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Abstract: This paper presents a rigorous information-theoretic analysis of iris biometrics 

with the aim to develop optimized biometric cryptosystems. By estimating local entropy and 

mutual information, we identify the iris regions that are most suitable for these purposes. 

Parameter optimization of the appropriate wavelet transform produces higher entropy and 

low mutual information in the transformation domain. This establishes an effective 

framework for the development of systems for the extraction of truly random sequences 

from iris biometrics, while not compromising its proven authentication features. 
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1 Introduction 

According to some estimates, the entire field of information protection should 

make a radical qualitative leap and a shift of the fundamental paradigm of 

computer security towards a paradigm of information-theoretic security [1]. Such 

a shift would allow the creation of an entire class of cryptographic mechanisms 

whose compromisation would be independent from the attacker's computing 

power. All this points to a new position of this discipline within the general theory 

and practice of information protection systems. Information analysis of source 

biometric data is crucial for construing concrete solutions of a biometric 

cryptosystem with a theoretically guaranteed performance rate. 

Biometrics has established itself as a significant source of cryptologic parameters 

in the domain of reliable and practically acceptable authentication. Biometric 

systems are based on physical and behavioral characteristics of human beings such 

as fingerprint, voice, face, iris and others. The strength and resistance of these 

systems are directly related to the natural amount of information present in a 

biometric source. In order to estimate the maximum quantity of information, one 
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must have a good understanding of biometric data specific to a particular source, 

as well as the technology used to precisely read and extract information. 

The original concept of “Biometric encryption” was applied to fingerprints in 

1994. The pioneer in this area is Dr. George Tomko, the founder of Mytec 

Technologies, Toronto, Canada. Ever since, numerous researchers have 

contributed to this and other related technologies. Besides the Biometric 

Encryption, the term biometric cryptosystems is also used. We shall use the 

abbreviation “BC” in the remainder of this text to denote biometric cryptosystems. 

Generating keys for various cryptographic purposes based on biometric data is an 

important idea. A prime example of one such system is given in [2], where authors 

achieve a promising result (FRR (false rejection rate) = 0,47%, FAR (false 

acceptance rate) = 0%, key length = 140 bits) in an iris biometry application. This 

system enables a multipurpose use of a biometric template, without the possibility 

of compromisation. This result opens a door to a wide application in cryptographic 

protection mechanisms. Furthermore, the authors carried out the analysis of noise 

and errors that occurred while forming the iris biometric template. Pertaining 

results enabled them to select an adequate code, which is optimized with regard to 

the maximum allowed capacity determined by the iris biometric source. A 2D 

Gabor wavelet was used to extract 2048 bits of phase information which produces 

approximately 249 degrees of freedom [3]. 

Most BC systems applied to a variety of biometric characteristics produce fairly 

long keys (140 bits [2], 186 bits [4], 240 [5] bits). This imposes the following 

question: what is the true quantity of consistent information available within 

biometric data, based on which it is possible to generate a cryptographic key? This 

very information serves as the material for key generation. In that case, the key 

itself cannot be longer than the quantity of biometric information. If this were to 

happen, it would only speak of overly high performance settings for the debugging 

code, which inevitably leads to FAR being greater than zero. In addition to 

acceptable FRR values, algorithms suggested by the majority of authors [4, 5, 6, 

7] have FAR values greater than zero percent. From our point of view, practical 

application of such BC systems is unacceptable. Also, other algorithmic solutions 

[2, 8, 9, 10] were proposed that result in both FAR being equal to zero percent and 

FRR having acceptable values. However, it remains to be determined whether 

those solutions fully utilize the true capacity of the system and to identify the 

system's maximum level of effectiveness [11]. 

