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Abstract: Statistical quality control procedures have become essential practices to ensure 

competitiveness in any manufacturing process. Since the quality of manufactured goods 

usually depends on several correlated characteristics, statistical multivariate techniques 

are needed to detect and analyze out-of-control situations. The difficulties in the 

interpretation of those out-of-control observations in multivariate control charts have 

motivated the development of different techniques in order to determine the variable or 

variables that have motivated the changes in the process and, in case of more than one 

variable as responsible of the change, to evaluate their contribution. Specifically, these 

techniques are mainly based in two alternatives, one that considers the T2 decomposition 

and other related to the application of classification techniques. The application of this 

latest techniques includes increasingly sophisticated methods, being the most usual 

alternative based on the application of Artificial Neural Networks. In this paper, we 

propose Random Forest as a powerful classification technique in statistical process 

control, considering a wide range of different situations in the function of the type of 

change and the magnitude of the correlation coefficient between variables. Moreover, the 

performance of Random Forest is analyzed in comparison with the results obtained from 

the application of Artificial Neural Networks to try to find out in which cases the 

superiority of Random Forest can be supported. 

Keywords: Hotelling T2; out-of-control; signals interpretation; Random Forest; Artificial 

Neural Networks 

1 Introduction 

The development of the industrial procedures has caused quality to play a crucial 

role as an aspect to be considered by consumers, even more, important than the 

price of a product. Nowadays the differences in prices between products with 
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similar characteristics are smaller than before and, therefore, quality has become 

the main criterion for consumers in their decision processes. 

Thus, quality control has increased its importance in production processes and the 

application of statistical techniques has emerged as the main method to carry it 

out. In addition, it is necessary taking into account that the quality of 

manufactured goods depends usually on several correlated characteristics and, 

therefore, multivariate techniques are needed to detect out-of-control situations. 

Among the range of statistical multivariate techniques, Hotelling’s T2 is one of the 

most widely one used in the industrial process due to the ease of its 

implementation and the good results it provides when the changes in the quality 

characteristics are not small [1-2]. Assuming the data are independent and 

normally distributed, the Hotelling’s T2 statistic for the sample {x1, x2, …, xn} is 

calculated, when the parameters µ and Σ of the normal distribution are known, as: 
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where xi represents a p-dimensional vector of measurements made on a process at 

time period i. 

Statistical process control based on control charts relies on showing the statistics 

calculated from equation 1 together with the control limits that allow the detection 

of out-of-control observations. In this case, the upper control limit of the T2 

control chart is obtained as: 
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where α is the probability of false alarm for each point plotted on the control chart 

and Fα,p,n-p is the percentile (1- α) of the F distribution with p and n-p degrees of 

freedom. The lower control limit is usually set to zero. However, if the sample 

size (n) is higher than 100, the upper control limit is usually approximated by: 
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Thus, the T2 statistics are plotted together with the control limits on the T2 chart 

and if one or more than one of the n points are out of the boundaries, the process is 

said to be out of control and the specific causes of such variation should be 

investigated. 

If an out-of-control signal is detected, the next step would be to look for the 

variable or variables that are responsible for the anomaly so that the necessary 

corrective procedures can be undertaken. 

But it is precisely at this point that the main limitation in the implementation of 

Hotelling’s T2 control charts arises, becoming one of the reasons that have limited 

the use of this technique in industrial processes. 
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To solve this problem, several alternatives have been developed in the specialized 

literature, based mainly on the T2 decomposition and the application of 

classification techniques. Both procedures allow measuring the contribution of 

each variable and, therefore, determine the variable or variables that have 

motivated the changes in the process [3-5]. Moreover, it is necessary to highlight 

that the use of univariate control charts would lead to losing the multivariate point 

of view and not considering the correlation between the variables that in some 

cases is the key in the out of control situation. 

