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Abstract: Artificial neural networks are massively parallel systems containing large 

amounts of simple computing elements. Therefore, it is natural to try to implement them 

using parallel computing architectures. This paper deals with an implementation of a three 

layer multilayer perceptron artificial neural network. It summarises the impact of using 

various forms of data representation on the performance of the hardware implementation – 

a Kintex-7 XC7K325T-2FFG900C FPGA chip on a Xilinx Kintex KC705 board. 
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1 Introduction 

Artificial neural networks belong to the category of massively parallel 

architectures. Therefore, it is natural to try to implement these structures – 

interalia –as ASIC circuits (a notable example of this being the NI1000 

architecture [1]), the CogniMem CM1K chip [2] or the SyNAPSE [3] chip with a 

brain-inspired non-von Neumann computer architecture with a million neurons 

and 256 million synapses. Most solutions provide high performance for the cost of 

lower flexibility. The change of structure of an artificial neural network (such as 

the number of neurons, the applied algorithm, etc.) requires to create a new block 

design, meeting the requirements for artificial neural networks [4]. Currently, 

significant effort is being invested in the implementations of artificial neural 

networks on re-configurable computer platforms [5]. The term 're-configurable' 

refers to the capability of achieving the required system properties [6] beyond 

those of the conventional architectures (such as the von-Neumann architecture). 
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Field Programmable Gate Arrays (FPGA) belong to the category of re-

configurable hardware. They allow to designlogic circuits similarly to the way that 

programmers write programs and their performance is comparable to the 

performance of application-specific integrated circuits (ASIC). 

When implementing artificial neural networks in FPGA chips, one has to take the 

limiting factors of this implementation into account. This factor is the relationship 

between area and precision. The issue is that greater precision requires a higher 

number of logical structures required for their implementation. Precision itself is a 

very important factor of the speed of convergence of the artificial neural network 

to the desired output. Single precision representation of numbers provides 

sufficient precision (i.e. in terms of minimal quantization error and minimal 

misclassification rate); however, due to the limited hardware resources of FPGA 

chips, it is less efficient than in case of fixed point numbers. 

2 Multilayer Feedforward Networks 

The basic architecture of the multilayer perceptron (MLP) feedforward artificial 

neural network consists of three layers of neurons: the input, hidden and output 

layers. In feedforward networks, the signal is led from the input of the unit to the 

output strictly only forward.  

2.1 Structure of Feedforward Multilayer Artificial Neural 

Networks 

Feedforward multilayer neural networks belong to the artificial neural networks, 

which are used most often as universal means of classification and prediction. A 

three-layer neural network (containing at least one layer of hidden neurons) can 

simulate an arbitrary function F of type 

𝐹: ℝ𝑛 → ]0,1[ (1) 

where F is a continuous function with the projection of n dimensional space ℝ𝑛to 

the ]0,1[ open interval. 

With this, we have a universal tool for performing both regression analysis of 

functions defined by a training set and for extrapolation of functional values 

beyond the training set, i.e. a tool to solve generalisation problems (prediction and 

classification). 
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2.2 Backpropagation 

The backward propagation of errors, or backpropagation (BP) proposed by 

Rumelhart, et al. [7], is a common method of training artificial neural networks 

and used in conjunction with an optimization method such as gradient descent.  

The algorithm consists of two phases (Fig. 1): The forward phase where the 

activations are propagated from the input to the output layer, and the backward 

phase, where the error between the observed actual and the requested nominal 

value in the output layer (desired output) is propagated backwards in order to 

modify the weights and bias values. 

