
Acta Polytechnica Hungarica Vol. 6, No. 5, 2009

 – 95 –

Simplex Differential Evolution

Musrrat Ali1, Millie Pant1 and Ajith Abraham2
1 Department of Paper Technology, Indian Institute of Technology Roorkee,
Saharanpur campus, Saharanpur -247001, India
2 Machine Intelligence Research Labs (MIR Labs), Scientific Network for
Innovation and Research Excellence, P.O. Box 2259, Auburn, Washington-98071-
2259, USA

musrrat.iitr@gmail.com, millidma@gmail.com, ajith.abraham@ieee.org

Abstract: Differential evolution (DE) algorithms are commonly used metaheuristics for
global optimization, but there has been very little research done on the generation of their
initial population. The selection of the initial population in a population-based heuristic
optimization method is important, since it affects the search for several iterations and often
has an influence on the final solution. If no a priori information about the optima is
available, the initial population is often selected randomly using pseudorandom numbers.
In this paper, we have investigated the effect of generating the initial population without
using the conventional methods like computer generated random numbers or quasi random
sequences. We have applied non linear simplex method in conjugation of pseudorandom
numbers to generate initial population for DE. Proposed algorithm is named as NSDE
(using non linear simplex method), is tested on a set of 20 benchmark problems with box
constraints, taken from literature and the numerical results are compared with results
obtained by traditional DE and opposition based DE (ODE). Numerical results show that
the proposed scheme considered by us for generating the random numbers significantly
improves the performance of DE in terms of convergence rate and average CPU time.

Keywords: Stochastic optimization, differential evolution, crossover, initial population,
random numbers

1 Introduction
DE is comparatively a recent addition to class of population based search
heuristics. Nevertheless, it has emerged as one of the techniques most favored by
engineers for solving continuous optimization problems. DE [1, 2] has several
attractive features. Besides being an exceptionally simple evolutionary strategy, it
is significantly faster and robust for solving numerical optimization problems and
is more likely to find the function’s true global optimum. Also, it is worth
mentioning that DE has a compact structure with a small computer code and has

M. Ali et al. Simplex Differential Evolution

 – 96 –

fewer control parameters in comparison to other evolutionary algorithms.
Originally Price and Storn proposed a single strategy for DE, which they later
extended to ten different strategies [3].

DE has been successfully applied to a wide range of problems including Batch
Fermentation Process [4], Optimal design of heat exchanges [5], synthesis and
optimization of heat integrated distillation system [6], optimization of non-linear
chemical process [7], optimization of process synthesis and design problems [8],
optimization of thermal cracker operation [9], optimization of water pumping
system [10], dynamic optimization of a continuous polymer reactor [11],
optimization of low pressure chemical vapor deposition reactors [12], etc.

Despite having several striking features and successful applications to various
fields DE is sometimes criticized for its slow convergence rate for
computationally expensive functions. By varying the control parameters the
convergence rate of DE may be increased but it should be noted that it do not
affect the quality of solution. Generally, in population based search techniques
like DE an acceptable trade-off should be maintained between convergence and
type of solution, which even if not a global optimal solution should be satisfactory
rather than converging to a suboptimal solution which may not even be a local
solution. Several attempts have been made in this direction to fortify DE with
suitable mechanisms to improve its performance. Most of the studies involve the
tuning or controlling of the parameters of algorithm and improving the mutation,
crossover and selection mechanism, some interesting modifications that helped in
enhancing the performance of DE include introduction of greedy random strategy
for selection of mutant vector [13], modifications in mutation and localization in
acceptance rule [14], DE with preferential crossover [15], crossover based local
search method for DE [16], self adaptive differential evolution algorithm [17],
new donor schemes proposed for the mutation operation of DE [18], parent centric
DE [28]. All the modified versions have shown that a slight change in the
structure of DE can help in improving its performance. However, the role of the
initial population, which is the topic of this paper, is widely ignored. Often, the
whole area of research is set aside by a statement “generate an initial population,”
without implying how it should be done. There is only few literature is available
on this topic [23-27]. An interesting method for generating the initial population
was suggested by Rahnamayan et al ([19], [20]) in which the initial population
was generated using opposition based rule. To further continue the research in this
direction, in this paper we propose two modified versions of DE to improve its
performance in terms of convergence rate without compromising with the quality
of solution. The modified version presented in this paper is named non linear
simplex method called NSDE. In the present study our aim is to investigate the
effect of initial population on payoff between convergence rate and solution
quality. Our motivation is to encourage discussions on methods of initial
population construction. Performances of the proposed algorithms are compared
with Basic DE and differential evolution initialized by opposition based learning

Acta Polytechnica Hungarica Vol. 6, No. 5, 2009

 – 97 –

(ODE), which is a recently modified version of differential evolution [19], on a set
of twenty unconstrained benchmark problems.

Remaining of the paper is organized in following manner; in Section 2, we give a
brief description of DE. In Section 3, the proposed algorithms are explained.
Section 4 deals with experimental settings and parameter selection. Benchmark
problems considered for the present study are given in Section 5. The
performances of the proposed algorithms are compared with basic DE and ODE in
Section 6. The conclusions based on the present study are finally drawn in Section
7.