Since the first proposal of [6] on the use of classification techniques based on 

discriminant analysis to detect the cause(s) of an out-of-control signal, this task 

can be addressed as a classification problem where the output is the variable or the 

variables responsible of that signal and the inputs are the values of the variables 

and the T2 statistic. This initial proposal has triggered a prolific line of research on 

the use of different classification techniques, which has also been driven by the 

development of data mining techniques in recent years. In this sense, we should 

emphasize the works [7-10] that use artificial neural networks as an effective tool 

to interpret out-of-control signals in multivariate control charts. Moreover, [11-14] 

uses neural networks for pattern recognition in control charts as another kind of 

out of control situation; [15] uses neural networks as a statistical process control 

procedure; and [16] proposes an ensemble of neural networks to improve the 

diagnosis of out of control signals. On the other hand, decision trees [17-18] or 

ensemble trees [19-21] have been also used in the out-of-control signals 

interpretation. Finally, [22] compares linear discriminant analysis, classification 

trees, neural networks, and boosting trees as classification techniques to determine 

the cause of change in out of control situations detected by the Hotelling’s T2 

control chart, concluding that the best performance is achieved with the ensemble 

trees using boosting. 

The common procedure in these works can be seen as a combination of 

multivariate control charts with classification techniques. First, a multivariate 

control chart is used and once the chart provides an out-of-control signal, the 

classification technique is used to determine which variable or variables have 

changed. This procedure allows a clearer interpretation of the out-of-control 

observations. 

In this paper, we propose the application of random forest as an alternative to the 

most widely applied technique to this problem so far that is, artificial neural 

networks. Since the first appearance of the random forest method in 2001 [23], 

this tree ensemble method has grown in popularity, and this is currently the 

classification technique implemented by default in massive data processing 

systems (Big Data Analysis) due to its good behavior both in terms of speed and 

ability to handle large samples of data. 

The superiority of an ensemble of trees, such as random forest, over single trees 

could be explained focusing on two of the problems derived from using individual 
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trees, stability, and accuracy. When minor modifications to the training set lead to 

important changes in a classifier, it is said to be unstable. According to [24] 

classification trees and neural networks are unstable methods. Methods such as 

decision trees have a high variance, but on average they are right that is, they are 

quite unbiased. Therefore, the correct class is usually the winner if the majority 

vote is applied for the aggregation of several of them. 

Secondly, [25] proved that if the average error rate for one observation is less than 

fifty percent and the classifiers used in the ensemble are independent in producing 

their errors, the expected error of that observation can be reduced to zero when the 

number of combined classifiers increases. On the other hand, the ideal 

combination is to use very accurate classifiers, but they disagree as many times as 

possible since the combination of identical classifiers does not bring any benefit. 

In random forests, which try that the trees are not closely related to each other, 

randomness is introduced in the generation of these trees, so that each tree will be 

a function of the training set, but also of a random vector, which will influence the 

development of the forest. 

To analyze the behavior of random forest in our problem, the results obtained will 

be compared with those achieved through artificial neural networks. Thus, Section 

2 presents the random forest classification technique. Section 3 shows the 

simulation and analysis procedure in which a wide range of combinations of types 

of shift and correlation levels between variables is considered. The discussion of 

results for simulated data can be seen in Section 4. Finally, our concluding 

remarks and future lines of research are outlined in Section 5. 

2 Random Forest 

[23] defines a random forest as a classifier consisting of a collection of tree-

structured classifiers {C(x, Θi), i=1, 2, …} where the {Θi} are independent and 

identically distributed random vectors and each tree casts a unit vote for the most 

popular class at input x. 

Random forest using a random selection of features involves the joint use of two 

ensemble methods, bagging, and random input selection. The training sets are 

bootstrap samples of the same size as original drawn, with replacement, from the 

original data set. Then, a new tree is built for each one of the training data set 

using random input selection. That is to say, in each node. a small subset of 

features is randomly selected to split on. Then, the tree is grown to maximum size 

without being pruned. The number of variables, F, for the selected group must be 

set up previously. 

As Breiman claimed, the error of the forest depends on the diversity and the 

accuracy of the individual trees. The optimal ensemble is made up of individual 
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classifiers as much accurate and diverse as possible, but these features move in 

opposite directions. The higher the F value, the higher the strength or accuracy, 

but the lower the diversity between the individual trees. On the other hand, the 

lower the F value, the lower the strength and the correlation among the individual 

trees. Therefore, this is the most important parameter to be tuned in a random 

forest. Breiman tried two values of F. The first value was 1, so only one variable 

was used. The second took the first integer less than log2 p+1, where p is the 

number of inputs. Later on, the same author advised setting the F value as the 

square root of p, although according to him, the results were not sensitive to the 

number of features selected to split each node. From his experiments over twenty 

data sets commonly used in automatic learning, Breiman found surprisingly that 

using a single random input variable the results were only slightly worse or even 

better than selecting a group. 