The pseudocode of the algorithm is as follows: 
 

Assign all network inputs and output  
 Initialize network weights (small random values, typically between -1 and 1)  
  do 
   for every pattern in the training set  
    Present the pattern to the network  
     //Propagated the input forward through the network:  
     for each layer in the network   
      for every node in the layer   
        1. Calculate the weight sum of the inputs to the node 
        2. Add the threshold to the sum 
        3. Calculate the activation for the node   
       end 
     end  
     //Propagate the errors backward through the network  
     for every node in the output layer   
      calculate the error signal   
     end  
     for all hidden layers   
      for every node in the layer   
        1. Calculate the node's signal error   
        2. Update each node's weight in the network   
      end 
     end 
     //Calculate Global Error  
      Calculate the Error Function  
    end  
   while ((maximum number of iterations < than specified) AND (Error Function is > than specified)) 

Figure 1 

Back-propagation algorithm 

2.3 Activation Function 

The individual neurons of the artificial neural networks use activation functions to 

calculate their own activation (i.e. output value). The argument of the activation 

function is the sum of the products of the weights and the outputs of the neurons 

of the preceding layer (or layers), connected to the particular neuron. In the 
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available literary sources, one may find multiple applicable activation functions. 

The choice of the activation function may significantly influence the speed of the 

learning phase. The choice of the activation function depends on the type of the 

task we want to solve by using the artificial neural network. For the purpose of the 

BP we may use functions, for which a first order derivative of the activation 

function may be produced. In this paper we decided to use the logistic function, 

the derivative of which is defined as y′ = f ′(𝑥) = y × (1 − 𝑦). This is the most 

commonly used soft-limiting activation function. Because it squashes the input 

range into ]0,1[ output range. 

3 Configuration of the Applied Artificial Neural 

Network 

In addition to the applied target technology and platform, the overall performance 

of the artificial neural network is significantly influenced also by the applied 

algorithm, the form of data representation and the applied data structures. In this 

paper, when determining the overall performance of the proposed architecture, we 

will start out from the overall cost of implementing one forward and one backward 

phase of neural network training per epoch. For the configuration of the neural 

network, see Table 1. 

The implemented neural network is aimed at the recognition of handwritten 

numbers, based on the MNIST database (Fig. 2). The MNIST database of 

handwritten digits has a training set of 60,000 samples (one epoch), and a test set 

of 10,000 samples. The digits have been size-normalized and centered in a fixed-

size image. 

The size of the individual figures – numbers ranging from 0 to 9 – is 28×28 pixels. 

Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background 

(white), 255 means foreground (black). Figure 2 shows a sample of handwritten 

digits. 

The pixel inputs were normalised into a [2−6; 1 − 2−6]closed interval. The 

normalisation interval – other than [0; 1] – was selected due to the applied 

activation function (sigmoid), the range of which is defined for the ]0; 1[open 

interval. These normalised values were then used as input values of the input layer 

neurons. The required output values were also subjected to normalisation. The 

output layer consisted of 10 neurons, representing digits 0 to 9.  

We used one-hot encoding, i.e. only a single neuron shall have the maximum 

value of 1 − 2−6, the other neurons will be set to the lowest value 2−6, since the 

extreme values of 0 and 1 were otherwise unachievable, due to the sigmoid 

function.  
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Figure 2 

MNIST digits (illustration) 

The error function for training pattern p is given by 
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where 𝑑𝑝,𝑘 is the target output, and 𝑦𝑝,𝑜,𝑘 is the output layer output. If the error is 

0.125 per output unit, the pattern error becomes 
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And this value was used as a threashold for determining if a pattern is trained or 

not. Weight change values were accumulated for a pattern p having 𝐸𝑝 >

0.078125, whereas a pattern is trained when 𝐸𝑝 ≤ 0.078125. 

Table 1 

Configuration of the artificial neural network  

Number of layers 1 input layer, 1 hidden layer, 1 

output layer 

Connection of neurons between the hidden layers Full connection 

Number of neurons in the input layer 28 × 28 = 768 neurons 

Number of neurons in the hidden layer 500 neurons 

Number of neurons in the output layer 10 neurons 

Activation function applied to the neurons of the 

input layer 

Linear mapping 

 xfy   

Activation function applied to the neurons of the 

hidden and output layer 

Sigmoid 

   xexfy  11  

Activation function applied to the neurons of the 

output layer 

Sigmoid 

   xexfy  11  
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4 Hardware Implementation of the Network 

When designing the hardware, multiple aspects influencing the design have to be 

taken into account [8], [9]. These aspects are related to the structure of the 

artificial neural network, data representation, the set of operations, which have to 

be supported by the hardware [10], the choice and the method of implementation 

of the activation function, the method of storing and updating the data in the 

network and the algorithm used when training/testing the network [11]. 