Considering the above-stated, we assume that a strong information-theoretic 

foundation and the application of the Theory of Perfect Cyphers are indispensable 

for successfully developing BC systems. The theory was proposed by Shannon 

[12]. The information-theoretic analysis of biometrics, as a special information 

source, would provide concrete solutions for development of BC systems with 

theoretically guaranteed performance. 
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This paper is concerned with a rigorous information-theoretic analysis of iris. We 

apply measures of information (entropy, local entropy, and mutual information) to 

identify iris regions that are most suitable for generation of cryptologic keys. Also, 

optimization of the parameters of the transform function produces higher entropy 

and reduced mutual information in the transformation domain. This establishes the 

foundation for development of a BC system for estimation of truly random or 

consistent bits from the iris biometric source. In addition, the authors are 

concerned with the complex procedure of processing iris biometric data [13]. 

Biometric data contains various types of noise that may significantly increase the 

degree of variability, which further alters the quality of information obtained. 

The remainder of this work is organised as follows. The next section discusses the 

biometric database used, which is followed by a detailed information-theoretic 

analysis consisting of calculating local entropy over a texture of iris image after 

the normalization phase, determining optimal parameters in the transformation 

domain (iris coding phase), modeling of the iris information source by means of 

Shannon approximation models, measuring mutual information between identical 

and different irises, and the setup of an information-theoretic foundation for iris 

biometrics. The final section comprises the conclusion and an overview of the 

contributions of our work. 

2 Information Analysis and Experimental Results 

We used the CASIA Iris Image Database version 4.0, for the experimental portion 

of our work. This database was created by researchers from the Institute of 

Automation, Chinese Academy of Sciences, and it contains several thousand iris 

images [14]. Several versions of the database were offered free of charge to the 

international biometric research community. Over 4000 users from 70 countries 

have downloaded the CASIA database so far and a vast number of researchers 

have used it in their work. 

 

Figure 1 

Samples of iris images from the CASIA-Iris V4 database 

Fig. 1 provides test samples of iris images in the gray-scale format, acquired by 

means of special cameras. 
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2.1 Analysis of Iris Image Texture 

In the first part of the information analysis we measure the entropy of an iris 

texture image after the normalization phase. The number of iris rings is 20 with 

240 points on each. By means of the Daugman's rubber sheet [15] model, we 

obtain a gray-scale image with a resolution of 20 x 240 pixels. Pixel depth is 8 

bits, whereby each pixel is represented by a gray shade from the 0 to 255 range of 

decimal values. Fig. 2 depicts the normalization process and the resulting 

rectangular iris texture. 

 

Figure 2 

Iris texture in the first phase 

In the next step, we calculate the local entropy over the iris texture we obtained in 

the manner described above. Due to the nature of data, we employed the method 

commonly used to determine the entropy of two-dimensional signals [16, 17]. 

This method essentially utilizes the Shannon entropy [18]. Entropy is most 

conveniently defined as an average quantity of information or the measure of 

uncertainty of an information source (iris, in our case). For a known probability 𝑝, 

entropy of an event is calculated by: 

𝐻 = −∑ 𝑝𝑖log𝑏𝑝𝑖
𝑙
𝑖=1  (1) 

where 𝑝𝑖  pertains to symbol probabilities obtained through image histograms. 

The value of local entropy varies based on the chosen window size. The window 

is square-shaped and it represents the number of included neighboring pixels. The 

values obtained are represented by means of a binary logarithm, where 1 bit is the 

unit of quantity of information. The chosen method allows for the use of a varying 

number of neighboring pixels, which is quite similar to Shannon's approximation 

models – the concept used in modeling natural language as an information source. 

Fig. 3 depicts a 3D model of local entropy for the chosen windows size of 9x9. 

The model represents average local entropy values for each individual pixel 

position. The illustration reveals that the first circular iris region (next to the pupil) 

has a larger local entropy. This is clearly seen on the y-axis that displays the 

quantity of information (i.e., achieving 5 bits per pixel out of the maximum 

possible 8 bits per pixel). Also, a closed circular contour in the X, Z, clearly points 

out to the higher entropy region. The average local entropy in this experiment 

differs significantly in the first (4.4412 bits per pixel) and the second region 

(3.6020 bit per pixel). Based on the results obtained, we adopt the division of iris 

by regions whereby the first region becomes the primary interest of our research. 
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Figure 3 

A 3D information model of local entropy (CASIA Iris Image Database version 4.0) 

 

Figure 4 

Division of iris by regions (red color (1) - higher information value, blue color (2) - lower information 

value) 

Fig. 4 illustrates the first region of iris, determined to be of higher information 

value, whereas the second region is characterized by a decline of quality as 

measured by local entropy. 