2 Differential Evolution (DE)
DE starts with a population of NP candidate solutions which may be represented
as Xi,G, i = 1, . . . ,NP, where i index denotes the population and G denotes the
generation to which the population belongs. The working of DE depends on the
manipulation and efficiency of three main operators; mutation, reproduction and
selection which briefly described in this section.

Mutation: Mutation operator is the prime operator of DE and it is the
implementation of this operation that makes DE different from other Evolutionary
algorithms. The mutation operation of DE applies the vector differentials between
the existing population members for determining both the degree and direction of
perturbation applied to the individual subject of the mutation operation. The
mutation process at each generation begins by randomly selecting three
individuals in the population. The most often used mutation strategies
implemented in the DE codes are listed below.

DE/rand/1:)(* ,,,, 321 grgrgrgi XXFXV −+= (1a)

DE/rand/2:)(*)(* ,,,,,, 54321 grgrgrgrgrgi XXFXXFXV −+−+=

 (1b)

DE/best/1:)(* ,,,, 21 grgrgbestgi XXFXV −+=

(1c)

DE/best/2:)(*)(* ,,,,,, 4321 grgrgrgrgbestgi XXFXXFXV −+−+= (1d)

DE/rand-to-best/1:
)(*)(* ,,,,,, 4321 grgrgrgbestgrgi XXFXXFXV −+−+= (1e)

Where, i = 1, . . . , NP, r1, r2, r3 ∈ {1, . . . , NP} are randomly selected and satisfy:

r1 ≠ r2 ≠ r3 ≠ i, F ∈ [0, 1], F is the control parameter proposed by Storn and
Price [1].

M. Ali et al. Simplex Differential Evolution

 – 98 –

Throughout the paper we shall refer to the strategy (1a) which is apparently the
most commonly used version and shall refer to it as basic version.

Crossover: once the mutation phase is complete, the crossover process is
activated. The perturbed individual, Vi,G+1 = (v1,i,G+1, . . . , vn,i,G+1), and the current
population member, Xi,G = (x1,i,G, . . . , xn,i,G), are subject to the crossover
operation, that finally generates the population of candidates, or “trial”
vectors,Ui,G+1 = (u1,i,G+1, . . . , un,i,G+1), as follows:

, . 1
, . 1

, .

j i G j r
j i G

j i G

v if rand C j k
u

x otherwise
+

+

≤ ∨ =⎧
= ⎨
⎩

 (2)

Where, j = 1. . . n, k ∈ {1, . . . , n} is a random parameter’s index, chosen once for
each i, and the crossover rate, Cr ∈ [0, 1], the other control parameter of DE, is set
by the user.

Selection: The selection scheme of DE also differs from that of other EAs. The
population for the next generation is selected from the individual in current
population and its corresponding trial vector according to the following rule:

. 1 . 1 .
. 1

.

() ()i G i G i G
i G

i G

U if f U f X
X

X otherwise
+ +

+

≤⎧
= ⎨
⎩

 (3)

Thus, each individual of the temporary (trial) population is compared with its
counterpart in the current population. The one with the lower objective function
value will survive from the tournament selection to the population of the next
generation. As a result, all the individuals of the next generation are as good or
better than their counterparts in the current generation. In DE trial vector is not
compared against all the individuals in the current generation, but only against one
individual, its counterpart, in the current generation. The pseudo code of algorithm
is given here.

DE pseudo code:

Step 1: The first step is the random initialization of the parent population.
Randomly generate a population of (say) NP vectors, each of n
dimensions: xi,j= xmin,j + rand(0, 1)(xmax,j-xmin,j), where xmin,j and xmax are
lower and upper bounds for jth component respectively, rand(0,1) is a
uniform random number between 0 and 1.

Step 2: Calculate the objective function value f(Xi) for all Xi.

Step 3: Select three points from population and generate perturbed individual Vi
using equation (1a).

Step 4: Recombine the each target vector xi with perturbed individual generated
in step 3 to generate a trial vector Ui using equation (2).

Acta Polytechnica Hungarica Vol. 6, No. 5, 2009

 – 99 –

Step 5: Check whether each variable of the trial vector is within range. If yes,
then go to step 6 else make it within range using ui,j =2* xmin,j - ui,j ,if ui,j
< xmin,j and ui,j =2* xmax,j - ui,j , if ui,j> xmax,j, and go to step 6.

Step 6: Calculate the objective function value for vector Ui.

Step 7: Choose better of the two (function value at target and trial point) using
equation (3) for next generation.

Step 8: Check whether convergence criterion is met if yes then stop; otherwise
go to step 3.

3 Proposed NSDE Algorithm
In this section we describe the proposed NSDE algorithm and discuss the effect of
embedding the proposed scheme in basic DE (as given in Section 2) on two simple
benchmark examples taken from literature.