Of the above aspects, the performance of the neurohardware is affected especially 

by the method of implementing the set of operations used in the learning phase of 

the network and the activation function. The implementation per se is affected also 

by the representation of the operands [12]. 

4.1 Floating Point Representation 

Since the task described in section 3 deals with real numbers, it is natural to use 

floating point representation for the operands. In digital computers, real numbers 

are represented in accordance with standard IEEE-754, which defines three 

formats: single precision format (32-bit), double precision format (64-bit) and 

extended double format (80-bit). 

The standard implementation of artificial neural networks uses the 32-bit floating 

point representation of data – the float data type. The advantage of the 

representation pursuant to standard IEEE-754 is the wide range of represented real 

numbers. The disadvantage is the inaccuracy of the real number representation. It's 

important to note that precision is about how exactly we can specify it (i.e. 

machine precision) an accuracy is about how close a value is to what it is meant to 

be; moreover, it is influenced by the applied rounding technique. A further 

disadvantage of the representation of real numbers pursuant to standard IEEE-754 

is the time cost of implementation of the arithmetic operations. 

4.2 Fixed Point Representation 

Fixed point representation is used to represent real numbers in the way known 

from the decimal number system,±integerPart.fractionalPart. 

When using a binary number system, we let IP be the number of bits used to 

represent the integer part, including the sign bit. Let FP be the number of bits 

assigned to represent the fractional part of the number. Then, the total number of 

bits used to represent the real number may be expressed as 𝑊 =  𝐼𝑃 + 𝐹𝑃.The 

range of numbersequals to – [−2𝐼𝑃−1, 2𝐼𝑃−1 − 2−𝐹𝑃], while machine precision ε 

equals to 2−𝐹𝑃 (𝑢𝑙𝑝 = 2−𝐹𝑃). 
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There are numerous forms of notation applicable to the fixed point number 

representation. In this paper, we will use the Qw.i notation. In this notation, w 

represents the word length in bits, i is the number of bits used to represent the 

integer value. For example, Q32.9 describes a number with 9 integer bit and 23 

fractional bits stored as a 32-bit 2's complement integer. 

The disadvantage of the fixed point representation lies in the significantly lower 

range of numbers, which may be represented using this format, in comparison 

with the floating point representation, when using the same number of bits for 

representation. The advantage of the fixed point representation is that we may use 

integer arithmetic to implement operations on real numbers, which positively 

influences the requirements on hardware resources. 

An interesting data representation category is the residue number system. 

4.3 Residue Number System 

Data representations described above employ a linear and positional number 

system, where the value of each symbol is influenced by the radix of the number 

system and the position of the symbol in the symbol series. Another group of 

numerical value representations are non-positional number systems. A significant 

non-positional number system is the residue number system. 

If q and r are the quotient and remainder, respectively, of the integer division of a 

by m, that is, 𝑎 =  𝑞. 𝑚 +  𝑏, then, by definition, we have a ≡ b (mod m). The 

number b is said to be the residue of a with respect to m, and we shall usually 

denote this by 𝑟 =  |𝑎|𝑚. The number 𝑚 is a modulus (aka base). The set of m 

smallest values, {0, 1, 2, . . . , 𝑚 −  1}, that the residue may assume is called the set 

of least positive residues modulo m. 

For example, numbers of the set {1, 3, 5, 7, . . . , 2𝑖 + 1} belong to the residue class 

mod 2, while for an arbitrary couple of numbers (a, b) of this set, the following 

applies: a ≡ b (mod 2). 

