľany, 2011.

[10] L. Vokorokos, B. Madoš, A. Baláž and N. Ádám, "Architecture of Multi-

Core Computer with Data Driven Computation Model," Acta Electrotechnica

et Informatica, vol. 10, no. 4, pp. 20-23, 2010.

[11] L. Vokorokos, N. Ádám and A. Baláž, "Training Set Parallelism In Pahra

Architecture," Acta Electrotechnica et Informatica, vol. 7, no. 3, pp. 1-6,

2007.

[12] F. Silváši and S. Šimoňák, "Architecture Dependent Program Optimizations,"

in Electrical Engineering and Informatics 4: Proceeding of the Faculty of

Electrical Engineering and Informatics of the Technical University of Košice,

Košice, 2013.

[13] A. Omondi and B. Premkumar, Residue Number Systems : Theory and

Implementation, Advances in Computer Science and Engineering: Texts –

Vol. 2 ed., vol. 2, London: Imperial College Press, 2007.

[14] W. Ligon III, S. McMillan, G. Monn, K. Schoonover, F. Stivers and K.

Underwood, "A Re-evaluation of the Practicality of Floating Point

Operations on FPGAs," in IEEE Symposium on FPGAs for Custom

Computing Machines, 1998.

[15] A. Iwata, Y. Yoshida, S. Matsuda, Y. Sato and N. Suzumura, "An artificial

neural network accelerator using general purpose 24 bit floating point digital

signal processors," in International 1989 Joint Conference on Neural

Networks, 1989.

[16] J. L. Holt and J. N. Hwang, "Finite-precision error analysis of neural network

hardware implementations," IEEE Transactions on Computers, vol. 42, no. 3,

p. 280–290, 1993.

[17] J. L. Holt and T. Baker, "Backpropagation simulations using limited

precision calculations," in Proc. of International Joint Conference on Neural

Networks (IJCNN-91), Seattle, WA, USA, 1991.

[18] D. Hammerstom, "A highly parallel digital architecture for neural network

simulation," in VLSI for Artificial Intelligence and Neural Networks, J.

Delgado-Frias and W. Moore, Eds., Plenum Press, 1991.

[19] N. Aibe, M. Yasunaga, I. Yoshihara and J. H. Kim, "A probabilistic neural

network hardware system using a learning-parameter parallel architecture," in

Proceedings of the International Joint Conference on Neural Networks

(IJCNN '02), Honolulu, Hawaii, 2002.

[20] J. L. Ayala, A. G. Lomeña, M. López-Vallejo and A. Fernández, "Design of a

Acta Polytechnica Hungarica Vol. 15, No. 2, 2018

 – 87 –

pipelined hardware architecture for real-time neural network computations,"

in Proceedings of the 45th Midwest Symposium on Circuits and Systems

(MWSCAS '02), Tulsa, Okla, USA, 2002.

[21] M. Moussa, S. Areibi and K. Nichols, "On the arithmetic precision for

implementing back-propagation networks on FPGA: a case study," in FPGA

Implementations of Neural Networks, Berlin, Germany, Springer, 2006, pp.

37-61.

[22] Q. Wang, A. Li, Z. Li and Y. Wan, "A Design and Implementation of

Reconfigurable Architecture for Neural Networks Based on Systolic Arrays,"

in Advances in Neural Networks, Lecture Notes in Computer Science ed.,

vol. Vol 3973, Berlin, Heidelberg, Springer, 2006.

[23] M. Courbariaux, J.-P. David and B. Y., "Training Deep Neural Networks

With Low Precision Multiplications," arXiv e-prints, vol. 1412.7024, 2014.

[24] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville and Y. Bengio,

"Maxout networks," Universite de Montreal, 2013.

[25] S. Gupta, A. Agrawal, K. Gopalakrishnan and P. Narayanan, "Deep learning

with limited numerical precision," in Proc. of the 32nd International

Conference on International Conference on Machine Learning, 2015.

[26] J. Park and W. Sung, "Fpga based implementation of deep neural networks

using on-chip memory only," in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2016.

[27] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong, "Optimizing FPGA-

based Accelerator Design for Deep Convolutional Neural Networks," in

Proc. of the 2015 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, Monterey, California, USA, 2015.

[28] H. Nakahara and T. Sasao, "A Deep Convolutional Neural Network Based on

Nested Residue Number System," in 25th International Conference on Field

Programmable Logic and Applications (FPL), Lausanne, Switzerland, 2015.

[29] L. Vokorokos, B. Madoš, J. Perháč and M. Chovanec, "Architecture of DFC-

1 computer with data driven computation model," in The 6th International

Symposium on Applied Machine Intelligence and Informatics, Herľany,

Slovakia, 2008.

[30] O. Kainz, F. Jakab, M. Michalko a P. Feciľak, „Detection of Persons and

Height Esatimation in Video Sequence,“ International Journal of

Engineering Sciences & Research Technology, zv. 5, %1. vyd.3, 2016.

[31] „7 Series FPGAs Data Sheet: Overview,“ Xilinx, March 28, 2017.

N. Ádámet al. The Impact of Data Representations on Hardware Based MLP Network Implementation

 – 88 –

[32] „KC705 Evaluation Board for the Kintex-7 FPGA - User Guide,“ Xilinx,

July 8, 2016.

[33] L. Kónya and J. Kopják, PIC mikrovezérlők alkalmazástechnikája, PIC

programozás C nyelven, Budapest: ChipCAD Elektronikai Disztribúció Kft.,

2009.

[34] E. Olsen, „Introduction of the Residue Number Arithmetic Logic Unit With

Brief Computational Complexity Analysis,“ 2015.

[35] L. D. J. Xiaobin, "A mixed Parallel Neural Networks Computing Unit

Implemented in FPGA," in IEEE Intl. Conference Neural Networks & Signal

Processing, China, 2003.

[36] A. Gomperts and A. Ukil, "Development and Implemenation of

Parameterized FPGA-Based General Purpose Neural Networks for Online

Applications," IEEE Transaction on industrial informatics, vol. 7, no. 1,

2011.

[37] K. Lakshmi and D. M. Subadra, "A Survey on FPGA based MLP Realization

for On-chip Learning," International Journal of Scientific & Engineering

Research, vol. 4, no. 1, pp. 1-9, 2013.

[38] M. Panicker and C. Babu, "Efficient FPGA Implementation of Sigmoid and

Bipolar Sigmoid Activation Functions for Multilayer Perceptrons," IOSR

Journal of Engineering (IOSRJEN), vol. 2, no. 6, pp. 1352-1356, 2012.

[39] L. Sousa, "Efficient Method for Magnitude Comparison in RNS Based on

Two Pairs of Conjugate Moduli," in 18th IEEE Symposium on Computer

Arithmetic (ARITH'07), Washington, DC, USA, 2007.