Low quality of the second region is attributable to eyelids and lashes, but also the 

automatic segmentation phase where algorithms do not attain 100% accuracy. 

Regardless of the shortcomings, we observe that both the left and the right side of 

the iris in the second region have lower entropy (area not covered by eyelids and 

lashes). Therefore, the second region cannot be used to extract material for 

generating cryptologic parameters. Moreover, due to the impreciseness of 

segmentation algorithms, practical applications of BC systems lead to higher FRR 

parameters. Researchers attempt to remedy this problem by designing various 

concatenated security codes that often lead to FAR values greater than zero 

percent. 
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2.2 Analysis of Optimal Parameters in the Transform Domain 

– Iris Coding 

We conduct the next information analysis on a biometric iris template code or iris 

information source following the coding phase. There are several important 

parameters for the algorithm utilized in the coding phase. This phase results in an 

iris biometric template. The success of this phase depends on the optimal choice 

of parameter values used to provide high entropy of the iris code and the 

maximum possible quantity of consistent bits. The following comparative analysis 

was carried out in the part of the process where iris code is formed. In fact, by 

analyzing the biometric template – iris code, we conduct an analysis over the iris 

information source. 

The parameters of interest include radial and angular resolution(𝑟and𝜃); in 

other words, the parameters that produce the number of points in the iris image 

that will be coded in each iris, as well as filter parameters used to extract only 

unique iris characteristics. Filter parameters include: filter number N, wavelength 

𝜆𝑛 (in pixels), bandwidth  given as 𝜎 𝑓⁄ , and the multiplicative factor between 

center wavelengths of successive filters 𝛼. 

It is known that altering the wavelength parameter 𝜆𝑛of the filter provides the 

opportunity to increase the entropy of the source and the number of consistent 

bits. For an in-depth discussion and technical details please see [19] and [20]. 

 

Figure 5 

Biometric template – binary iris code 

Fig. 5 shows an example of the iris code (in binary format) with masked portions 

of iris code that contain errors caused by eyelashes and lids. The following results 

were obtained using a methodology similar to that applied in the preceding 

information analysis. We analyzed iris code at the binary matrix level over which 

we calculated local entropy. The dimension of the iris code after the coding phase 

is 20 x 480 pixels, with the pixel depth of 1 bit. Afterwards, we carried out a 

comparative information-theoretic analysis encompassing the entire iris code. 

We conducted a comparative analysis of the same iris population with the aim to 

confirm our assumption from the previous analysis. Three biometric templates 

(iris code) were generated for each iris for parameter values 𝜆𝑛 = {12,18,24}. 
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Figure 6 

Iris coding transformation domain - varying the λ parameter a: λ = 12, b: λ = 18, c: λ = 24 

As could be seen in Fig. 6 (a), the average information quantity or local entropy is 

equally distributed over the entire surface of iris code for parameter value λ = 12. 

This results in an average information quantity of 0.8412 per bit. Judging from the 

analysis of iris texture previously described, we cannot expect equal quality of 

information in both iris regions. 

Fig. 6 (b) is the result of parameter value λ = 18. In the first region, we observe a 

characteristic information that is not equally present in the second region of the 

iris code. We obtain an average information quantity of 0.8189 per bit. This 

characteristic information corresponds to the results illustrated in Fig. 3. 

The last measurement uses the value of λ = 24 and is depicted in Fig. 6. (c). The 

characteristic information is slowly vanishing from the first region, while it is 

almost nonexistent in the second region. This time, we obtain an average 

information quantity of 0.7982 per bit. 