Let {𝑚1, 𝑚2, 𝑚3, . . . , 𝑚𝑁} be a set of N pairwise relatively prime moduli. Let their 

product be M, i.e. 𝑀 = ∏ 𝑚𝑖
𝑁
𝑖=1 . Then every number 𝑋 <  𝑀 has a unique 

representation in the residue number system, which is the set of residues {|𝑋|𝑚𝑖
 : 

1 ≤ i ≤ N}.  The number M is called the period (aka dynamic range) of the RNS, 

because the number of numbers that can be represented is M. For unsigned 

numbers, that range is [0, M-1]. For example, the decimal number X, represented 

in the conventionally weighted number system as X = 23 may be expressed as 

〈1, 2, 3〉2,3,5 in a system with a period of M = 30 (𝑚1 =  2, 𝑚2 =  3, 𝑚3 =  5), 

where 1 is the result of the operation X mod 2, 2 is the result of the operation X 

mod 3, while 3 is the result of the operation X mod 5. Representations in a system 

in which the moduli are not pairwise relatively prime will be not be unique: two or 

more numbers will have the same representation (Tab. 2) 
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Number conversion to RNS and from RNS, the standard arithmetic operations of 

addition/subtraction and multiplication are easily implemented [13], depending on 

the choice of the moduli, but division is much more difficult. 

In the error backpropagation algorithm, the operation of division is used only 

when evaluating the logical activation function. For the implementation of the 

activation function we used an approximation, eliminating the need of performing 

a division. 

Table 2 

The result of comparing in pairs with the final result 

N pairwise relatively prime moduli relatively non-prime moduli 

 𝑚1 = 2 𝑚2 = 3 𝑚1 = 2 𝑚2 = 4 

0 0 0 0 0 

1 1 1 1 1 

4 0 1 0 0 

5 1 2 1 1 

5 Neural Network Blockset Design 

In this work, we decided to implement the artificial neural network on an FPGA 

chip. The following chapter contains the list of related works (partially in 

chronological order), aimed at the implementation of artificial neural networks in 

hardware. 

5.1 Related Works 

In [14], the authors researched whether FPGA chips were appropriate for 

speeding-up floating point calculations. They came to the following conclusion: 

„…if we can achieve comparable performance from a pure floating-point 

application, it is a good indication that applications which require a few floating 

point operations intermixed with fixed-point computations can now be considered 

as implementation targets for reconfigurable computing. Furthermore, these 

results indicate that if device density and speed continue to increase, 

reconfigurable computing platforms may soon be able to offer a significant 

speedup to pure floating-point applications“. 

Iwata, et al. [15] implemented a BP algorithm using a 24 bit floating point number 

representation.  

The paper written by Holt & Hwang suggests, that an 8 and 16-bit number 

representation is sufficient for the implementation of BP in hardware [16]. 
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For MLP networks using the BP algorithm, Holt and Baker [17] pointed out that 

in fixed point number representations, 16 bits are the least to maintain 

functionality of the network, on condition of normalising the input data to the 

interval [0,1] and using a sigmoid activation function. 

Hammerstrom [18] proposed a neuro-architecture based on an 8 to 16-bit fixed 

point representation.  

Aibe, et al. [19]implemented a probabilistic neural network (PNN). They used 

floating point representation of operands.  

The ASIC implementation of an MLP network using floating point representation 

for weights and biases is the work of Ayela, et al. [20]. 

Moussa. et al. demonstrated implementations of MLP on FPGAs using fixed and 

floating point representations [21]. 

Wang, et al. [22] proposed a re-configurable architecture for the VLSI 

implementation of the BP algorithm based on systolic fields. 

The authors of [23] focused on the efficient implementation of multiplication in a 

Maxout network. They trained a set of state-of-the-art neural networks (Maxout 

networks) on three benchmark datasets: MNIST, CIFAR-10 and SVHN. During 

the training, they used the following number representations: Goodfellow, et al. 

Format [24] (32 bits for propagations, 32 bits for parameter updates), single 

precision floating point (32 bits for propagations, 32 bits for parameter updates), 

half precision-floating point (16 bits for propagations, 16 bits for parameter 

updates), Fixed point (20 bits for propagations, 20 bits for parameter updates) and 

dynamic fixed point (10 bits for propagations, 12 bits for parameter updates). For 

each of those datasets and for each of those formats, they assess the impact of the 

precision of the multiplications on the final error after training. The authors of this 

work came to the conclusion that it is possible use a lower precision number 

representation not only during the life phase of the network, but also during the 

training phase. For example, their results achieved on the Startix V Altera FPGA 

chip suggest that a 10 bit number representation for propagation and a 12-bit 

representation for the parameter updates of the Maxout network are sufficient. 