A random selection of features makes the procedure faster since the number of 

input variables for which the gain of information has to be calculated is reduced. 

So, building a random forest in this way will be faster than other ensemble 

methods such as bagging or boosting, for instance. 

The algorithm for building random forests can be summarized as follows: 

1) Set the number of trees to grow. 

2) For each tree: 

a) Draw a random subset (Tk) of the training set T (N observations with 

replacement) to train each tree. The elements in T, but not in Tk are called 

out-of-bag (oob). 

b) Set F (number of variables to make a split) << p (number of input 

variables) and choose the best split among the F randomly selected 

variables for each node in each tree. 

c) Grow the tree to maximum size. 

d) Use oob training data to estimate error and variable importance. 

3) Assign a class to new data as the majority vote among all the trees. 

4) Use oob data to estimate the classification accuracy (or error) for the random 

forest and the importance measure for each input variable. 

Although random forest is seen as a promising technique, it also has some 

drawbacks. Among them we can highlight two. First, as any ensemble method its 

interpretation is not as easy as that of a single tree. Second, random forests are 

biased to categorical variables with a high number of levels. 
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3 Method 

3.1 Simulation Procedure 

As mentioned before, the main goal of this paper is to check the better 

performance of random forests in comparison to artificial neural networks in the 

interpretation of out-of-control signals. We must remember that the classification 

techniques are used here as a complement to the T2 control chart, i.e., control 

charts are used to detect the presence of out-of-control observations and, after that, 

the classification techniques are implemented to try to determine which variable or 

variables have caused this situation. In order to study the behavior of both 

classification techniques under different circumstances related to the magnitude of 

the shift and to the degree of correlation between variables, it is necessary to 

consider a wide range of situations, covering the most interesting cases. 

The implementation of classification techniques requires both training and testing 

processes so once 1,000 out-of-control observations are generated for each 

different case, 900 observations will be used for the training process and 100 for 

testing the results. For the simulation process a bivariate normal distribution with 

the in-control parameters, μ and Σ, known is assumed for the quality inputs1. 

As it has been stated before, a wide range of cases is considered through the 

combination of different shifts in the mean, both in type and magnitude, with 

different correlation levels. Specifically, shifts of magnitude equal to 1, 2, and 3 

standard deviations have been considered for each one of the input variables 

separately and in both variables at the same time. Moreover, two possible 

directions are considered for each shift, an increase (positive change) or a decrease 

(negative change) in the mean. With relation to the correlation level a range from  

-0.9 to 0.9 by 0.1 is considered and additionally the values 0.95 0.97 and 0.99, 

with both positive and negative signs, are included. 

To sum up, there are eight possible changes depending on whether the change 

affects, increasing or decreasing, the mean of one or both variables. Additionally, 

twenty-five different values for the correlation coefficient and three levels of 

changes, 1, 2, or 3 standard deviations are considered. This wide range of 

situations has led us to have a total amount of 600 cases. Therefore, and taking 

into account that 1,000 observations have been simulated for each different case, 

the entire sample contains a total of 600,000 observations. 

Some preliminary tests have shown us that cases in which both variables change 

in the same direction are equivalent regardless of whether these changes increase 

                                                           
1  In this work, only two quality inputs are considered. The inclusion of more than two 

variables constitutes a future line of research. 
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or decrease the mean; similar results have been found when one variable increases 

and the other decreases regardless of which one is increasing and which one is 

decreasing; and finally, changes in only one variable regardless of which variable 

has changed and whether the change is an increase or a decrease, could also be 

considered equivalent. In this way, the possible scenarios are reduced to three 

cases without loss of generality. The first one assumes that only one variable 

changes; the second one considers the case where both variables change, but they 

do it in opposite direction; and finally, the third case with both variables changes 

in the same direction. 

