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Abstract: This paper considers the application of the almost orthogonal filters in the 

sensitivity analysis of imperfect systems. First, we explain the concepts of dynamical 

systems sensitivity. Then we design almost orthogonal filters based on almost orthogonal 

polynomials. These filters are a generalization of the classical orthogonal filters commonly 

used in circuit theory, control system theory, signal processing, signal approximation and 

process identification. The advantage of the almost orthogonal filters is that they can be 

used for the modeling and analysis of systems with imperfections, i.e. imperfect technical 

systems. In this paper, we use a designed filter to obtain a model of an imperfect system, 

where the model’s parameters have been determined with the help of genetic algorithm. A 

new approach for determining the sensitivity of imperfect systems is also given and an 

example of an imperfect system in the form of a hydraulic multitank system is considered. 

Keywords: sensitivity analysis; imperfect systems; almost orthogonal polynomials; almost 
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1 Introduction 

Sensitivity analysis considers the impact of parameter or disturbance changes on 

the change of the systems’ state coordinates. In this paper, our focus is on the 

parametric sensitivity of the imperfect systems. Analysis of the parametric 

sensitivity is usually performed as a series of tests in which the operator sets 

different parameter values to see if and how these changes impact the system 

dynamic behaviour. By showing how the model behaviour responds to changes in 

the parameter values, sensitivity analysis is a useful tool in model design as well 

as in model evaluation. 
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Uncertainty in engineering analysis usually pertains to stochastic uncertainty, i.e., 

variance in product or process parameters [1-3] characterized by probability. 

Methods for calculating sensitivity under stochastic uncertainty are well 

documented. Imprecision, or the concept of uncertainty in choice, is one such 

form. Recently, systems with imperfections have been intensively studied [4-8]. 

The components, used for designing any real system, are not perfect and their 

parameters values are in the range of allowed (or not) tolerance. The reasons can 

be various: imperfect manufacturing, systems exploitation conditions 

(environment temperature, pressure, moisture, electromagnetic fields, variations in 

voltage, etc.). With respect to that fact, every real system in analogue technique is 

in some way imperfect. Digital systems, on the other hand, are considered to be 

perfect. Imperfections of their components do not impact system accuracy as a 

whole. 

Therefore, because of the imperfections, parameters are not completely defined, 

i.e. they can vary in a certain range. In the case of systems modeling by some 

classical method, we use fixed parameters values, although it is not the case in 

reality. For the purpose of modeling these systems, it is possible to use orthogonal 

functions, i.e. orthogonal polynomials [9, 10]. Orthogonal polynomials are already 

used in approximation theory and numerical integration, and also in other 

scientific disciplines, e.g. in solving series of limitary problems in mathematics 

and physics and in solving some quantum mechanics problems. A very important 

application of orthogonal polynomials is the designing of orthogonal filters [11-

15]. These filters are useful for orthogonal signal generators, least square 

approximations, and the practical realizations of optimal and adaptive systems. 

However, since the components of these systems cannot be manufactured exactly, 

filters made with these components are not quite orthogonal, but rather almost 

orthogonal. The signals obtained by these filters are almost orthogonal as well. 

The measure of nearness between the obtained and the regular orthogonal signals 

depends on the exactness of the component manufacturing. Thus, almost 

orthogonal filters are imperfect filters. Therefore, for designing these filters we 

cannot use the classical orthogonal polynomials, but rather we must use almost 

orthogonal [16-18]. In this paper, almost orthogonal filters have been used for the 

sensitivity analysis of imperfect systems. Theoretical results have been verified 

with performed experiments on laboratory setup, consisting of a multitank 

hydraulic system, and compared with similar method for sensitivity analysis. 
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2 Sensitivity of Dynamical Systems 

Consider the linear system described by the transfer function in general form: 
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with the output: 

     y s W s x s  (2) 

where x(s) represents the input of the system. 

Equation (1) has (n+m+2) parameters ai (i=0,1,…,n), bj (j=0,1,…,m) [19]. So it is 

possible to define (n+m+2) sensitivity functions in s-domain as follows: 
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In accordance we have: 
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For parameters bi, sensitivity functions can be also obtained: 
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In the case of the system sensitivity in steady state, we can use [20-24]: 
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3 Almost Orthogonal Filters 

To analyze the sensitivity of the imperfect systems, we need to have the best 

possible model of the given system. For that purpose we will use almost 

orthogonal Legendre type polynomials [1, 4]. It has already been demonstrated 

how relation (1) can be turned into an orthogonal filter [12-14]. Then this filter 

can be used for systems modeling. This modeling method achieves greater 

accuracy with a lesser number of variable parameters used [11, 12]. 

The filter generates almost orthogonal functions 
   k t


  [1, 8], which can be used 

for designing the imperfect systems models and for the least square 

approximation, using the following relation: 
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An adjustable model of imperfect system is given in Fig. 1. Labels in the figure 

have the following meanings: δ(t) is the Dirac impulse function, h(t) is the 

Heaviside step function, functions  i t  are inverse Laplace transforms of the 

functions  i t , and 
   n t


  represent Legendre type almost orthogonal 

functions. This is the sequence of almost orthogonal exponential functions over 

interval (0, ∞) with weight function   tw t e . 

 

Figure 1 

Adjustable model of imperfect system 
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The transfer function of the system model, described by almost orthogonal filter 

(see Fig. 1), has the following form [1]: 
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Coefficients  mb   have complex dependence on parameter  , and we can write 

this in the following way:     m n n nb c k r  , where  nr   is coefficient defined 

in [1]. The coupled transfer function of this system is: 
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Now, sensitivity functions related to parameters ai and bi are the following: 
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4 Case Study – Description 

For the purpose of sensitivity analysis of imperfect systems model, we will use a 

multitank system shown in Fig. 2. The multitank system [25] (Fig. 2) comprises a 

number of separate tanks fitted with drain valves. The separate tank mounted in 

the base of the set-up acts as a water reservoir for the system. Some of the tanks 

have a constant cross section, while others are spherical or conical, and so have a 

variable cross section. This creates the main nonlinearities of the system. A 

variable speed pump is used to fill the upper tank. The liquid flows out of the 

tanks due to gravity. The tank valves act as flow resistors. The area ratio of the 

valves is controlled and can be used to vary the outflow characteristic. Each tank 

is equipped with a level sensor based on hydraulic pressure measurement. 
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Figure 2 

The multitank system by Inteco 

The multitank system relates to liquid level control problems commonly occurring 

in industrial storage tanks. For example, steel producing companies around the 

world have repeatedly confirmed that substantial benefits are gained from accurate 

mould level control in continuous bloom casting. Mould level oscillations tend to 

stir foreign particles and flux powder into molten metal, resulting in surface 

defects in the final product. The multitank system has been designed to operate 

with an external, PC-based digital controller. The control computer communicates 

with the level sensors, valves and pump by a dedicated I/O board and the power 

interface. The I/O board is controlled by the real-time software which operates in 

MATLAB®/Simulink RTW/RTWT® rapid prototyping environment. 

The multitank system given in Fig. 2 can be described using the well-known 

“mass balance” equations: 
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where q represents the inflow to the upper tank, Hi is the fluid level in the i-th tank 

(i=1, 2, 3), Ci is the resistance of the output orifice of i-th tank, αi represents the 
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flow coefficient for the i-th tank.  1 1H  represents the cross sectional area of i-

th tank at the level Hi. These values for the single tanks are the following: 

 i iH aw   is the constant cross sectional area of the upper tank; 

  2

2 2

2max

H
H cw bw

H
    is the variable cross sectional area for the middle tank, 

and    
22

3 3 3H R R Hw     is the variable cross sectional area of the lower 

tank. 

The specified parameter values are the following: 

0.25 ,  0.345 ,  0.1 ,  0.035 ,  0.364a m b m c m w m R m     , 

and 
1max 2max 3max 0.35H H H m   . 

Rewrite the right sides of (13) in the form F(x, q)=[F1, F2, F3], where: 
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For the model (13), for fixed q=q0 we can define an equilibrium state (steady-state 

points) given by 31 2

0 1 10 2 20 3 30q C H C H C H
 

   . 

The linearized model is obtained by the Taylor expansion of (14) around the 

assumed equilibrium state: 
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where: h=H-H0 is the modified state vector (deviation from the equilibrium state 

H0), u=q-q0 is deviation of the control, relative to q0, Jp and Jq are Jacobians of the 

function (14): 
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This linear model (16) can be used for the sensitivity analysis, for the stability 

analysis, and for the design of local controllers of the pump-controlled system. 

5 Case Study – Almost Orthogonal Modeling 

The multitank (imperfect system) model can be obtained in two ways [1]. The first 

method is to use (8) with direct appliance of genetic algorithm [26, 27] to the 

adjustment of the parameters ci with respect to the minimization of the mean 

squared error: 

 
2

0

1
T

S MJ y y dt
T

   (17) 

where yS is the output of unknown system and yM is the model output. Genetic 

algorithm is an optimization technique based on the simulation of the phenomena 

taking place in the evolution of the species and adapting it to an optimization 

problem. They have demonstrated very good performances as global optimizers in 

many types of applications [1, 12, 28-30]. 

After obtaining the optimal parameters, Laplace transform is applied to the output 

signal. The model of the imperfect system can be directly obtained by dividing the 

output Y(s) with the input X(s). 

The second method is to assume the form of the transfer function and then to 

adjust the function parameters in order to minimize the criteria function. In the 

case of imperfect systems, these coefficients will be dependent on ε. To obtain the 

model of the multitank system, we will use the almost orthogonal filter in Fig. 1, 
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which has three sections. The only known data about the system is the measured 

output - tank liquid level H2 (t) for a given step input, shown in Fig. 3. 

 

Figure 3 

Step response of unknown hydraulic system 

The transfer function of unknown imperfect system (the multitank system) can be 

obtained by applying inverse Laplace transform: 
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with the parameters  ib  , which directly depends on ε i.e.,     i ib f c  , 

i=0,1,2,3 [1].  ic   are coefficients from (8). 

The transfer function directly depends on ε. Parameter ε is an uncertain quantity 

which describes the imperfection of the system. Variations of ε contain cumulative 

impacts of all imperfect elements, model uncertainties, and measurement noise on 

the system output. The range of variations can be determined by conducting 

several experiments. Hence, it is expected that the responses obtained from 

different experiments are mutually different. The responses are within certain 

boundaries, which depend on parameter ε i.e., on the real system components 

quality. So, 
   3W s


 represents the model of imperfect system, obtained by the 

almost orthogonal polynomials. This general model describes all the possible 

models whose parameters are in the range   relative to the idealized system 

model. In our case, the experimental value obtained for ε is equal to 0.01. 

The optimal values of the adjustable parameters c0, c1, c2 and c3, needed for the 

best model of the unknown imperfect system, are determined by using genetic 

algorithm. Genetic algorithm used in simulation has the following parameters: an 
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initial population of 150, a number of generations 300, a stochastic uniform 

selection, reproduction with 12 elite individuals, and Gaussian mutation with 

shrinking and scattered crossover. The chromosome has a structure which consists 

of four parameters encoded as real numbers: c0, c1, c2, c3. The goal of the 

simulation was to make a mean squared error as small as possible for a chosen 

input, i.e., to obtain the best model of the unknown system in the sense of mean 

squared error. So, relation (17) was used as the fitness function for the genetic 

algorithm. The experiment time was 300 seconds. 

6 Case Study – Sensitivity Analysis 

Applying the previously described procedure, the following parameters values are 

obtained: c0=1.14095, c1=-2.08069, c2=1.29674, and c3=-0.2287. To perform 

sensitivity analysis of the obtained imperfect systems model, the first parameter c0 

was changed in the limits ±10%, ±5% and ±1% from the optimal value obtained 

by genetic algorithm, while the other parameters kept their values. For each 

change of parameter c0, the output in steady state was measured. Based on the 

equations given in Section 2, the sensitivity value related to parameter c0 was 

calculated. 

Table I 

c1=-2.08069, c2=1.29674, c3=-0.2287 

Tolerance c0 Δy(∞) 
0cu  

+10% 1.255045 -0.004118 0.036094 

+5% 1.197997 -0.002041 0.035777 

+1% 1.152359 -0.000412 0.036112 

-1% 1.129541 0.000413 0.036199 

-5% 1.083903 0.002085 0.036549 

-10% 1.026855 0.004216 0.036951 

Table II 

c0=1.14095, c2=1.29674, c3=-0.2287 

Tolerance c1 Δy(∞) 
1cu  

+10% -1.872621 0.007451 0.035814 

+5% -1.976655 0.003382 0.032517 

+1% -2.059883 0.002142 0.020512 

-1% -2.059884 0.002137 0.020464 

-5% -2.184721 -0.003363 0.032327 

-10% -2.288759 -0.006888 0.033104 
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Table III 

c0=1.14095, c1=-2.08069, c3=-0.2287 

Tolerance c2 Δy(∞) 
2cu  

+10% 1.426414 -0.003801 0.029312 

+5% 1.361577 -0.001772 0.027331 

+1% 1.309707 -0.000221 0.017099 

-1% 1.283773 0.000202 0.015601 

-5% 1.231903 0.001705 0.026309 

-10% 1.167066 0.003678 0.028366 

Table IV 

c0=1.14095, c1=-2.08069, c2=1.29674 

Tolerance c3 Δy(∞) 
3cu  

+10% -0.205831 0.000315 0.027585 

+5% -0.217261 0.000285 0.024962 

+1% -0.226413 0.000026 0.011368 

-1% -0.230987 0.000031 0.013229 

-5% -0.240135 0.000263 0.023025 

-10% -0.251572 0.000683 0.029864 

The results are given in Table I, where Δy(∞) represents a deviation of the 

response in steady state and 
0cu  represents system sensitivity in steady state 

related to parameter c0. We repeat this procedure for the other parameters c1, c2 

and c3 and the results are given in Tables II, III and IV respectively. The results 

demonstrated that the imperfect systems model is most sensitive to parameter c0, 

and least sensitive to parameter c3 (see Fig. 4). This result can be used in reality, 

when it is necessary to parametrically adjust the desired output value. In our case 

it is the best to use adjustable parameter c0, because the output is the most 

sensitive to this parameter. If it is not possible to adjust the steady state output 

with only one parameter, it is necessary to make adjustments with two parameters 

c0 and c1, and so on. This also means that the model is most sensitive to parameter 

b0, and the least sensitive to parameter b3 with the highest index. 

The results obtained by the developed method for sensitivity analysis using the 

almost orthogonal filter have been compared with those obtained by the nominal 

range sensitivity method [31], a known method for sensitivity analysis. Nominal 

range sensitivity analysis evaluates the effect on model outputs exerted by 

individual inputs, varying only one of the model inputs across its entire range of 

plausible values, while holding all other inputs at their nominal or base-case 

values. 
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Figure 4 

Graphic dependence  
ic iu f c  

The results are given in Table V and Fig. 5. We can see that the results are similar 

to those shown in Fig. 4, with dependencies moved to the lower sensitivity values. 

The drawback of this method is that it does not include the effect of interactions or 

correlated inputs. The method is also time-consuming and demands a nominal 

range for each input. 

Table V 

Tolerance 
0cu  

1cu  
2cu  

3cu  

+10% 0.033678 0.032718 0.028477 0.026577 

+5% 0.031261 0.030171 0.026964 0.022911 

+1% 0.030147 0.027221 0.014335 0.011377 

-1% 0.028883 0.026508 0.013844 0.012561 

-5% 0.031455 0.030054 0.026022 0.024163 

-10% 0.032149 0.030115 0.028401 0.027476 
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Figure 5 

Graphic dependence  
ic iu f c  

Conclusions 

In this paper, the concept of the almost orthogonal polynomials is applied in the 

sensitivity analysis of imperfect systems. First, we designed almost orthogonal 

filters as generators of almost orthogonal functions. These filters can be used for 

the modeling, identification, simulation, and analysis of different dynamical 

systems as well as for the designing of adaptive systems. In this paper, an almost 

orthogonal filter has been used to obtain a model of an imperfect system, where 

the models parameters have been determined using genetic algorithm. The 

necessary mathematical relations for the proposed approach for determining 

sensitivity of imperfect systems are also given. Experiments with a multitank 

hydraulic system were performed to validate the theoretical results and to 

demonstrate that the method described in the paper is suitable for the sensitivity 

analysis of imperfect systems. The results have been compared with another 

known method for sensitivity analysis. 
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