Gupta, et al [25] studied the effect of limited precision on neural network training 

and proposed a Xilinx Kintex325T FPGA based hardware accelerator. Their 

results showed that deep networks could be trained using only 16-bit wide fixed-

point number representation with stochastic rounding. 

Park & Sung, et al. [26] developed an FPGA based fixed-point deep neural 

network (DNN) system using only on-chip memory. They used Xilinx XC7Z045 

for the implementation. They tested the solution to recognise MNIST handwritten 

digits. Due to the memory limitations, they used fixed pointrepresentation for 

data, 3 bits for the input and hidden layers, 8 bits for the output layer, more 

sensitive to quantisation. 
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In [27], the authors proposed a roofline-model-based method for FPGA 

acceleration of convolutional neural networks. In this method they first optimize 

CNN’s computation and memory access. For data representation, they used 32-bit 

floats. They implemented the design using the Vivado HLS (v2013.4) 

environment on a Xilinx VC707 board. 

Nakahara & Sasao [28] proposed a hardware implementation of a deep 

convolutional neural network (DCNN), based on a residue number system. Since 

the 2D convolutional operation performs massive multiply-accumulation, they 

propose to use nested RNS (NRNS), which recursively decompose the RNS. In 

the DCNN using the NRNS, a 48-bit multiply-accumulation unit is decomposed 

into 4-bit ones realized by look-up tables of the FPGA. The DCNN using the 

NRNS was implemented on a Xilinx Virtex VC707 evaluation board. 

6 Our Proposal 

The FPGA (Field Programmable Gate Array) is a kind of logical integrated 

circuits. It is a programmable gate array used to design digital systems [29]. 

FPGAs have a wide variety of uses [30]. The main idea is the use of 

programmable logic elements to perform simple logical functions. These elements 

are called look-up tables (LUTs) – they may perform arbitrary logical functions 

with a specific number of inputs and a single output. 

Currently, there are many FPGA vendors. Xilinx, Altera, Actel and Atmel belong 

to the most popular. The FPGA structure depends on the vendor; however, the 

idea behind the FPGA remains the same – to use a logical block array based on 

look-up tables and registers. In this work, we used the Xilinx Kintex KC705 

development board as an implementation platform. 

In the sections below, we describe the implementation of a MLP network with 

error backpropagation in a Kintex-7 XC7K325T-2FFG900C FPGA chip [31], 

utilising a Xilinx Kintex KC705 [32] board. 

The structure of the proposed neuro-accelerator is depicted in figure 3. In addition 

to the proposed (ffnn) IP module, the proposed hardware contains supporting 

components necessary for the following: to control the input and output of the IP 

module (microblaze_0 : MicroBlaze soft processor), to connect the ffnn module 

with the soft processor (microblaze_0_axi_periph : AXI Interconnect), to control 

interrupts (microblaze_0_axi_intc : AXI Interrupt Controller), to access memory 

(axi_dma_0 : AXI Direct Memory Access), module to control access to DDR3 

SDRAM memory (mig_7series_0 : Memory Interface Generator), to measure the 

time required to perform the operations both on the soft processor and on the 

proposed module (axi_timer_0 : AXI Timer), to provide console access to the 
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system (axi_uartlite_0 : AXI Uartlite), a debugging module (mdm_1 : MicroBlaze 

Debug Module) and a local MicroBlaze memory (microblaze_0_local_memory). 

 

Figure 3 

The NeuroAccelerator 

6.1 Implementation using Floating Point Representation 

Decreasing / increasing the number of bits used for number representation 

decreases / increases accuracy of the calculations [33]. The minimum bit count 

necessary to represent the numerical information – while maintaining the 

necessary level of accuracy and the meeting requirement of convergence of the 

artificial neural network to the solution – is significantly influenced by the type of 

the artificial neural network and its algorithm. 

In this work, we used an MLP network with error backpropagation. We performed 

two experiments with the aim to find out the impact of using float and double data 

types on the overall performance of the artificial neural network.  

For the purpose of implementing error backpropagation, we used the 

"Vivado(TM) HLS – High-Level Synthesis from C, C++ and System C Version 

2016.3" tool. The source code of the hardware structure was created in C++. In the 

first experiment, we used the float (32-bit) data type. A summary of the results of 

the experiment is available in Table 3. 

When using the float data type, due to the memory requirements of the algorithm 

and the resources of the FPGA chip available for the implementation of this IP, we 

could use at most 300 neurons in the hidden layer. The remaining hardware 

resources were used for the implementation of the support components of the chip. 

The misclassification rate for a network with this configuration, using the test set 

of 10,000 patterns was 3.76%. 
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Table 3 

Hardware utilization of FFNN for data type Float 

Timing 

[ns] 

Hidden Layer 

[neurons] 
BRAM_18K DSP48E FF LUT 

8.61 

(116MHz) 

200 525 (58%) 75 (8%) 8596 (2%) 
88011  

(43%) 

250 533 (59%) 75 (8%) 8604 (2%) 107227 (52%) 

300 533 (59%) 75 (8%) 8627 (2%) 126487 (62%) 

350 1045 (117%) 75 (8%) 8638 (2%) 145703 (71%) 

In our second experiment we tried to find out: the impact of using the double data 

type on the network configuration; the performance of the hardware 

implementation; and the achievable misclassification rate. A summary of the 

results of the experiment is available in Table 4. 

Table 4 

Hardware utilization of FFNN for data type Double 

Timing 

[ns] 

Hidden Layer 

[neurons] 
BRAM_18K DSP48E FF LUT 

8.68 

(115MHz) 

100 528 (59%) 158 (18%) 12583 (3%) 
91477  

(44%) 

150 536 (60%) 158 (18%) 12613 (3%) 129928 (63%) 

200 1048 (117%) 158 (18%) 12624 (3%) 168347 (82%) 

In this case, the maximum number of neurons in the hidden layer was set to 150 

neurons. The remaining hardware resources were used for the implementation of 

the support components of the chip. The misclassification rate for a network with 

this configuration amounted to 4.51%. 

6.2 Implementation using Fixedpoint Representation 

In this phase of the design we tried to find out what was the lowest bit count 

required to sufficiently train an MLP network, using floating point decimal data 

representation. 

A summary of the results is available in the chart above (Fig. 4) – from this it is 

evident that up to 17 bits, the misclassification rate stays below 5%. Beyond this 

level, the misclassification rate grew fast. Another finding of the experiment was 

that when using 300 hidden neurons, the integer part of the fixed point 

representation did not exceed the value of 2. Therefore, in this implementation, we 

started out from the data representation using the Q17.2 two’s complement form. 
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Figure 4 

Misclassification rate 

The overall hardware implementation costs are available in Table 5. 

Table 5 

Hardware utilization of FFNN for data type Q17.2 

Timing 

[ns] 

Hidden Layer 

[neurons] 
Name BRAM_18K DSP48E FF LUT 

8.58 

(116MHz) 
300 Utilization 555 (62%) 48 (5%) 5926 (3%) 

11749  

(5%) 

The misclassification rate for a network with this configuration, using the test set 

of 10,000 patterns was 4.97%. 

6.3 Implementation using the Residue Number System 

Based on the results of the fixed pointdata representation experiment, we found 

that the lowest number of bits, which may be used to train the network with a 

misclassification rate below 5% was 17 bits. We used this information when 

implementing the ffnn IP module, based on calculations using the residue number 

system. As it is known, the operations of addition, subtraction and multiplication 

can be easily implemented in residue number systems. Due to the character of the 

residue number system and the aforementioned operations, these operations do not 

require carrybit propagation, therefore their execution is faster than the execution 

of these operations using fixed point number representation. Summaries of the 

time characteristics of selected mathematical operations using the residue number 

system and in a positional binary system were presented in [34]. 
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However, division and comparison are more complex in this system. In the error 

backpropagation algorithm, the operation of division is used only to calculate the 

value of the logistic function. In the next chapter, we describe the solution to 

eliminate division from the error backpropagation. 