Then, using as inputs the T2 statistic and the values of the two variables, and being 

the output the type of the change in the mean detected by the Hotelling’s T2 

control chart (Shift in one variable, Shift in  same sense in X1 and X2 and Shift in 

different sense in X1 and X2), we have used random forest or neural network to 

out-of-control diagnosis. 

3.2 Classification Procedure 

The neural network (NN) model selected in this work is the well-known 

multilayer perceptron. The number of nodes in the input and the output layers has 

been set by the structure of our analysis, that is, the number of explanatory 

variables and the number of classes, respectively. On the other hand, several 

experiments were carried out to find the number of layers and hidden elements 

that gave the greatest accuracy in the prediction of the test data set. The resulting 

architecture is a feedforward network with a hidden layer that includes eight 

nodes. The training algorithm chosen is quasiNewton. 

With regard to the random forest model (RF), the number of trees used in each 

iteration is 500 and the F parameter (number of variables randomly sampled as 

candidates at each split) is 2. The maximum number of terminal nodes in each tree 

of the forest is 5. 

The data simulation and analysis processes have been developed using the R 

software [26]. Specifically, the packages to generate multivariate normal data and 

carry out the classification task are: mvtnorm [27], MASS and nnet [28] and 

randomForest [29]. All these packages are available on the R project website 

(http://rprojects.org) and the specific R code is available upon request to the 

authors of this article. 

4 Results and Discussion 

Tables 1 to 3 show the results obtained for changes of magnitude 1, 2, and 3 

standard deviations, combined with the 25 correlation coefficient values. 

http://rprojects.org/


E. Alfaro-Cortés et al. Using Random Forest to Interpret Out-of-Control Signals 

 – 122 – 

Specifically, these tables show the classification error of RF and NN along with 

the difference in this error between both models. In addition, the cases where the 

application of RF provides an advantage over NN are highlighted. More 

specifically, RF has been considered better than NN when the difference in the 

classification error is greater than 1%. 

In general, both RF and NN show good performance, in many cases without 

significant differences but we will try to draw some general comments taking into 

account the correlation structure and the type of changes. For example, it can be 

seen that the results are better for the largest change considered (3 standard 

deviations) and for correlation levels greater than 0.9. The first pattern of behavior 

is quite logical since the important changes are easier to detect and therefore, it is 

easier to determine the variable or variables that have motivated the change. 

However, with regard to the second statement, the results are not as obvious as in 

the previous case. Although higher correlation levels are not usual in statistical 

process control that is, values greater than 0.9, in these cases, the RF behavior is 

better regardless of the type and magnitude of the change. 

To deepen the analysis of results, we begin with the most difficult case to be 

solved. These are the smallest changes, of magnitude equal to a standard 

deviation. The results, displayed in Table 1, show a good performance of both 

classification methods for high correlation levels. However, when the correlation 

level is medium or small, more feasible situations in statistical process control, the 

performance of both methods worsens. Specifically, when there is a positive 

correlation. and both variables change in the same direction, RF shows better 

performance than NN, although these differences are not too important. RF also 

works better than NN when the correlation is negative and the two variables 

change in opposite direction. In addition, when only one variable changes and the 

correlation level is small, RF is also better. To sum up, when the change in the 

variable is small, the most common but most challenging case in statistical process 

control, the use of RF is advantageous in terms of the classification error, which 

means a better diagnosis of out-of-control situations. 

The results in Table 2 (changes of magnitude equal to two standard deviations) 

show similar behavior as in Table 1 but with less noticeable differences for 

positive correlation and both variable changing in the same direction. Finally, 

Table 3 (change of three standard deviations) shows that the cases where RF could 

be said that improves the behavior of NN is when only one variable shifts and 

there is a little correlation. 

In summary, the results allow us to verify how, in the most common situations in 

statistical process control, the application of RF is advantageous compared to NN. 

Specifically, for small or moderate correlation levels and change in only one of 

the two variables, the behavior of RF is better. It is also better when the 

correlation is positive and the two variables change in the same direction or when 

the correlation is negative and the two variables change in the opposite sense, 
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these being the most feasible cases taking into account the correlation structure. 

This is pointed out in Figure 1. 

