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Abstract: Complex digital systems usually demand some kind of a multiprocessing 

architecture. The requirements to be fulfilled (energy and communication efficiency, speed, 

pipelining, parallelism, the number of component processors, cost, etc.) and their definable 

priority order may cause conflicts. Therefore, the best choice of the component processors 

(beside general-purpose CPUs also DSPs, GPUs, FPGAs and other custom hardware) is 

very important. Such resulting architectures are called heterogeneous multiprocessing 

architectures (HMA). The system-level synthesis (SLS) methodology can be applied 

beneficially in designing the HMAs. In this way, the design procedure can get rid of the 

most intuitive trial and error steps including also the partly reusing of existing structures. 

Therefore, the SLS methods help to optimize HMAs by reducing the intuitive steps. A high 

degree of similarity can be observed between HMAs and modern distributed industrial 

process control systems (DCS). This paper illustrates the procedure of adapting and 

applying an SLS tool in redesigning of an existing DCS as a benchmark for analyzing, 

evaluating and comparing the results. Through this adaptation, all such SLS functions 

become executable on the traditional and standardized documentation form of a DCS. 

Keywords: system-level synthesis; high-level synthesis; heterogeneous multiprocessing 

system; industrial process control 

1 Introduction 

Multiprocessing can be considered the most characteristic common property of 

complex digital systems. Due to the more and more complex tasks to be solved for 

fulfilling often conflicting requirements (cost, speed, energy and communication 

efficiency, pipelining, parallelism, the number of component processors, etc.), the 

so called heterogeneous multiprocessing architectures (HMA) have become 

unavoidable. The component processors of such systems may be not only general 

purpose CPUs or cores, but also, DSPs, GPUs, FPGAs and other custom 

hardware. A subtask must be defined for each component processor depending on 

the requirements and their desired priority order [1]. Prioritizing in fulfilling the 
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requirements becomes critical at the highest abstraction level in the design 

process. [2] Thus, it is important to predict the consequences of such decisions 

already on the highest abstraction level before executing the rest of the design 

process. 

The cost and performance of the whole system is strongly influenced by the 

definition of the subtasks, i.e. the decomposition of the task. Systematic 

algorithms are very helpful to the designer in comparing and evaluating the effects 

of different decompositions into subtasks in order to approach the optimal 

decisions already in the system-level synthesis phase. Existing solutions are often 

extended and reused intuitively in HMA design in order to shorten design time 

even though this usually does not guarantee advantageous results. Such 

evaluations of intuitive solutions generally cannot deliver unambiguous directions 

for the necessary changes in the architecture and trial-and-error experiments could 

not be avoided. This practice usually results in unnecessarily expensive and 

redundant system architectures. 

In contrast, the system-level synthesis methods may be able to support the 

designer in finding, optimizing and evaluating the proper HMAs. Meanwhile, the 

intuitive steps in the synthesis procedure can be eliminated in a great extent. By 

variously allocating subtasks to different component processors, the system-level 

synthesis methods of HMAs may result in several different but acceptable 

solutions. Thus, efficiency checking, evaluating and comparing these different 

solutions are also supported by SLS methods already on the system-level 

abstraction. 

Industrial Distributed Control Systems can be considered as a special case of 

HMA, where the component processors and the communication buses might be 

limited to certain types. Therefore, the existing SLS methods can also be adapted 

to help in the design of such systems as well. The aim of this paper is to propose 

such an adaptation. 

2 Related System-Level Synthesis Tools 

Most commercial SLS tools [3] can only be considered as high-level synthesis 

(HLS) tools, because they are only capable to convert a high level language 

(usually C) description into a hardware description and/or machine codes for 

several predefined architectures, usually for FPGAs or FPGA and CPU based SoC 

(System on Chip) platforms. 

The recognized commercial tools are, for example, the Mentor Graphics Catapult 

HLS [4] and the Xilinx Vivado Suite [5]. There are other free and open source 

tools, in contrast to the commercial ones. These are mostly created for academic 

and research purposes with applicable documentations. Some of them have 



Acta Polytechnica Hungarica Vol. 16, No. 9, 2019 

 – 157 – 

capabilities the same as or even better than the commercial ones. LegUp [6] for 

example is one of the most well-known free tools. Besides being an HLS tool, it is 

capable to synthesize heterogeneous architectures as well. However, it can only do 

so by using predefined templates and by considering the communication time only 

between components based on those templates. Most commercial HLS tools 

support only a restricted subset of the given high level language. However, LegUp 

supports all ANSI C syntax elements including pointers, structures and global 

variables, the only exceptions being recursion and dynamic memory allocation. 

The final result of LegUp is a synthesizable Verilog code for several Altera 

FPGAs and one specific Altera SoC module. 

The SLS methods may apply several different HLS tools and algorithms [3, 7] 

supporting also the design of pipeline systems. Such tools usually start from a task 

description formalized by a dataflow-like graph or by a high level programming 

language [3] [4]. These algorithms can also be utilized after suitable modifications 

for HMA design and in case of hardware-software co-design [8]. The latter 

problem can also be considered as a special case of decomposition [8]. 

Table 1 summarizes some properties of several SLS tools. 

Table 1 

Overview of several SLS tools 

Tool Input 

format 

Applies 

preliminary 

decomposition 

Exchangeable 

algorithms 

Considers 

communication time 

between components 

Priority order 

of requirements 

is variable? 

PIPE [7] 
Dataflow 

graph 
NO 

YES (multiple 

schedulers 

selectable) 
YES NO 

XILINX Vivado 

suite [5] 

C, C++, 

SystemC 
NO NO 

NO, communication 
is only a calculated 

parameter 

YES, either the 

latency or the 

restart time can 

be prioritized. 

SYLVA [9] 
Dataflow 

graph 
YES NO 

NO, communication 
is only a calculated 

parameter 

NO 

LEGUP [6] C, C++ NO NO NO NO 

Mentor Graphics 
Catapult HLS 

[4] 

C, C++, 

SystemC 
NO NO 

NO, communication 
is only a calculated 

parameter 

YES, area, 

restart time, 

power 

consumption 

can be 

prioritized. 

Microsemi 
Synphony 

Model Compiler 

[10] 

MATLAB NO NO NO NO 

DECHLS [2] 

C, 

Dataflow 

graph 
YES YES YES 

YES, restart 

time, bus 

communication 

time and cost 

can be 

prioritized. 
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2.1 Motivation of Choosing the SLS Tool DECHLS 

Based on Table 1 the DECHLS can be considered as the most suitable tool for 

adaptation because it accepts dataflow graphs as its input, already includes a 

preliminary decomposition phase, its algorithms are accessible as well as variable 

and the priority order of the various requirements in its cost function is also 

variable. In the field of industrial control, the communication time between 

components can be similar of even longer than the execution time of some 

operations. Therefore, it is also required to consider the communication time 

which is not considered in the case of e.g. [6]. Modification is usually not allowed 

for commercial products such as [4, 5, 10]. