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Abstract: In this paper we study the robust PNS problem, which is the extension of the 

structural PNS problem used to model process network synthesis. This problem is NP-hard 

thus a heuristic algorithm can be very useful for large instances, where we do not have 

enough time for an exponential time algorithm, presenting a surely optimal solution, or 

they can be used to fasten branch and bound based algorithms. We present new heuristic 

algorithms for the solution of the problem which are extensions of the heuristic algorithms 

used to solve the classical structural PNS problem. The algorithms are analyzed 

empirically, where we compare the efficiency on randomly generated inputs. 

Keywords: PNS problem; robust problems; heuristic algorithm, P-graphs; Business 

Process Modeling 

1 Introduction 

In the Process Network Synthesis (PNS for short) problem a set of materials is 

given and also operating units which are transforming some subset of materials 

into some other subset. The subsets assigned to the operating unit are called its 

input and output materials. In the problem two subsets of the materials are 

distinguished, one is the set of the raw materials and the other is the set of the 

desired products. Our goal is to find a minimal cost network of the operating units 

which can produce all desired products starting from the raw material. These 

systems can be modeled in the P-graph framework which is based on bipartite 

graphs. In these P-graphs we have two sets of vertices, one of them contains the 

possible materials, the other the operating units. The edges lead to an operating 

unit from its input materials and from an operating unit to its output materials. 
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Then the subgraphs satisfying some properties describe the feasible processes 

which produce the desired products from the raw materials. Thus our goal is to 

find the least expensive such subgraph. In the structural model the amounts of the 

material flows are not taken into account thus the cost of an operating unit is a 

constant, and the cost of a subgraph is the sum of the costs of the operating units 

contained in it. The foundations of PNS problem can be found in [9, 10], we will 

recall only the most important definitions in the next section. 

The PNS problem and the P-graph technology to handle it were defined to model 

and solve problems in the chemical and allied industries. Later it was discovered 

that this terminology and the model itself can be very useful in other areas as well. 

The applications of P-graphs in workflow optimization are presented in [17, 18, 

20]. It was also used in supply chain management; such results can be found at [1, 

2, 8, 15, 22]. Moreover the P-graph framework was also used in planning building 

evaluation routes [11, 12]. 

In the structural PNS problem it is supposed that the exact cost of all operating 

unit is given in the input of the problem. Unfortunately in many applications this 

is not true. In these cases we do not have exact data there are some uncertainties in 

these values. There are several ways to solve this problem. In [16, 21] the fuzzy 

extension is presented of the PNS problem with applications on the area of 

workflow management. In [15] an application to supply chain management with 

uncertainty is presented where the P-graph is extended with the ROA (reliability 

of availability) value at the materials. 

A further approach is the robust optimization where instead of the fixed values of 

the parameters we only know that they are in a given interval. Then we are 

minimizing the cost of the worst case of the possible values. Robust optimization 

is a widely studied area, one can find some overview in [3, 4]. The robust PNS 

problem was defined in [19]. In this model each operating unit has two different 

costs a nominal cost and an extended cost, and we know that at most b operating 

units have the extended cost; the others will have the nominal cost. The goal is to 

find the optimal solution for these assumptions. The definition of the model [19] 

presents a branch and bound based algorithm for the solution of the problem and 

also a polynomial solvable class of robust PNS problems. 

In [6], it is proved that the structural PNS problem belongs to the complexity class 

of NP-hard problems, therefore it follows that the more difficult robust PNS 

problem is NP-hard as well. This means that we cannot expect a worst case 

polynomial time algorithm which surely finds the optimal solution unless P=NP. 

Therefore, some polynomial time heuristic algorithms which can find feasible 

solutions which are close to optimal can be very useful. They can be used if we 

have to solve large size problems in a short time. Moreover, such heuristic 

algorithms can be useful in accelerating Branch and Bound based algorithms. The 

application of a good starting solution can increase the efficiency of eliminating 

subsets not containing optimal solutions. In the case of the classical structural PNS 
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problem some heuristic algorithms are studied in [5] and [7]. In [5] a greedy type 

algorithm is presented for the solution of the general problem which is based on 

the ideas of algorithms from set covering. In [7] a special class of PNS problems 

is studied. 

In this paper we extend and analyze the heuristic algorithms from [5] into the 

more general robust PNS problem. In the next section we recall the basic 

definitions in the area of robust PNS problem which will be used later in the 

paper. Then in Section 3, the heuristic algorithms which are studied in the paper 

are presented. Section 4 contains the analysis of the algorithms. We present the 

results of an experimental analysis, where the algorithms are compared to 

randomly generated inputs. 

2 Notations and Basic Definitions 

The structural PNS problem can be modeled in the P-graph framework. In the P-

graph (Process Graph) we have the set of the materials denoted by M, which 

contain two special subsets, the set of raw materials and the set of desired products 

denoted by R and P respectively. The problem also contains a set of possible 

operating units which can transform some sets of materials. The set of operating 

units is denoted by O. An operating unit u is given by two sets, in(u) denotes the 

set of the input materials out(u) denotes the set of output materials of the operating 

unit. This means that the operating unit can work in a solution structure if all of its 

input materials are produced and in this case it produces all of its output materials. 

The P-graph (Process Graph) of the problem is defined by the sets M and O. It is a 

directed bipartite graph where the set of vertices is M U O, and have the following 

two sets of edges: 

1) Edges which connect the input materials to their operating unit 

2) Edges which connect the operating units to their output materials 

Then some of the subgraphs of this P-graph describe the feasible solutions which 

produce the required materials from the raw materials. In [9] it is shown that a 

subgraph (m,o), where m and o are the subsets of M and O, represent a feasible 

solution if and only if the following properties called axioms are valid: 

(A1) m contain all element of P 

(A2) a material from m is a raw material if and only if no edge goes into it in 

the P-graph (m, o) 

(A3) For each operating unit u from o there exists a path in the P-graph (m,o) 

which goes into a desired product from u 

(A4) m is the union of the input and output material sets of the operating units 

contained in set o. 
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In the structural PNS problem we assign, to each operating unit u, a cost denoted 

by c(u) and the goal is to find a feasible solution, where the total cost of the 

contained operating units is minimal. In the robust version we assign two costs to 

the operating units: a nominal cost denoted by c(u) and an extra cost denoted by 

e(u). The sum c(u)+e(u) is called the extended cost of the operating unit. 

Furthermore, we have an a priori bound b, which means that in any solution, at 

most, b operating units can have the extended cost and the others have the nominal 

cost. We are interested in the worst case; therefore, if we consider a feasible 

solution of the problem then its cost will be the sum of the nominal costs of the 

operating units plus the sum of the b largest extra costs. We note that the set of 

feasible solutions, in the case of the robust problem, is the same as in the classical 

problem, the difference is that in the robust version we are considering a more 

difficult objective function. 

3 The Heuristic Algorithms 

First we present a framework heuristic which is the general version of the 

algorithms presented in [5]. Later we give several specialized version of the 

framework algorithm which can be used for the solution of the robust problem. 

The algorithm builds a solution step by step; it selects one operating unit in each 

iteration step. The algorithm uses three sets, the set of the selected operating units, 

the set of the required materials and the set of the produced materials. First the set 

of the selected operating units and the set of produced materials are empty and the 

set of the required materials is equal to the set of the desired products. Then, in 

each iteration step, we choose the operating unit minimizing some evaluation 

function and put it into the set of the selected operating units. We add its output 

materials to the set of produced materials, and delete them from the required 

materials set. Then each input material of the operating unit which is not raw 

material and not contained in the set of produced materials is put into the set of 

required materials. The procedure ends when the set of the required materials 

becomes empty. We obtain the feasible solution which contains the operating 

units from the set of selected operating units and the materials which are input or 

output materials of some of these operating units. 

This algorithm, with some specialized evaluation functions, was defined for the 

solution of the structural PNS problem. In [5] it is proved that it always produces a 

feasible solution for the problem. Alternately, the proof does not use the definition 

of the evaluation function thus it works for arbitrary evaluation functions. 

Moreover, the set of feasible solutions is the same as in the classical and the 

robust PNS problem, thus we obtain the following statement. 

Proposition 3.1 ([5]) The algorithm defined above results in a feasible solution of 

the robust PNS problem for any evaluation function on the operating units. 
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To specify the frame algorithm we have to define an evaluation function on the 

operating units. We will use a greedy type algorithm. On one hand we would like 

to choose an operating unit which produces the most elements from the set of the 

requested materials. On the other hand we would like to choose such operating 

units which have small cumulated costs, where in the cumulated costs not only the 

direct cost of the operating unit is estimated but also the cost of producing its input 

materials. Thus, we have to define a cumulated cost CU(o) for each operating unit, 

and then we choose the operating unit where the ratio of the cumulated cost and 

the number of the required material produced by the unit is minimal. The 

cumulated cost depends on the direct cost of the operating unit and also on the 

cost of its input materials. Since we consider the robust problem even the direct 

cost of the operating unit cannot be determined in advance, since we do not know 

whether a nominal or an extended cost will be calculated in the solution. We 

define, below, three possibilities for estimating the direct cost of the units and two 

possibilities for estimating the cost of the input materials, thus we will obtain six 

different estimations for the cumulative cost and this results in six heuristic 

algorithms. 

In the case of the direct cost of the unit we can use the following estimations: 

• Average cost: In this case, we use some weighted average of the two 

costs, thus cA(o)=αc(o)+(1- α)(c(o)+ e(o)) for some 0≤α≤1. 

• Worst case cost: In this case we use the extended cost unless we already 

selected b operating units with at least as big extra cost as the actual unit 

has. In the latter case we use the nominal cost. 

• Hybrid cost: This case is similar to the worst case cost but we use the 

average cost if we have not selected already b operating units with at 

least as big extra cost as in the actual unit. 

We note that the average cost is a static one, in the sense that we can define it in 

advance and it is independent of the solution built by the heuristic algorithm. 

Contrarily, the worst case and hybrid costs are dynamic ones, they depend on the 

actual solution structure thus they cannot be calculated in advance. 

To define the indirect cost resulting from the input materials, first we have to 

define a cost function MA on the materials. Here we use the same idea, which is 

used in the heuristic algorithms, of [5] and was defined in [13] for bounding 

function in a Branch and Bound algorithm. The only difference occurs when we 

use the costs of operating units in the calculation, then in the robust version we 

use the average cost of the operating units. We cannot use the other estimations 

here; since we have to calculate these costs in advance, thus we cannot apply the 

dynamic costs. We will use only cycle free P-graphs in our tests and the definition 

of the material costs are much easier in this case, therefore, we only recall the 

basic ideas of this simpler definition here. One can find the detailed general 

construction of the cost function on materials in [13]. 
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We use two sets of materials: I denotes the materials with the given MA values 

and J denotes the complement set where we still have to calculate the value of 

MA. At the beginning, I contains the raw materials with MA(m)=0, and later in 

each step one element is moved from J to I. 

We always choose such material m from J, which is only produced by operating 

units having all input materials in I. Using the cycle-free property, we also find 

such material. We give a production cost for each operating unit producing m as 

follows. We calculate the sum of the maximum of the MA values of the input 

materials and the cA cost of the operating unit. (Note that by the definition of m we 

know that MA is known for all input materials.) Then MA(m) will be the minimum 

of the production costs calculated above for the operating units producing m. After 

defining MA on m we move it from J to I. The procedure ends when J becomes 

empty which means that MA has been calculated for all materials. 

Based on this function MA we can use two methods to calculate the cumulative 

cost. In the first case the cumulative cost is the sum of the costs of the input 

materials plus the direct cost of the operating unit. Using the three direct costs this 

method yields three cumulative costs and this yields three algorithms. They are 

denoted by SA (Sum-average), SW (Sum-worst case), SH (Sum-hybrid). A further 

method to find cumulative costs is to take the sum of the maximal MA cost of the 

input materials and the direct cost of the operating unit. Again, we can use all of 

the direct costs thus we obtain three algorithms, which are denoted by MA (Max-

average), MW (Max-worst case), MH (Max-hybrid). 

We will compare these algorithms in the next section on randomly generated 

cycle-free inputs. Such cycle-free problems often appear in workflow 

management. First we describe the test environment and then we analyze the 

results. 

4 Experimental Analysis of the Algorithms 

4.1 Description of the Test Cases of the Experimental Analysis 

To carry out tests of the algorithms, a problem generator was written. We use 

similar ideas to the problem generator used in [14] but we changed it to produce 

cycle free problems. A detailed description of the algorithm which generates the 

problems is not presented here; only the most important concepts are introduced. 

Parameters: The generator has multiple input parameters. We can define the 

number of operating units to create (n), the number of raw materials (r) and 

number of desired products (p) in the generated problem. There is an integral 

variable denoted by wb that defines how many times it is more probable that an 
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operating unit will reproduce an intermediate material, instead of creating a new 

one. A further parameter is pb, which is a probability, related to how likely it is 

that new operating unit will reproduce intermediate materials that were produced 

several iterations earlier by other machines. With a low pb value (e.g. 0.2), newly 

created operating units will tend to reproduce intermediate materials that are 

closer to raw materials than to those materials created only some iterations ago. A 

high pb value (e.g. 0.8) will introduce redundancy among the production of those 

intermediate materials that were produced only some iterations ago. 

The generator: The generator creates the operating units in an iterative manner. 

In each iteration, at most one new operating unit and several new materials are 

created. After the generation of the n’th operating unit, there is a separate step in 

the algorithm which chooses p materials among those considered intermediate to 

become product materials. Having chosen the products, the last step is to assign 

nominal and extra costs to each machine. 

The algorithm always keeps a set of materials that are available (W). Initially W 

only contains the raw materials indexed from 1 to r. An initially empty O set of 

operating units is maintained throughout the run of the algorithm and at any time 

it contains the units that are already constructed. 

For each new operating unit, two random numbers are chosen in the range [1, 4] 

using a discrete distribution of (0.15, 0.35, 0.35, 0.15). These two numbers (a, d) 

represent the number of the inputs and outputs the new operating unit should have. 

In cases where choosing a number of inputs is impossible, a is truncated to the 

number of maximum possible inputs a machine might have at that moment. 

The core concept of the algorithm is that in each iteration, where there is at most 

one intermediate material, we choose a limit u that is always greater than r. The 

operating unit being created, at that iteration, may have inputs only from the range 

[1, u-1] and outputs from the range [u, |W|]. Decisions about whether to create a 

new material or reproduce an existing intermediate material are made using a 

dynamic discrete distribution that depends on how many times any intermediate 

material was chosen for reproduction during the creation of this operating unit, 

and how many times it was chosen that this operating will produce a new material 

and a factor that linearly weights these two numbers with a certain bias that is an 

input parameter of the generator (wb). Whenever an existing material should be 

chosen, it is picked from [u, |W|] with a uniform distribution. The u is chosen with 

binomial distribution over [r+1, |W|] with pb as its probability parameter. 

The fact that any operating unit has a number u that partitions the W set into two 

parts while inputs can only be chosen from the lower and outputs can only be 

chosen from the upper partitions guarantees that no solution of the generated 

problem will contain a cycle. 

In the first iteration there are no intermediate materials. This condition forces the 

algorithm to create an operating unit with all its outputs being new materials. 
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After a new operating unit is generated, it is inserted to O at the end of the 

iteration. We note that this set may already contain the same operating unit. 

The algorithm first creates m-1 operating with the method given above. The 

method of generating the last operating unit differs from the above, only in that 

the number of outputs for the last operating unit must guarantee that there will be 

at least p intermediate materials. This ensures that it is possible to choose p 

products in the next step. 

Having created all of the operating units, uniform integral distributions are used 

for picking nominal and extra costs for each machine. Random choices of costs 

are independent from each other. 

After the operating units are generated, product materials are chosen from the 

intermediate ones: p materials are taken from W, whose indices must be in the 

range [r+1,|W|]. The initial probability of material i to be chosen is given by pi = 

(i-r)/S where S =(|W|-r)(|W|-r+1)/2. 

The products are chosen in a non-independent way --- A new material is picked 

every time with the same distribution introduced above. Whenever such a material 

is picked that is already considered a product, a new one is picked using the same 

initial distribution. This method is repeated until p materials are picked. These 

materials will result in the set of the required products. 

We implemented the six heuristic algorithms defined in previously. We used 

α=0.5 in the average cost in algorithms SA and MA, and also α=0.5 was used in 

the calculation of the MA function. We generated 1000 operating units and used 

the values wb= 4 and pb = 0.2. The number of raw materials was 5, and we 

generated test cases with the values p=5, 20, 50, b=1, 5, 25. We defined the costs 

of the operating units as the nominal costs picked from the interval [20, 100] 

uniformly and independently. For the extra cost we considered three different test 

cases: it was picked from the intervals [0, 50], [20, 100], [100, 500] uniformly and 

independently. Thus, we defined three possibilities for p, three possibilities for b, 

and three different distributions for the extra costs. We generated 100 problems 

from each of these 27 test cases and executed the 6 heuristic algorithms on each 

test. The results are summarized below. 

4.2 The Results of the Experimental Analysis 

First consider the test cases where the expected extended cost was smaller than the 

nominal costs, these cases happens if the uncertainties describe small problems 

which can be easily handled. The average costs are listed in Table 1. We denoted 

the best value in each column by bold text and the worst one by bold and italic. 

We can see that the order of the efficiencies of the algorithms depends on the test 

cases. But we can obtain some conclusion. 
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Table 1 

The average results for the extra cost from [0, 50] 

 b=1, 

p=5 

b=1 

p=20 

b=1 

p=50 

b=5 

p=5 

b=5 

p=20 

b=5 

p=50 

b=25 

p=5 

b=25 

p=20 

b=25 

p=50 

SA 1016  2430  4167 1198 2597 4255 1444 3662 5430 

SW 1064  2542  3996 1341 2627 4546 1655 3347 5346 

SH 1003  2487  4042 1186 2781 4449 1438 3214 5178 

MA 1019  2283  4039 1177 2718 4253 1440 3498 5150 

MW 1074  2264  4129 1402 2537 4209 1706 3220 5323 

MH 997  2180  4150 1175 2638 4222 1466 3293 5082 

Algorithm MH gave the best result 4 times in these test cases and it was never the 

worst thus we can say that it had the best performance. MW and SH both received 

the best results two times but MW was the worst 3 times, while SH resulted in the 

worst solution only in one case thus we can say that SH was better. We also 

checked the number of best solutions inside the test cases, and we obtained that 

MH was the best in 239 tests, MW was the best in 146 tests, MA was the best in 

189 tests, SH was the best in 142 tests, SW was the best in 76 cases, and SA was 

the best in 145 cases among the 900 tests. (We note that the sum of the best 

performance of the algorithms is more than 900. This is not a mistake; if more 

algorithms achieved the same best result then all of them were considered best. It 

is likely that in these cases the heuristics found the optimal solution.) The order of 

the algorithms considering the best results is MH, MA, MW, SA, SH, SW. We 

also considered the worst cases. Then MH gave 79 times, MW gave 185 times, 

MA gave 95 times, SH gave 109 times, SW gave 238 times, SA gave 155 times 

the worst solution. (Here we can observe that the sum is smaller than 900. The 

reason is that we have not counted here the cases where all of the heuristic found 

solutions with the same objective value.) The order of the algorithms considering 

the worst results is MH, MA, SH, SA, MW, SW. 

Therefore, our main conclusion that in the tests performed in this block of test 

cases algorithm MH gave the best results. We cannot clearly order the other 

heuristics since from different point of views we have different results. But we can 

observe in general, the maximum evaluation for the indirect costs of the operating 

units and the hybrid estimation for the direct costs seems to be a better strategy in 

these sets. 

Now, consider the second block where the extra costs have the same distribution 

as the nominal cost. This block models the situation when the unexpected events 

are about replacing the operating unit, thus they approximately double the cost of 

the operating units. The average costs are collected in Table 2, again we denoted 

the best value in each column by bold, the worst one by bold and italic. 
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Table 2 

The average results for the extra cost from [20, 100] 

 b=1, 

p=5 

b=1 

p=20 

b=1 

p=50 

b=5 

p=5 

b=5 

p=20 

b=5 

p=50 

b=25 

p=5 

b=25 

p=20 

b=25 

p=50 

SA 1123 2730 4595 1451 2867 4390 2100 4539 6459 

SW 1165 2808 4644 1552 3014 4516 2200 4823 6297 

SH 1098 2668 4561 1425 2746 4301 2146 4464 6431 

MA 1121 2404 3965 1438 2948 4974 2157 4146 5857 

MW 1157 2404 3942 1583 3111 5042 2328 4510 6524 

MH 1074 2308 3812 1417 2844 4715 2171 4133 6430 

Checking the average values we obtain that algorithm MH gave the best result 5 

times in these test cases and it was never the worst thus we can again say that it 

had the best performance. SH received the best result two times and SA and MA 

both achieved the best average once. Most of the worst results were given by SW 

and MW both of them achieved a worst result 4 times. 

We also checked the number of best solutions inside the test cases, and we 

obtained that MH was the best in 327 tests, MW was the best in 65 tests, MA was 

the best in 198 tests, SH was the best in 187 tests, SW was the best in 59 cases, 

and SA was the best in 86 cases among the 900 tests. The order of the algorithms 

considering the best results is MH, MA, SH, SA, MW, SW. We considered the 

worst cases as well. Then MH gave 69 times, MW gave 239 times, MA gave 63 

times, SH gave 66 times, SW gave 332 times, SA gave 117 times the worst 

solution. The order of the algorithms considering the worst results is MA, SH, 

MH, SA, MW, SW. 

Therefore our main conclusion is that in the tests performed in this block of test 

cases, again, algorithm MH gave the best result. It has slightly more worse cases 

than MA and SH, but it was much better in the other evaluations. We can also 

observe that the worst case estimation for the direct costs of the operating units 

had a very bad performance. 

Now consider the last block of the tests, where the extra costs are larger than the 

nominal cost, this models the situation when the uncertain events cause serious 

problems which might have larger cost than just replacing the operating unit. The 

average costs are collected in Table 3, we denoted the best value in each column 

by bold, the worst one by bold and italic. 

Checking the average values we obtain that algorithm MH gave the best result 7 

times among the 9 these test cases. It gave the worst result in one case, still we 

think so that it has the best performance. MW gave the best average in two test 

cases and it was never the worst thus we can say that it also has a good 

performance on this block of tests. SW and SA had the worst average results in 5 

and 3 cases thus we can say that these were the worse algorithms in this average 

case. 
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Table 3 

The average results for the extra cost from [100, 500] 

 b=1, 

p=5 

b=1 

p=20 

b=1 

p=50 

b=5 

p=5 

b=5 

p=20 

b=5 

p=50 

b=25 

p=5 

b=25 

p=20 

b=25 

p=50 

SA 1609 3336 5263 3086 5162 6998 6208 10702 14734 

SW 1740 3467 5493 2989 5202 7310 6113 10083 14050 

SH 1596 3274 5235 3003 5038 7117 6198 10510 14333 

MA 1715 3225 4951 3004 4953 6837 6220 10653 13542 

MW 1746 3257 5137 3020 5066 7067 6051 10024 13312 

MH 1579 2984 4648 2887 4706 6785 6284 10600 13180 

We checked the number of best solutions inside the test cases, and we obtained 

that MH was the best in 424 tests, MW was the best in 144 tests, MA was the best 

in 107 tests, SH was the best in 103 tests, SW was the best in 63 cases, and SA 

was the best in 68 cases among the 900 tests. The order of the algorithms 

considering the best results is MH, MW, MA, SH, SA, SW. We also considered 

the worst cases as well. Then MH gave 47 times, MW gave 126 times, MA gave 

106 times, SH gave 120 times, SW gave 256 times, SA gave 255 times the worst 

solution. The order of the algorithms considering the worst results is MH, MA, 

SH, MW, SA, SW. 

Conclusions 

Therefore, our main conclusion, that in the tests performed in this block of test 

cases, that the algorithm MH gave the best result. We can also observe that the 

sum estimations for the indirect costs of the operating units in general had worse 

performance. 

Summarizing the experimental analysis we can observe that the performance of 

the algorithms strongly depends on the test cases, but we can draw some 

conclusion here. Algorithm MH had clearly the best result in each block of test 

cases, thus we can state that the experiments show that MH is the most efficient 

algorithm among the algorithms studied in this work. We could note that the 

difference between it and the other algorithms is the most significant when the 

extra costs are large. On the other hand SW was the worst in most cases. In 

general we can conclude that the maximum estimations perform in a better way 

for the indirect costs than the sum ones. And we can also conclude that the worst 

case estimation on the direct cost of the operating units has poorer performance 

than the other methods. 

Acknowledgement 

This work was partially supported by the European Union and the European 

Social Fund through project Telemedicina (Grant no.: TÁMOP-4.2.2.A-

11/1/KONV-2012-0073). 

 



D. Almási et al. Heuristic Algorithms for the Robust PNS Problem 

 – 180 – 

References 

[1] Bárány, M.; Bertók, B.; Kovács, Z.; Friedler, F.; Fan, L. T.: Solving 

Vehicle Assignment Problems by Process-Network Synthesis to Minimize 

Cost and Environmental Impact of Transportation, Clean Technologies and 

Environmental Policy, 13(4), 637-642, 2011 

[2] Bertók, B.; Kalauz, K.; Süle, Z.; Friedler, F.: Combinatorial Algorithm for 

Synthesizing Redundant Structures to Increase Reliability of Supply 

Chains: Application to Biodisel Supply, Industrial & Engineering 

Chemistry Research, 52(1), 181-186, 2013 

[3] Bertsimas, D.; Brown, D.; Caramanis, C.: Theory and Applications of 

Robust Optimization, SIAM Review, 53, 464-501, 2011 

[4] Bertsimas, D.; Sim, M.: Robust Discrete Optimization and Network Flows, 

Mathematical Programming Series B, 98, 49-71, 2003 

[5] Blázsik, Z.; Holló, Cs.; Imreh, Cs.; Kovács, Z.: Heuristics for the PNS 

problem, Optimization Theory, Mátraháza 1999, Applied Optimization 59 

eds. F. Gianessi, P. Pardalos, T. Rapcsák, Kluwer Academic Publishers, 

Dordrecht, Boston, London, 1-18, 2001 

[6] Blázsik, Z.; Imreh, B.: A Note on Connection between PNS and Set 

Covering Problems, Acta Cybernetica, 12, 309-312, 1996 

[7] Blázsik, Z.; Keserű K.; Kovács, Z.: Heuristics for Simplified Process 

Network Synthesis Problems with a Blossom-Type Algorithm for the Edge 

Covering Problem, Optimization Theory, Mátraháza 1999, Applied 

Optimization 59 eds. F. Gianessi, P. Pardalos, T. Rapcsák, Kluwer 

Academic Publishers, Dordrecht, Boston, London, 19-31, 2001 

[8] Fan, L.T.; Kim, Y.; Yun, C.; Park, S. B.; Park, S.; Bertok, B.; Friedler, F.: 

Design of Optimal and Near-Optimal Enterprise-Wide Supply Networks for 

Multiple Products in the Process Industry, Ind. Eng. Chem. Res., 48, 2003-

2008, 2009 

[9] Friedler, F.; Fan, L. T.; Imreh, B.: Process Network Synthesis: Problem 

Definition, Networks, 28, 119-124, 1998 

[10] Friedler, F.; Tarján, K.; Huang, Y. W.; Fan, L.T.: Graph-Theoretic 

Approach to Process Synthesis: Axioms and Theorems, Chem. Eng. Sci., 

47(8), 1973-1988, 1992 

[11] Garcia-Ojeda, J. C.; Bertók, B.; Friedler, F.: Planning Evacuation Routes 

with the P-Graph Framework, Chemical Engineering Transactions, 29, 

1531-1536, 2012 

[12] Garcia-Ojeda, J. C.; Bertók, B.; Friedler, F.; Fan, L. T.: Building-

Evacuation-Route Planning via Time-expanded Process-Network 

Synthesis, Fire Safety Journal, 61, 338-347, 2013 



Acta Polytechnica Hungarica Vol. 11, No. 4, 2014 

 – 181 – 

[13] Imreh, B.; Friedler, F.; Fan, L. T.: An Algorithm for Improving the 

Bounding Procedure in Solving Process Network Synthesis by a Branch-

and-Bound Method  Developments in Global Optimization, editors: I. M. 

Bonze, T. Csendes, R. Horst, P. M. Pardalos, Kluwer Academic Publisher, 

Dordrecht, Boston, London, 301-348, 1996 

[14] Imreh, B.; Magyar, G.: Empirical Analysis of Some Procedures for Solving 

Process Network Synthesis Problem, Journal of Computing and 

Information Technology, 6, 372-382, 1998 

 [15] Süle, Z.; Bertók, B.; Friedler, F.; Fan, L. T.: Optimal Design of Supply 

Chains by P-Graph Framework Under Uncertainties, Chemical Engineering 

Transactions, 25, 453-458, 2011 

[16] Tick, J.: Fuzzy Extension to P-Graph-based Workflow Models, 

Proceedings of the 7
th

 IEEE International Conference on Computational 

Cybernetics, ICCC 2009, 109-112, 2009 

[17] Tick, J.: P-Graph-based Workflow Modeling, Acta Polytechnica Hungarica 

(ISSN: 1785-8860) 4: (1), 75-88, 2007 

[18] Tick, J.: Workflow Modeling Based on Process Graph, Proceedings of the 

5
th

 Slovakian-Hungarian Joint Symposium on Applied Machine 

Intelligence and Informatics (SAMI 2007) Poprad, Slovakia, 2007.01.25-

26, 419-426, 2007 

[19] Tick, J.; Imreh Cs.; Kovács Z.: Business Process Modeling and the robust 

PNS problem, Acta Polytechnica Hungarica (ISSN: 1785-8860) 10: (6) 

193-204, 2013 

[20] Tick, J.; Kovács, Z.: P-Graph-based Workflow Synthesis, Proceedings of 

the 12
th

 International Conference on Intelligent Engineering Systems (INES 

2008) Miami, USA, 2008.02.25-29, 249-253, 2008 

[21] Tick, J.: Fuzzy Control Systems Based on Parametric T-Norm Function, 

Proceedings of the 4
th

 International Symposium on Applied Computational 

Intelligence and Informatics (SACI 2007) Timisoara, Romania, 

2007.05.17-18, 215-218, 2007 

[22] Vance, L.; Cabezas, H.;  Heckl, I.; Bertók, B.; Friedler, F.: Synthesis of 

Sustainable Energy Supply Chain by the P-Graph Framework, Industrial & 

Engineering Chemistry Research, 52(1), 266-274, 2013 