 

Table 1 

Error with shift of one standard deviation 

 
Shift in one variable 

Shift in different 

sense in X1 and X2 

Shift in same sense in 

X1 and X2 
Total 

 
RF NN RF-NN RF NN 

RF-

NN 
RF NN RF-NN RF NN 

RF-

NN 

-0.99 0.009 0.003 0.006 0.043 0.001 0.042 0.001 0.000 0.001 0.018 0.001 0.016 

-0.97 0.054 0.037 0.017 0.058 0.033 0.025 0.042 0.037 0.005 0.051 0.036 0.016 

-0.95 0.125 0.109 0.016 0.050 0.043 0.007 0.107 0.097 0.010 0.094 0.083 0.011 

-0.9 0.230 0.262 -0.032 0.068 0.072 -0.004 0.359 0.268 0.091 0.219 0.201 0.018 

-0.8 0.529 0.451 0.078 0.080 0.089 -0.009 0.197 0.210 -0.013 0.269 0.250 0.019 

-0.7 0.592 0.435 0.157 0.076 0.101 -0.025 0.151 0.220 -0.069 0.273 0.252 0.021 

-0.6 0.519 0.431 0.088 0.096 0.121 -0.025 0.183 0.201 -0.018 0.266 0.251 0.015 

-0.5 0.509 0.473 0.036 0.109 0.122 -0.013 0.184 0.186 -0.002 0.267 0.260 0.007 

-0.4 0.458 0.480 -0.022 0.156 0.164 -0.008 0.251 0.201 0.050 0.288 0.282 0.007 

-0.3 0.395 0.431 -0.036 0.121 0.139 -0.018 0.253 0.196 0.057 0.256 0.255 0.001 

-0.2 0.487 0.507 -0.020 0.138 0.146 -0.008 0.240 0.202 0.038 0.288 0.285 0.003 

-0.1 0.313 0.478 -0.165 0.314 0.176 0.138 0.287 0.189 0.098 0.305 0.281 0.024 

0.0 0.384 0.541 -0.157 0.237 0.155 0.082 0.288 0.187 0.101 0.303 0.294 0.009 

+0.1 0.432 0.437 -0.005 0.254 0.200 0.054 0.164 0.171 -0.007 0.283 0.269 0.014 

+0.2 0.495 0.531 -0.036 0.274 0.176 0.098 0.112 0.148 -0.036 0.294 0.285 0.009 

+0.3 0.444 0.430 0.014 0.294 0.224 0.070 0.099 0.148 -0.049 0.279 0.267 0.012 

+0.4 0.408 0.428 -0.020 0.246 0.211 0.035 0.114 0.114 0.000 0.256 0.251 0.005 

+0.5 0.512 0.471 0.041 0.198 0.180 0.018 0.096 0.135 -0.039 0.269 0.262 0.007 

+0.6 0.519 0.430 0.089 0.185 0.222 -0.037 0.113 0.146 -0.033 0.272 0.266 0.006 

+0.7 0.544 0.473 0.071 0.149 0.186 -0.037 0.091 0.118 -0.027 0.261 0.259 0.002 

+0.8 0.450 0.373 0.077 0.236 0.267 -0.031 0.088 0.090 -0.002 0.258 0.243 0.015 

+0.9 0.229 0.241 -0.012 0.326 0.273 0.053 0.073 0.076 -0.003 0.209 0.197 0.013 

+0.95 0.115 0.104 0.011 0.117 0.091 0.026 0.075 0.054 0.021 0.102 0.083 0.019 

+0.97 0.042 0.033 0.009 0.024 0.020 0.004 0.063 0.043 0.020 0.043 0.032 0.011 

+0.99 0.013 0.002 0.011 0.000 0.000 0.000 0.061 0.001 0.060 0.025 0.001 0.024 
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Table 2 

Error with shift of two standard deviations 

 
Shift in one 

variable 

Shift in different 

sense in X1 and X2 

Shift in same sense 

in X1 and X2 
Total 

 
RF NN 

RF-

NN 
RF NN RF-NN RF NN 

RF-

NN 
RF NN 

RF-

NN 

-0.99 0.000 0.000 0.000 0.005 0.000 0.005 0.001 0.000 0.001 0.002 0.000 0.002 

-0.97 0.002 0.000 0.002 0.006 0.000 0.006 0.000 0.000 0.000 0.003 0.000 0.003 

-0.95 0.008 0.003 0.005 0.010 0.002 0.008 0.000 0.002 -0.002 0.006 0.002 0.004 

-0.9 0.030 0.022 0.008 0.011 0.010 0.001 0.012 0.011 0.001 0.018 0.014 0.003 

-0.8 0.074 0.090 -0.016 0.021 0.024 -0.003 0.129 0.080 0.049 0.075 0.065 0.010 

-0.7 0.190 0.192 -0.002 0.028 0.044 -0.016 0.204 0.139 0.065 0.141 0.125 0.016 

-0.6 0.300 0.215 0.085 0.048 0.054 -0.006 0.123 0.143 -0.020 0.157 0.137 0.020 

-0.5 0.267 0.232 0.035 0.052 0.060 -0.008 0.155 0.149 0.006 0.158 0.147 0.011 

-0.4 0.199 0.233 -0.034 0.077 0.065 0.012 0.182 0.122 0.060 0.153 0.140 0.013 

-0.3 0.269 0.259 0.010 0.069 0.069 0.000 0.135 0.130 0.005 0.158 0.153 0.005 

-0.2 0.244 0.270 -0.026 0.065 0.074 -0.009 0.190 0.131 0.059 0.166 0.158 0.008 

-0.1 0.211 0.247 -0.036 0.084 0.082 0.002 0.225 0.112 0.113 0.173 0.147 0.026 

0.0 0.215 0.249 -0.034 0.172 0.106 0.066 0.099 0.100 -0.001 0.162 0.152 0.010 

+0.1 0.242 0.237 0.005 0.159 0.130 0.029 0.071 0.069 0.002 0.157 0.145 0.012 

+0.2 0.226 0.249 -0.023 0.174 0.113 0.061 0.077 0.088 -0.011 0.159 0.150 0.009 

+0.3 0.232 0.240 -0.008 0.149 0.129 0.020 0.086 0.074 0.012 0.156 0.148 0.008 

+0.4 0.207 0.234 -0.027 0.128 0.109 0.019 0.099 0.079 0.020 0.145 0.141 0.004 

+0.5 0.268 0.231 0.037 0.144 0.157 -0.013 0.033 0.045 -0.012 0.148 0.144 0.004 

+0.6 0.284 0.221 0.063 0.106 0.147 -0.041 0.040 0.043 -0.003 0.143 0.137 0.006 

+0.7 0.217 0.159 0.058 0.168 0.146 0.022 0.031 0.042 -0.011 0.139 0.116 0.023 

+0.8 0.068 0.089 -0.021 0.121 0.084 0.037 0.030 0.028 0.002 0.073 0.067 0.006 

+0.9 0.038 0.024 0.014 0.021 0.013 0.008 0.016 0.008 0.008 0.025 0.015 0.010 

+0.95 0.010 0.001 0.009 0.001 0.001 0.000 0.012 0.001 0.011 0.008 0.001 0.007 

+0.97 0.006 0.001 0.005 0.000 0.000 0.000 0.014 0.001 0.013 0.007 0.001 0.006 

+0.99 0.002 0.000 0.002 0.044 0.000 0.044 0.011 0.000 0.011 0.019 0.000 0.019 
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Table 3 

Error with shift of three standard deviations 

 Shift in one variable 
Shift in different 

sense in X1 and X2 

Shift in same sense 

in X1 and X2 
Total 

 
RF NN 

RF-

NN 
RF NN 

RF-

NN 
RF NN 

RF-

NN 
RF NN 

RF-

NN 

-0.99 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

-0.97 0.001 0.000 0.001 0.002 0.000 0.002 0.011 0.000 0.011 0.005 0.000 0.005 

-0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.9 0.004 0.002 0.002 0.004 0.000 0.004 0.000 0.001 -0.001 0.003 0.001 0.002 