Varying the λ parameter is important for identifying the optimum filter values, 

which in turn produce stable and consistent bits with maximum entropy. Please 

note that by maximum entropy we actually refer to the best achieved compromise 

between maximum entropy and the largest number of consistent bits. Consistent 

bits comprise the characteristic information of the iris biometric source. This is of 

paramount importance for achieving a sound theoretical framework for 

development of BC systems. In our case, this compromise is arrived at for a filter 

bandwidth of  λ = 18. 
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Table 1 

Local entropy values by iris code regions 

Window 

9 x 9 Region 1 - iris 

(bit per pixel) 

Region 2 - iris 

(bit per pixel) 

Regions 1 and 2 - iris 

(bit per pixel) Filter 

parameters 

λ = 12 0.9351 0.7251 0.8412 

λ = 18 0.9125 0.6997 0.8189 

λ = 24 0.8901 0.6776 0.7982 

Table 1 presents summary results that clearly establish a significant difference 

between local entropy values of the first and the second region. 

2.3 Analysis of Mutual Information between the Same and 

Different Irises 

In this portion of information-theoretic analysis we use λ = 18 as the optimal filter 

bandwidth value in the iris coding transformation domain. By applying Shannon's 

approximation models [18], we determine the maximum entropy in the first region 

of the iris code. Adopting a method of approximation is crucial for properly 

estimating mutual information of identical and different irises. 

The method as a whole is comprised of simple algorithms that were particularly 

developed for approximation models of orders II to V. We analyzed only the first 

iris code region. In the coding phase, we formed the matrix, row by row, based on 

the radial vectors in the normalization phase. The first row represents bits obtained 

through the first iris ring (radial vector). The rings are indicated in ascending order 

with the first being located closest to the pupil and the tenth farthest away from it 

since we only use the first iris region. 

For instance, for an order II approximation, we assume a set of 4 possible 

messages, where messages are represented by numbers 1 to 4. For an order III 

approximation, we use numbers 1 to 8. Similar reasoning applies to higher order 

approximations. We assume that all messages have equal probabilities. For an 

order II approximation, iris code is decoded using a bigram. Fig. 7 provides an 

example of iris code decoding for an order II approximation by means of a 

dictionary. The process is similar for higher order approximations, with the 

number of words in the dictionary and the word length being increased. 

Fig. 8 shows entropy levels for approximations of order II to V. Approximation V 

results in an entropy of 0.8208 per bit, which is the maximum value achieved by 

optimizing parameters in the transformation domain. Upon a closer look, entropy 

values for order V approximation are almost identical to local entropy for λ = 18. 
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Figure 7 

An example of order II approximation 

 

Figure 8 

First iris region entropy for various approximation models (II - V) 

Approximating for orders higher than V is possible, provided that all words in the 

dictionary exist. For this particular experiment (iris code) and order six 

approximation, many of the words in the dictionary had zero probability. This 

would not lead to a reliable entropy level. Hence, we restrict iris code to order V 

approximation. To that end, order V approximation is adopted for estimating 

mutual information. This approximation results in the entropy of 0.8208 per bit, 

which sums up to 3490 bits in the first iris code region. 

2.4 Modeling of Iris Information Source using Shannon's 

Approximation Models 

The following important analysis provides the calculation of mutual information 

between identical and different irises for the first region over the data obtained by 

order V approximation. The significance of this analysis is rather high concerning 

the security of BC systems. The method we use to measure mutual information  

I(iris x;iris y) between the two iris code regions is given by the following 

expression (2): 

I(A, B) = ∑ ∑ p(a, b)a∈Ab∈B ∗ log (
p(a,b)

p(a)p(b)
) (2) 

where: 
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 𝑝(𝑎, 𝑏)- joint probability distribution function of A and B 

 𝑝(𝑎) - marginal probability distribution function of A 

 𝑝(𝑏) - marginal probability distribution function of B 

In the sense of probability theory, relative entropy of a system measures the 

distance between two probability distributions. In this way, mutual information is 

defined as (3): 

I(A; B) = H(A) + H(B) − H(A, B);     (3) 