3.1 Differential Evolution with Non linear Simplex Method
(NSDE)

The NSDE uses nonlinear simplex method (NSM) developed by J. A. Nelder and
R. Mead [22], in conjugation with uniform random number to construct the initial
population. The procedure of NSDE is outlined as follows:

1 Generate a population set P of size NP uniformly as in step 1 of DE and set k=1.

2 Generate a point by NSM Method, which has the following main operations.

2.1 Select n+ 1 point from population P randomly and evaluate function at these
points.

2.2 Calculate the centroid of these points excluding the worst point, say Xmax at
which function is maximum.

2.3 Reflection: Reflect Xmax through the centroid to a new point X1. And calculate
the function value at this point.

2.4 Expansion: If f(X1)<=f(Xmin) then perform expansion to generate a new point
X2 in the expanded region otherwise go to step 2.5. If f(X2)<f(Xmin) then
include point X2 to the population Q otherwise point X1 is included to
population Q and go to step 3.

2.5 Contraction: If f(X1)<f(Xmax) then produce a new point X3 by contraction
otherwise go to step 2.6. If f(X3)<f(Xmax) then add point X3 to the population
otherwise include point X1 to the population Q and go to step 3.

M. Ali et al. Simplex Differential Evolution

 – 100 –

2.6 Reduction: Reduction is performed when either of the conditions mentioned
above (from step 2.3 – step 2.5) are not satisfied. In this step we have
replaced the original reduction method of Nelder Mead, by generating
uniformly distributed random point say Xrand within the specified range and
include it in the population Q and go to step 3.

3 If k<NP go to step 2.1 with k = k+1 else stop.

It can be seen from the above steps that in NSDE, initially a population set P of
size NP is generated uniformly to which NSM is applied NP times to generate
another population set Q so as to get a total population of size 2*NP. Finally, the
initial population is constructed by selecting the NP fittest points from the union
of P and Q. After initialization step, NSDE algorithm works like the basic DE.

With the use of NSM method, the initial population is provided with the
information of the good regions that possess each particle as a vertex of the NSM
simplex in each step. The algorithm is not computationally expensive, since for
each particle of the initial population one function evaluation is done, which is
inevitable even if we use a randomly distributed initial population.

Figure 2

Reflection of A to D
Figure 3

Expansion of D to E

Figure 4

Contraction of D to F
Figure 5

Reduction of ABC to A’B’C’

Acta Polytechnica Hungarica Vol. 6, No. 5, 2009

 – 101 –

3.2 Effects of Using the Proposed NSDE to Generate Initial
Population

The initial generation of population by nonlinear simplex method makes use of the
function value to determine a candidate point for the additional population. As a
result in the initial step itself we get a collection of fitter individuals which may
help in increasing the efficiency of the algorithm. Consequently, the probability of
obtaining the optimum in fewer NFEs increases considerably or in other words the
convergence rate of the algorithm becomes faster. The initial generation of 100
points within the range [-2, 2] for Rosenbrock function and within the range [-600,
600] for Griewank function using basic DE, ODE and the proposed NSDE are
depicted in Figs. 6(a)-6(c) and Figs. 7(a)-7(c) respectively. From these
illustrations we can observe that the search space gets concentrated around the
global optima which lies at (1, 1) with objective function value zero, for two
dimensional Rosenbrock function and which lies at (0, 0) with objective function
value 0, for Griewank function when the initial population is constructed using
NSDE. The large search domain, [-600, 600], of Griewank function is contracted
to the range of around [-400, 400] while using NSDE.

Figure 6 (a)

Initial population consisting of 100 points in the range [-2, 2] for Rosenbrock function using basic DE

Figure 6(b)

Initial population consisting of 100 points in the range [-2, 2] for Rosenbrock function using ODE

M. Ali et al. Simplex Differential Evolution

 – 102 –

Figure 6 (c)

Initial population consisting of 100 points in the range [-2, 2] for Rosenbrock function using NSDE

Figure 7 (a)

Initial population consisting of 100 points in the range [-600, 600] for Griewanks function using DE

Figure 7 (b)

Initial population consisting of 100 points in the range [-600, 600] for Griewank function using ODE

Acta Polytechnica Hungarica Vol. 6, No. 5, 2009

 – 103 –

Figure 7 (c)

Initial population consisting of 100 points in the range [-600, 600] for Griewank function using NSDE

4 Experimental Setup
With DE, the lower limit for population size, NP, is 4 since the mutation process
requires at least three other chromosomes for each parent. While testing the
algorithms, we began by using the optimized control settings of DE. Population
size, NP can always be increased to help maintain population diversity. As a
general rule, an effective NP is between 3 ∗ n and 5 ∗ n, but can often be modified
depending on the complexity of the problem. For the present study we performed
several experiments with the population size as well as with the crossover rate and
mutation probability rate and observed that for problems up to dimension 30 a
population size of 3*n is sufficient. But here we have taken fixed population size
NP=100, which is slightly large than 3*n. Values of scale F, outside the range of
0.4 to 1.2 are rarely effective, so F=0.5 is usually a good initial choice. In general
higher value of Cr help in speeding up the convergence rate therefore in the
present study we have taken Cr =0.9. All the algorithms are executed on a PIV PC,
using DEV C++, thirty times for each problem. In order to be fair we have kept
the same parameter settings for all the algorithms. Random numbers are generated
using the inbuilt random number generator rand () function available in
DEVC++.

Over all acceleration rate AR, which is taken for the purpose of comparison is
defined as [19]

j
j = 1

j
1

N F E (b y o n e a l g o)
A R = 1 - 1 0 0

N F E (b y o t h e r a l g o)
j

μ

μ

=

⎛ ⎞
⎜ ⎟
⎜ ⎟ ×
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑

M. Ali et al. Simplex Differential Evolution

 – 104 –

Where μ is number of functions. In every case, a run was terminated when the best
function value obtained is less than a threshold for the given function or when the
maximum number of function evaluation (NFE=106) was reached. In order to have
a fair comparison, these settings are kept the same for all algorithms over all
benchmark functions during the simulations.

5 Benchmark Problems
The performance of proposed NSDE is evaluated on a test bed of twenty standard,
benchmark problems with box constraints, taken from the literature [20].
Mathematical models of the benchmark problems along with the true optimum
value are given in Appendix.

6 Numerical Results and Comparisons

6.1 Performance Comparison of Proposed NSDE with Basic
DE and ODE

We have compared the proposed algorithms with the basic DE and ODE. Here we
would like to mention that we have used ODE version given in [19] instead of
[20] because in [20], the authors have used the additional features like opposition
based generation jumping, etc. while in the present study we just focusing on the
effect of initial population generation on differential evolution algorithm.
Comparisons of the algorithms is done in terms of average fitness function value,
standard deviation and the corresponding t-test value; average number of function
evaluations and the average time taken by every algorithm to solve a particular
problem. In every case, a run was terminated when the best function value
obtained is less than a threshold for the given function [19] or when the maximum
number of function evaluation (NFE=106) was reached.

From Table 1, which gives the average fitness function value, standard deviation
and t-values it can be observed that for the 20 benchmark problems taken in the
present study all the algorithms gave more or less similar results in terms of
average fitness function value, with marginal difference, which are comparable to
true optimum. For the function f14 (Step function) all the algorithms gives same
results. The best and worst fitness function values obtained, in 30 runs, by all the
algorithms for benchmark problems are given in Table 3.

However when we do the comparison in terms of average time taken and average
number of function evaluations then the proposed NSDE emerges as a clear

Acta Polytechnica Hungarica Vol. 6, No. 5, 2009

 – 105 –

winner. It converges to the optimum at a faster rate in comparison to all other
algorithms. Only for functions f13 (Schwefel) NSDE took more NFE than ODE,
whereas for the remaining 19 problems NSDE converged faster than the basic DE
and ODE. For solving 20 problems the average NFE taken by NSDE are 1334200
while ODE took 1794738 NFE and DE took 1962733 NFE. This implies that
NSDE has an acceleration rate of around 35% in comparison to basic DE and an
acceleration rate of 26% in comparison to ODE. ODE on the other hand reduces
the NFE only up to 8.56%, in comparison to basic DE. A similar trend of
performance can be observed from the average computational time. For solving 20
problems NSDE took least CPU time in comparison to the other two algorithms.

Performance curves of selected benchmark problems are illustrated in Figs. 8(a)-
8(h).

Table 1
Mean fitness, standard deviation of functions in 30 runs and t-valve

Mean fitness, (Standard deviation) and t-value Function Dim.
DE ODE NSDE

 f1 30 0.0546854
(0.0131867)

--

0.0901626
(0.0077778)

12.48

0.0916686
(0.00721253)

13.25
f2 30 0.0560517

(0.0116127)
--

0.0918435
(0.00565233)

14.92

0.0866163
(0.00666531)

12.29
f3 30 0.0957513

(0.00293408)
--

0.0952397
(0.00499586)

0.48

0.0951172
(0.00405255)

0.68
f4 10 0.0931511

(0.0145175)
--

0.0874112
(0.00699322)

1.92

0.0851945
(0.0121355)

2.26
f5 30 0.0915561

(0.012111)
--

0.0885065
(0.00711877)

1.17

0.0916412
(0.00860403)

0.03
f6 30 0.0942648

(0.00478545)
--

0.0933845
(0.00620528)

0.60

0.0926704
(0.00735851)

0.98
f7 2 4.26112e-008

(2.5783e-008)
--

6.23824e-008
(2.75612e-008)

2.82

4.9999e-008
(2.95279e-008)

1.01
f8 4 0.0620131

(0.0239495)
--

0.0528597
(0.0276657)

1.35

0.0591064
(0.0123711)

0.58
f9 30 0.088998

(0.00880246)
--

0.092875
(0.00487147)

2.08

0.0882776
(0.0103789)

0.29

M. Ali et al. Simplex Differential Evolution

 – 106 –

f10 10 -7.91444
(3.40729)

--

-9.61563
(0.024986)

2.69

-9.62952
(0.0238362)

2.71
f11 30 0.0842833

(0.00897659)
--

0.0890837
(0.00961583)

1.97

0.0901177
(0.00969009)

2.38
f12 30 0.0940407

(0.00501821)
--

0.0931232
(0.00502023)

0.69

0.0951981
(0.00373364)

0.99
f13 30 0.0956696

(0.00352899)
--

0.0935369
(0.00397665)

2.16

0.0955274
(0.00495933)

0.13
f14 30 0.0

(0.0)
--

0.0
(0.0)

--

0.0
(0.0)

--
f15 30 0.0730003

(0.0169434)
--

0.0880257
(0.0115251)

3.95

0.0890936
(0.00986588)

4.42
f16 2 0.0645903

(0.0231492)
--

0.0545825
(0.0263629)

1.54

0.0539806
(0.0226797)

1.76
f17 30 0.0910662

(0.00428958)
--

0.0845474
(0.0118228)

2.79

0.0923214
(0.00514694)

1.01
f18 2 4.75455e-008

(2.9688e-008)
--

3.63292e-008
(3.10335e-008)

1.41

2.657e-008
(2.657e-008)

1.49
f19 5 0.067335

(0.025448)
--

0.0738969
(0.0209749)

1.07

0.0769911
(0.0160823)

1.73
f20 5 -3.99239

(0.00164918)
--

-3.99398
(0.00235545)

2.98

-3.99297
(0.00184151)

1.27

Acta Polytechnica Hungarica Vol. 6, No. 5, 2009

 – 107 –

Table 2
Average CPU time (in sec) taken by the algorithms, mean number of function evaluation of 30 runs

and over all acceleration rates

Average Time (Sec) Mean function Fu
n. Dim.

DE ODE NSDE DE ODE NSDE
f1 30 0.60 0.54 0.51 28020 26912 26220
f2 30 0.60 0.57 0.55 37312 36639 35500
f3 30 11.30 11.10 10.40 295232 295112 232860
f4 10 2.41 2.34 2.13 382454 361234 265420
f5 30 1.80 1.79 1.70 54503 53305 52240
f6 30 1.50 1.45 1.41 52476 51589 49170
f7 2 0.31 0.29 0.23 3845 3740 3520
f8 4 0.10 0.11 0.09 7902 7934 6780
f9 30 1.20 1.11 1.11 44034 41455 35330
f10 10 3.02 2.93 2.67 220356 196871 172200
f11 30 2.91 2.37 1.81 200924 196617 44960
f12 30 0.59 0.52 0.50 66154 63760 57800
f13 30 1.83 1.24 1.42 197069 148742 155970
f14 30 0.71 0.65 0.53 42423 41578 32300
f15 30 0.47 0.45 0.43 25903 24236 22620
f16 2 0.13 0.11 .10 3913 3832 3600
f17 30 0.92 0.81 0.76 55029 52455 47760
f18 2 0.23 .21 0.16 7367 7249 5150
f19 5 1.66 1.12 0.61 205398 150173 57540
f20 5 0.39 0.37 0.31 32419 31305 27260

Total 32.68 30.08 27.43 1962733 1794738 1434200
AR 7.955% 16.064% 8.5592 % 26.928 %

M. Ali et al. Simplex Differential Evolution

 – 108 –

Table 3
Best and worst fitness function values obtained by all the algorithms

Best and Worst function values Functi
on

Dim.
DE ODE NSDE

f1 30 0.0533706
0.0920816

0.0710478
0.0980475

0.0801175
0.0989173

f2 30 0.0469366
0.0852506

0.0834493
0.0994759

0.0708503
0.0971761

f3 30 0.0912359
0.099449

0.0812952
0.0991723

0.085954
0.0987729

f4 10 0.0555946
0.0973456

0.0782872
0.0990834

0.0586798
0.0986525

f5 30 0.0550155
0.0985525

0.0765341
0.0976009

0.0730851
0.0988916

f6 30 0.0811647
0.0995538

0.0799383
0.0992613

0.0777488
0.0979521

f7 2 3.03242e-009
8.24678e-008

1.9059e-008
9.47894e-008

5.64424e-009
8.50966e-008

f8 4 0.0139037
0.0974824

0.00826573
0.0912189

0.0333435
0.0790444

f9 30 0.0746445
0.0995713

0.0849655
0.098311

0.064171
0.0992847

f10 10 -9.64801
-1.02642

-9.65114
-9.59249

-9.65368
-9.57805

f11 30 0.0627431
0.0944119

0.0636232
0.0989899

0.0683468
0.0994605

f12 30 0.0849009
0.0991914

0.0819181
0.0999306

0.0887407
0.0997806

f13 30 0.0902771
0.0996024

0.0866648
0.0988438

0.0854635
0.0998667

f14 30 0.0
0.0

0.0
0.0

0.0
0.0

f15 30 0.0441712
0.0945989

0.0593778
0.0991945

0.067818
0.0992816

f16 2 0.0277478
0.0969767

0.0129757
0.0984134

0.0297125
0.0918671

f17 30 0.0844465
0.0975161

0.0593988
0.0997203

0.0836182
0.0996487

f18 2 2.3063e-009
9.91416e-008

4.64862e-009
9.55725e-008

1.11418e-008
8.51751e-008

f19 5 0.00746793
0.099394

0.0291998
0.0995076

0.0483536
0.0999149

f20 5 -3.99626
-3.99019

-3.99737
-3.99035

-3.99644
-3.99027

Acta Polytechnica Hungarica Vol. 6, No. 5, 2009

 – 109 –

0

20

40

60

80

100

120

140

160

500 5500 10500 15500

F
It
n
e
ss

NO of function evaluation

DE

ODE

NSDE

0

10

20

30

40

50

60

70

500 1500 2500 3500 4500 5500 6500

F
it
n
e
ss

NO of function evaluation

DE

ODE

NSDE

Figure 8(a)

Sphere (f1) function
Figure 8(b)

Colville (f8) function

0

2

4

6

8

10

20000 25000 30000 35000

F
it
n
e
s
s

NO of function evaluation

DE

ODE

NSDE

0

50

100

150

200

250

300

350

400

450

1000 6000 11000 16000 21000

Fi
tn
e
ss

NO of function evaluation

DE

ODE

NSDE

Figure 8(c)

Axis parallel (f2) function
Figure 8(d)

Griewenk (f5) function

0
10
20
30
40
50
60
70
80
90

100

500 50500 100500 150500 200500 250500

Fi
tn
e
ss

NO of function evaluation

DE

ODE

NSDE

 ‐4.5

‐4

‐3.5

‐3

‐2.5

‐2

‐1.5

500 5500 10500 15500 20500 25500

F
it
n
e
ss

NO of function evaluation

DE

ODE

NSDE

Figure 8(e)

Restrigin (f4) function
Figure 8(f)

Inverted (f20) cosine

M. Ali et al. Simplex Differential Evolution

 – 110 –

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

500 1000 1500 2000 2500 3000 3500

F
it
n
e
ss

NO of function evaluation

DE

ODE

NSDE

0

1

2

3

4

5

6

500 3500 6500 9500 12500

F
it
n
e
s
s

x
 1
0
0
0
0

NO of function evaluation

DE

ODE

NSDE

Figure 8(g)

Tripod (f16) function
Figure 8(h)

Step (f14) function

Figures 8(a)-8(h)
Performance curves of few elected benchmark problems

Figure 9

Average number of function evaluations taken by DE, ODE and NSDE for the 20 benchmark problems

Figure 10
Average CPU time (in sec) taken by DE, ODE and NSDE for the 20 benchmark problems

Acta Polytechnica Hungarica Vol. 6, No. 5, 2009

 – 111 –

Discussion and Conclusions

In the present paper we have proposed a simple and modified variant of DE
namely NSDE. The only structural difference between the proposed NSDE and
the basic DE lies is the generation of initial population. NSDE applies nonlinear
simplex method to generate the initial population. From the empirical studies and
graphic illustrations we can say that the proposed schemes enhance the working of
basic DE in terms of average CPU time and NFEs without compromising with the
quality of solution. Also we would like to mention that other than the process of
initial population construction, we have not made use of any other additional
feature/parameter in the basic structure of DE. Though we have applied the
proposed schemes in basic DE, they can be applied in any evolutionary algorithm
which makes use of randomly generated initial points. As a concluding statement
it can be said that providing the initial population with some extra information of
search space is an important help for the DE algorithm, since it may lead to faster
convergence and better quality of the solutions provided by the algorithm.

References

[1] R. Storn, K. Price, “DE-a Simple and Efficient Adaptive Scheme for Global
Optimization over Continuous Space”, Technical Report TR-95-012, ICSI,
March 1995. Available via the Internet: ftp.icsi.berkeley.edu/pub/
techreports/ 1995/tr-95-012.ps.Z, 1995

[2] R. Storn, K. Price, “DE-a Simple and Efficient Heuristic for Global
Optimization over Continuous Space”, Journal of Global Optimization
11(4), 1997, pp. 41-359

[3] K. Price, “An Introduction to DE”, In: Corne, D., Marco, D., Glover, F.
(eds.), New Ideas in Optimization, McGraw-Hill, London (UK), 1999, pp.
78-108

[4] F. S. Wang, W. M. Cheng, “Simultaneous Optimization of Feeding Rate
and Operation Parameters for Fed-Batch Fermentation Processes”,
Biotechnology Progress 15, 1999, pp. 949-952

[5] B. V. Babu, S. A. Munawar, “Differential Evolution for the Optimal Design
of Heat Exchangers”, In: Proceedings of All-India seminar on Chemical
Engineering Progress on Resource Development: A Vision 2010 and
Beyond, Bhuvaneshwar, 2000

[6] B. V. Babu, R. P.Singh, “Synthesis & Optimization of Heat Integrated
Distillation Systems Using Differential Evolution”, In: Proceedings of All-
India seminar on Chemical Engineering Progress on Resource
Development: A Vision 2010 and Beyond, Bhuvaneshwar, 2000

[7] R Angira, B. V. Babu, “Optimization of Non-Linear Chemical Processes
Using Modified Differential Evolution (MDE)”, In: Proceedings of the 2nd
Indian International Conference on Artificial Intelligence, Pune, India,
2005a, pp. 911-923

M. Ali et al. Simplex Differential Evolution

 – 112 –

[8] R. Angira, B. V. Babu, “Optimization of Process Synthesis and Design
Problems: A Modified Differential Evolution Approach”, Chemical
Engineering Science 61, 2006a, pp. 4707-4721

[9] B. V. Babu, R. Angira, “Optimization of Thermal Cracker Operation using
Differential Evolution”, In: Proceedings of International Symposium & 54th
Annual Session of IIChE, Chennai, 2001b

[10] B. V. Babu, R. Angira, “Optimization of Water Pumping System Using
Differential Evolution Strategies”, In: Proceedings of The Second
International Conference on Computational Intelligence, Robotics, and
Autonomous Systems, Singapore, 2003

[11] M. H. Lee, C. Han, K. S. Chang, “Dynamic Optimization of a Continuous
Polymer Reactor Using a Modified Differential Evolution Algorithm”,
Industrial and Engineering Chemistry Research 38, 1999, pp. 4825-4831

[12] J. C. Lu, F. S. Wang, “Optimization of Low Pressure Chemical Vapor
Deposition Reactors Using Hybrid Differential Evolution”, Canadian
Journal of Chemical Engineering 79, 2001, pp. 246-254

[13] P. K Bergey, C. Rgsdale, “Modified Differential Evolution: a Greedy
Random Strategy for Genetic Recombination”, omega 33, 2005, pp. 255-
265

[14] P. Kaleo, M. M. Ali, “A Numerical Study of Some Modified Differential
Evolution Algorithms”, European journal of operational research 169,
2006, pp. 1176-1184

[15] M. M. Ali, “Differential Evolution with Preferential Crossover”, European
Journal of Operational Research 181, 2007, pp. 1137-1147

[16] N. Noman, H. Iba, “Enhancing Differential Evolution Performance with
Local Search for High Dimensional Function Optimization”, GECCO’05
Washington, DC, USA, 2005, pp. 967-974

[17] A. K. Qin, P. N. Suganthan, “Self Adaptive Differential Evolution
Algorithm for Numerical Optimization”, IEEE, 2005, pp. 1785-1791

[18] H. Y. Fan, J. Lampinen, G. S. Dulikravich, “Improvements to Mutation
Donor Formulation of Differential Evolution”, International Congress on
Evolutionary Methods for Design, Optimization and Control with
Applications to Industrial Problems, EUROGEN, 2003, pp. 1-12

[19] Shahryar Rahnamayan, H. R. Tizhoosh, M. M. A. Salama, “A Novel
Population Initialization Method for Accelerating Evolutionary
Algorithms”, computer and applied mathematics with application 53, 2007,
pp. 1605-1614

[20] S. Rahnamayan, H. R. Tizhoosh, M. A Salman, “Opposition-based
Differential Evolution”, IEEE transaction on evolutionary computation
12(1), 2008, pp. 64-79

Acta Polytechnica Hungarica Vol. 6, No. 5, 2009

 – 113 –

[21] M. M. Ali, A. Torn, “Population Set-based Global Optimization
Algorithms: Some Modifications and Numerical Studies”,
www.ima.umn.edu/preprints/, 2003

[22] J. A. Nelder, R mead, “A Simplex Method for Function Minimization”,
computer journal, Vol. 7, 1965, pp. 308-313

[23] S. Kimura, K. Matsumura, “Genetic Algorithms using low discrepancy
sequences”, in proc. of GEECO 2005, pp. 1341-1346

[24] Nguyen X. H., Nguyen Q. Uy., R. I. Mckay, P. M. Tuan, “Initializing PSO
with Randomized Low-Discrepancy Sequences: The Comparative Results”,
In Proc. of IEEE Congress on Evolutionary Algorithms, 2007, pp. 1985-
1992

[25] S. Kimura, K. Matsumura, “Genetic Algorithms Using Low Discrepancy
Sequences”, in proceedings of the GECCO, 2005, pp. 1341-1346

[26] KE Parsopoulos, MN Vrahatis, “Initializing the Particle Swarm
Optimization Using Nonlinear Simplex Method”, in advances in intelligent
systems, fuzzy systems, evolutionary computation, WSEAS press, 216-221,
2002

[27] Millie Pant, Radha Thangaraj, Crina Grosan, Ajith Abraham “Improved
Particle Swarm Optimization with Low-Discrepancy Sequences”, In Proc.
of IEEE Congress on Evolutionary Algorithms, 2008, pp.

[28] Millie Pant, Musrrat Ali, V. P. Singh “Differential Evolution with Parent
Centric Crossover”, In Proc. of IEEE Congress on Evolutionary
Algorithms, 2008, pp. 141-146

Appendix

1 Sphere function:

 () 2
1

1

n

i
i

f x x
=

= ∑ , With 5.12 5.12ix− ≤ ≤ , min ()1 0,...,0 0f =

2 Axis parallel hyper-ellipsoid:

 () 2
2

1

n

i
i

f x ix
=

= ∑ , with 5.12 5.12ix− ≤ ≤ , min ()2 0,...,0 0f =

3 Rosenbrock’s valley:

()
1

2 2 2
3 1

1

[100() (1)]
n

i i i
i

f x x x x
−

+
=

= − + −∑ With 2 2ix− ≤ ≤ , min ()3 1,...,1 0f =

4 Restrigin’s function:

() 2
4

1
10 (10cos(2))

n

i i
i

f x n x xπ
=

= + −∑ With 5.12 5.12ix− ≤ ≤ , min

()4 0,...,0 0f =

M. Ali et al. Simplex Differential Evolution

 – 114 –

5 Griewenk function:

() 2
5

1 1

1 cos() 1
4000

nn
i

i
i i

xf x x
i= =

= − +∑ ∏ With 600 600ix− ≤ ≤ , min

()5 0,...,0 0f =

6 Ackley’s function:

 ()
n n

2
6 i i

i 1 i 1

() 20*exp .2 1/n x exp 1/n cos 2 x 20f X eπ
= =

⎛ ⎞ ⎛ ⎞= − − − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑ ,

With 32 32ix− ≤ ≤ , min ()6 0,...,0 0f =

7 Beale function:

() 2 2 2 3 2
7 1 2 1 2 1 2[1.5 (1)] +[2.25 (1)] +[2.625 (1)]f x x x x x x x= − − − − − −

With 4.5 4.5ix− ≤ ≤ , min ()7 3,0.5 0f =

8 Colville function:

() 2 2 2 2 2 2 2 2
8 2 1 1 4 3 3 2 4

2 4

100() (1) 90() (1) 10.1((1) (1))
19.8(1)(1)

f x x x x x x x x x
x x

= − + − + − + − + − + −

− −

,With 10 10ix− ≤ ≤ , min ()8 1,1,1,1 0f =

9 Levy function:

()
1

2 2 2
9 1 1

1
sin (3) (1)(1 sin (3)) (1)(1 sin (2))

n

i i n n
i

f x x x x x xπ π π
−

+
=

= + − + + − +∑
 With 10 10ix− ≤ ≤ , min ()9 1,...,1 0f =

10 Michalewicz function:

() 2 2
10

1
sin()(sin())

n
m

i i
i

f x x ix π
=

= −∑ With 0 ix π≤ ≤ , m=10, min

10(10) 9.66015nf = = −

11 Zakharov function:

() 2 2 4
11

1 1 1
(0.5) (0.5)

n n n

i i i
i i i

f x x ix ix
= = =

= + +∑ ∑ ∑ With 5 10ix− ≤ ≤ , min

()11 0,..., 0 0f =

12 Schawefel’s problem 2.22:

()12
1 1

nn

i i
i i

f x x x
= =

= +∑ ∏ With 10 10ix− ≤ ≤ , min ()12 0,...,0 0f =

Acta Polytechnica Hungarica Vol. 6, No. 5, 2009

 – 115 –

13 Schwefel’s problem 2.21:

() { }13 max ,1i if x x i n= ≤ ≤ With 100 100ix− ≤ ≤ , min ()13 0,..., 0 0f =
14 Step function:

() 2
14

1
(0.5)

n

i
i

f x x
=

= +⎢ ⎥⎣ ⎦∑ With 100 100ix− ≤ ≤ , min

()14 0.5 0.5 0if x− ≤ ≤ =

15 Quartic function:

() [)4
15

1
0,1

n

i
i

f x ix random
=

= +∑ With 1.28 1.28ix− ≤ ≤ , min

()15 0,...,0 0f =

16 Tripod function:

()16 2 1 1 2 1 2 2()(1 ()) (50 ()(1 2 ())) (50(1 2 ()))f x p x p x x p x p x x p x= + + + − + + −

 With 100 100ix− ≤ ≤ , min

()16 0, 50 0 where () 1 for 0 otherwise () 0f p x x p x− = = > =

17 Alpine function:

()17
1

sin() 0.1
n

i i i
i

f x x x x
=

= +∑ With 10 10ix− ≤ ≤ , min ()17 0,...,0 0f =

18 Cshaffer’s function 6:

()
2 2 2

1 2
18 2 2 2

1 2

sin () 0.5
0.5

1 0.01()
x x

f x
x x
+ −

= +
+ +

 With 10 10ix− ≤ ≤ , min

()18 0,0 0f =

19 Pathological function:

()
2 2 21

1
19 2 2 2

1 1 1

sin (100) 0.5
0.5

1 0.001(2)

n
i i

i i i i i

x x
f x

x x x x

−
+

= + +

⎛ ⎞+ −
⎜ ⎟= +
⎜ ⎟+ + −⎝ ⎠

∑

With 100 100ix− ≤ ≤ , min ()19 0,...,0 0f =

20 Inverted cosine wave function:

()
2 21

2 21 1
20 1 1

1

(0.5)exp()cos(4 0.5)
8

n
i i i i

i i i i
i

x x x xf x x x x x
−

+ +
+ +

=

⎛ ⎞− + +
= − + +⎜ ⎟

⎝ ⎠
∑

 With 5 5ix− ≤ ≤ , min ()20 0,..., 0 1f n= − +