-0.8 0.017 0.014 0.003 0.007 0.003 0.004 0.012 0.010 0.002 0.012 0.009 0.003 

-0.7 0.040 0.036 0.004 0.010 0.008 0.002 0.038 0.025 0.013 0.029 0.023 0.006 

-0.6 0.063 0.056 0.007 0.012 0.016 -0.004 0.074 0.049 0.025 0.050 0.040 0.009 

-0.5 0.104 0.085 0.019 0.019 0.020 -0.001 0.079 0.059 0.020 0.067 0.055 0.013 

-0.4 0.095 0.118 -0.023 0.033 0.032 0.001 0.105 0.047 0.058 0.078 0.066 0.012 

-0.3 0.089 0.095 -0.006 0.044 0.036 0.008 0.084 0.061 0.023 0.072 0.064 0.008 

-0.2 0.095 0.103 -0.008 0.049 0.036 0.013 0.095 0.067 0.028 0.080 0.069 0.011 

-0.1 0.096 0.105 -0.009 0.051 0.042 0.009 0.061 0.044 0.017 0.069 0.064 0.006 

0.0 0.082 0.113 -0.031 0.088 0.053 0.035 0.074 0.052 0.022 0.081 0.073 0.009 

+0.1 0.088 0.106 -0.018 0.071 0.056 0.015 0.053 0.038 0.015 0.071 0.067 0.004 

+0.2 0.111 0.113 -0.002 0.063 0.049 0.014 0.045 0.038 0.007 0.073 0.067 0.006 

+0.3 0.109 0.114 -0.005 0.081 0.058 0.023 0.033 0.031 0.002 0.074 0.068 0.007 

+0.4 0.110 0.093 0.017 0.080 0.062 0.018 0.034 0.020 0.014 0.075 0.058 0.016 

+0.5 0.116 0.081 0.035 0.065 0.053 0.012 0.021 0.020 0.001 0.067 0.051 0.016 

+0.6 0.050 0.049 0.001 0.062 0.044 0.018 0.008 0.009 -0.001 0.040 0.034 0.006 

+0.7 0.033 0.030 0.003 0.046 0.029 0.017 0.013 0.009 0.004 0.031 0.023 0.008 

+0.8 0.016 0.007 0.009 0.010 0.007 0.003 0.006 0.004 0.002 0.011 0.006 0.005 

+0.9 0.007 0.001 0.006 0.000 0.000 0.000 0.003 0.001 0.002 0.003 0.001 0.003 

+0.95 0.001 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.002 0.001 0.000 0.001 

+0.97 0.001 0.000 0.001 0.000 0.000 0.000 0.003 0.000 0.003 0.001 0.000 0.001 

+0.99 0.004 0.000 0.004 0.000 0.000 0.000 0.003 0.000 0.003 0.002 0.000 0.002 
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Figure 1 

Error by correlation level. Shift of 1 standard deviation and, from up to bottom, shift in only one 

variable, shift in two variables in different senses and shift in two variables in the same sense 
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Conclusions 

In recent years, classification methods are useful as a complement to T2 graphs 

for the diagnosis of out-of-control signals, neural networks being the most used 

method. The proposal developed in this paper would facilitate the application of 

multivariate quality control in production processes where the quality of 

manufactured goods depends on several correlated characteristics and small 

changes can have big consequences, such as the medical industry. Concretely, the 

use of random forest as an alternative classification method improves results in 

certain situations. 

In this sense, the performance of both NN and RF methods improves with the 

change magnitude and with the absolute value of the correlation level. The 

comparison between these methods depends on the correlation structure combined 

with the type of change. The results allow us to verify how in the most common 

situations in statistical process control, the application of RF supposes an 

advantage in comparison with NN. Specifically, for small or moderate correlation 

levels and change in only one of the two variables, RF provides better results than 

NN. RF performance is also better when the correlation is positive and the two 

variables change in the same direction or when the correlation is negative and the 

two variables change in different sense (most feasible cases taking into account 

the correlation structure). These results allow us to verify that there is not a 

technique with a predominant behavior over the other although, depending on the 

case to be treated, using one technique or another allows obtaining better results. 

This work opens a new research line, currently under development, which would 

allow validating these methods for a higher number of variables, providing an 

alternative procedure to the current use of dimensionality reduction techniques. 
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