I(A; B) = H(A) − H(A|B) = H(B) − H(B|A);  

where: 

 𝐻(𝐴) – marginal entropy of A 

 𝐻(𝐵) – marginal entropy of B 

 𝐻(𝐴|𝐵) – conditional entropy of A 

 𝐻(𝐵|𝐴) – conditional entropy of B 

 𝐻(𝐴, 𝐵) – joint entropy of A and B 

 

Figure 9 

Mutual information between irises: left - different irises, right - the same irises 

Fig. 9 illustrates the relationship of mutual information between the same and 

different irises by rows. Rows are shown on the x-axis. There are 10 rows in the 

first region and they are numbered in an ascending order, starting from the row 

closest to the pupil and ending farthest apart from it. Mutual information for two 

iris codes of a single person is I(X; Y) = 0.2078 per bit or 997 bits totally. Please 

note that one always desires maximum mutual information between different 

images of the same iris. 

In case of irises belonging to different people (Fig. 9 (a)), the average quantity of 

mutual information is I(X; Y) = 0.1065 per bit or 511 bits totally. Such results 

guarantee the presence of consistent bits, in particular for the analysis of mutual 

information between the same rows. The interval between rows 3 and 6 contains 
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the maximum mutual information (same person irises), while the interval from the 

row 2 to row 6 (different people irises) measured minimum mutual information. 

We attribute this result to the algorithm parameters in the transformation domain. 

2.5 Degrees of Freedom vs. Entropy 

The complexity of iris code is approximately determined by measuring the 

Degrees of freedom (DOF, hereafter) over the corpus of different iris codes. DOF 

is calculated by means of all mutual Hamming distances as a binomial probability 

distribution. 

DOF is also defined as a minimum number of independent coordinates that fully 

describe the state of a system. For the CASIA database, DOF is 1068, with 1D 

Gabor wavelet being used for coding of the source [21]. This is an exceptional 

result and guarantees the uniqueness and independence between different iris 

templates. 

Table 2 

Comparison of 1D and 2D wavelet demodulation 

Iris template Wavelet filters DOF 

2048 bits 2D Gabor  249 

9600 bits 1D Gabor  1068 

Table 2 compares the sizes of generated iris code and the DOF obtained between 

iris codes generated by 1D and 2D Gabor wavelets. When using a 1D Gabor 

wavelet, the generated iris code amounts to 9600 bits, whereas a 2D Gabor 

wavelet results in the iris code of 2048 bits [3]. 

Table 3 

DOF after optimizing the wavelet filters 

 Region 1 and 2 (9600 bits) Region 1 (4800 bits) Region 2 (4800 bits) 

𝝀𝒏 DOF DOF DOF 

12 2946.8 2217.5 935.5 

18 1367.3 1346.1 396.7 

24 654.5 785.0 199.3 

Table 3 presents the DOF values by regions and for the iris code as a whole, 

obtained after the optimization of parameters in the transformation domain. We 

use three values of the 𝜆𝑛parameter. For 𝜆𝑛 = 18 in the first iris region (size of 

4800 bits) we measured DOF = 1346. This is a significant improvement compared 

to the data displayed in Table 2. Furthermore, the iris authentication features have 

not been compromised in any way. 
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2.6 Information-Theoretic Framework of Iris Biometrics 

We begin by introducing the notation [12] needed to establish the information 

framework of iris biometry. 

 I(Y; Y′) - mutual information between images of the same iris; 

 I(X; Y) - mutual information between images of different irises; 

 H(X) - entropy of iris code; 

 H(X, Y) - joint entropy of iris codes for two different eyes; 

 H(Y, Y′) - entropy of two iris codes of the same person; 

 H(K) - joint entropy of two iris codes for the same eye; 

Let us assume that the irises Y and Y' belong to Alice and are used in a certain BC 

system. On the other hand, iris X belongs to Eve, a potential attacker. 