6.3.1 Activation Function Implementation 

It is important to note that the performance and precision of networks depend on 

the efficient implementation of the activation function on FPGA chips [35]. In 

MLP networks, the most common activation function is the sigmoid function. 

Direct implementation of sigmoid activation function on FPGA is difficult due to 

its division and exponential function. The operation of division and the 

implementation of an exponential function are time-consuming; moreover, they 

require also significant hardware resources [36]. 

According to [37], to decrease the requirements hardware resources and the time 

necessary to evaluate the function, the following may be used: uniform lookup 

table methods (LUT), linear approximation methods, piecewise linear 

approximation method (PWL), piecewise linear approximation of a nonlinear 

function (PLAN) approximation, A-law approximation, Allipi and Storti-Gajani 

approximation, piecewise second-order approximation and lookup table method 

with linear interpolation method. Compared to the approximation methods, 

solutions using LUT provide high speed, though at a cost of higher memory 

requirements. 

Approximation methods have lower memory requirements. When combined with 

fixed point number representation, the speed differences are not as significant in 

comparison with the LUT methods [38]. 

In our proposal, we used the PLAN approximation of the sigmoid activation 

function, as published in [38]. To increase speed, we used only first-order 

functions for the approximation. The approximation of the function output was 

based on the evaluation of a linear function, used for the approximation of the 

sigmoid in a defined interval of input values (Table 6). We have set the 

coefficients with a precision of 𝑢𝑙𝑝 =  2−12. 

Table 6 

PLAN approximation of sigmoid activation function 

Interval Function Form 
Absolute 

approximation error 

[𝟐; 𝟑[ 𝑦 = 𝑓(𝑥) = 0.07110596 ∗ 𝑥 + 0.74377441 0.0051893 

[𝟏; 𝟐[ 𝑦 = 𝑓(𝑥) = 0.14950562 ∗ 𝑥 + 0.58935547 0.0078025 

]−𝟏; 𝟏[ 𝑦 = 𝑓(𝑥) = 0.23828125 ∗ 𝑥 + 0.50000000 0.0072125 

[−𝟐; −𝟏] 𝑦 = 𝑓(𝑥) = 0.14950562 ∗ 𝑥 + 0.41058350 0.0078635 

[−𝟑; −𝟐[ 𝑦 = 𝑓(𝑥) = 0.07110596 ∗ 𝑥 + 0.25610352 0.0053031 
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6.3.2 Choice of the Residue Number System Parameters 

The error backpropagation algorithm uses addition and multiplication operations. 

In the binary positional system, the result of adding two n bit numbers is a sum 

having at most n+1 bits, the result of their multiplication is the product having 2n 

bits. In a residue number system, carrybit propagation does not occur. The range 

and the precision of the calculation are functions of the periodM. In the previous 

section we showed that when using 17 bits (1b sign + 16b modulus), the 

misclassification rate remains under 5%. The result of the multiplication of two 

17-bit signed numbers is a 34-bit number (1b sign + 33b modulus). 

To cover the required range of 34-bit signed numbers, we used the R residue 

number system with moduli {11,23,31,73,89,127,128}. Note that these moduli 

have to be pairwise relatively prime. The system period is 𝑀 =  828340264576,, 
i.e. 𝑀 > 234. 

When transforming a binary number in fixed pointnumber representation Q17.2 to 

the residue number system, we used the properties of addition and multiplication 

in the residue number system. The following example shows the procedure of 

transforming a binary number into the R system with the set of moduli {5,7}. 

Example: Consider the system R with the set of moduli 𝑚1 = 5, 𝑚2 = 7. M = 35. 

Let 𝑋 = (26)10. Then, by using binary decomposition: 𝑋 = 1 × 24 + 1 × 23 +
1 × 21 Moreover: 𝑋 =𝑅 〈1 × 24 + 1 × 23 + 1 × 21〉 = 〈1 × 24〉 + 〈1 × 23〉 +
〈1 × 21〉 = 〈1〉 × 〈24〉 + 〈1〉 × 〈23〉 + 〈1〉 × 〈21〉 Thus 𝑋 =𝑅 〈|1|5 × |24|5 +
|1|5 × |23|5 + |1|5 × |21|5, |1|7 × |24|7 + |1|7 × |23|7 + |1|7 × |21|7〉 =
〈1 × 1 + 1 × 3 + 1 × 2,1 × 2 + 1 × 1 + 1 × 2〉 = 〈|6|5, 5〉 = 〈1,5〉. 

6.3.3 Implementation of BP Algoritm in Residue Number System 

Residue number systems do not have metrics. Therefore, the comparison of two 

numbers represented in such a system is time-consuming. When comparing 

numbers, we may first transform the residue number system representation to a 

positional system, perform the comparison or – under certain circumstances – the 

comparison may be performed also by subtracting the two numbers and 

determining the sign of the operation [39]. Further algorithms are available in 

[13]. 

Table 7 

Hardware utilization of FFNN for RNS R with moduli set {11,23,31,73,89,127,128} 

Timing 

[ns] 

Hidden 

Layer 

[neurons] 

Name BRAM_18K DSP48E FF LUT 

8.18 

(122MHz) 
300 Utilization 500 (56%) 

336 

(40%) 

38519 

(9,4%) 

145337 

(71%) 
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We chose to use the reverse transformation to a binary number system. The 

overall hardware implementation costs are available in Table 7. 

With this solution, the misclassification rate amounted to 4.01%. 

6.4 Comparison of the Solutions 

We compared our solution with an implementation running on a desktop computer 

with an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz processor. In this paper, 

when determining the overall performance of the proposed architecture, we will 

start out from the overall cost of implementing one forward and one backward 

phase of neural network training per epoch.The results are available in Table 8. 

If the sole criterion of performance is the speed of data training, the winner is the 

Desktop CPU. However, if we consider also energy efficiency, the winner is the 

MLP network implementation running on an FPGA chip. If we require higher 

overall recognition precision, the binary positional system using the float data type 

is a good candidate for representing data in the network, otherwise the use of a 

fixed pointnumber representation is advisable. 

The residue number system falls back behind the solution using fixed pointnumber 

representation in terms of speed; however, it's misclassification rate is lower. 

Table 8 

Comparison of the solutions with an Intel i7-4790 CPU 

 

Clock 

frequency 

[MHz] 

Power 

Consumption 

[W] 

Timing 

(1 epoch, 1 iter) 

[s] 

Overall  

Error-rate 

(requested < 5%) 

Desktop CPU 

(float) 
3.60GHz 84 (TDP) 28 3,76% 

FPGA – float 116MHz 3.569 37 3,76% 

FPGA – 

double 
115MHz 7.298 52 4,51% 

FPGA – fixed 116MHz 3.123 30 4,97% 

FPGA – RNS 122MHz 4.560 36 4.01% 

Conclusions 

This paper deals with the implementation possibilities of multilayer neural 

networks aimed at the recognition of handwritten digits. The applied neural 

network belongs to the artificial neural networks with supervised learning. We 

used the error backpropagation algorithm as the training algorithm. The training 

and testing set was taken from the MNIST database. As the target platform for the 

hardware implementation, we used a Kintex-7 XC7K325T-2FFG900C FPGA chip 

on a Xilinx Kintex KC705 board. We researched the impact of the choice of 

number representation (floating point vs. fixed point decimal representation), the 

impact of the number of bits used to represent the numbers in fixed point notation 
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and the choice of the number system (conventionally weighted positional number 

system vs. residue number system) on both the utilisation of hardware resources 

and the neural network performance (training speed and misclassification rate). A 

summary of our findings is available in Table 8. 
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