 

Figure 10 

Graphic presentation of information-theoretic framework for development of BC systems 

Fig. 10 illustrates an information-theoretic maximum for estimation of biometric 

keys used for development of BC systems. The diagram contains three random 

variables X, YandY′. It is important to note that the mutual information I(X; Y; Y′) 
is symmetric provided that the three variables are equally independent. A greater 

dependence between Y and Y', so is the mutual information I(Y; Y′) greater. This 

also entails that the information I(Y; Y′; X) is also greater. In this case, pairwise 

mutual information I(X; Y) and I(X; Y′)have decreased, while the joint 

information I(X; Y; Y′)and I(Y; Y′|X) have potentially increased. 
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Based on the analyses and measurements of entropy, we can numerically represent 

the quantity of information that is usable for creating an efficient BC system 

scheme. It is estimated that on average, the overall quantity of information present 

in the first region of an iris is H(irisX) = H(irisY) = H(irisY′) = 3940 bits. 

Mutual information between images of the same iris is I(Y; Y′) = 997 bits, while 

mutual information between images of different irises is I(X; Y) = 511 bits. Joint 

entropy of two iris codes of two people is H(X, Y) = 7281 bits, whereas the joint 

entropy for images of the same iris is H(Y, Y′) = 6709 bits. Also, we estimate that 

the overall quantity of useful information (i.e., entropy of the key) is H(K) =
I(Y; Y′|X) = 788 bits, while the expected mutual information between all three 

variables (two same-person irises and another person's iris) is I(X; Y; Y′) =
I(Y; Y′) − I(Y, Y′|X) = 997 − 788 = 209 bits. 

2.7 Discussion 

This work presents a method based on complex information-theoretic analysis of 

iris biometric that aims to extract homogeneous regions of high entropy. 

Successful extraction of these regions facilitates the development of effective 

systems for generation of cryptographic keys. Our method includes modeling of 

information sources – iris biometric. Shannon's model approximations, created 

real conditions for the application of information measures (entropy, mutual 

entropy, conditional entropy, joint entropy) to better understand the quality of the 

iris as biometric data. We also emphasized the importance of optimization wavelet 

parameters to achieve better results in the transformation domain. The results 

achieved in the work [11] prove this claim. At the same time, this approach allows 

for the application of simpler error correction codes with equal False Accept Rate 

levels, which reduces the overall complexity of this class of systems. 

Conclusions 

The main aim of this research was to enable the development of a professional 

class of systems for generation of long keys. We set out to meet the demands of 

modern cryptosystems relying on the existing components for coding  biometric 

sources that encompass the entire process, starting from the choice of biometry, 

through imaging and ending with biometric templates. 

The information-theoretic analysis used herein for the iris biometric data has 

confirmed our doubts. Moreover, it has led us to formulate clear goals in terms of 

raising the bar for system efficacy close to the theoretic maximum. In order to 

identify iris regions with the richest content of consistent information, we 

estimated entropy, local entropy, mutual information and employed Shannon 

approximations to model the information source. We performed parameter 

optimization of the appropriate wavelet transform with the aim to obtain the 

highest possible entropy and lowest possible information in the transformation 

domain. 
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Numerous authors have designed the schemes for systems that generate 

cryptographic keys based on the whole iris region. We demonstrated that the 

whole region cannot be used to develop such systems. The authors bypass the 

issues of low quality region and insufficient key length by increasing the capacity 

of error correction codes [11]. For this very reason, it is common among such 

systems to have FAR values above zero, which is unacceptable from our point of 

view. In addition, the keys generated in such manner rarely pass the common tests 

of cryptologic randomness (that include randomness and unpredictability). 

Since the topic of this paper lies between biometrics and cryptography, we 

highlight the necessity of introducing the information-theoretic analysis in the 

increasingly popular field of biometric cryptography. This should be done with the 

aim of producing a firm bond between the two disciplines in a manner that is fully 

compliant with the cryptographic principles and characteristic features of 

biometric data. 

We believe that the information-theoretic analysis employed in the course of 

development of this system guarantees high security performance needed for 

applications in law enforcement, military, government and diplomacy. 
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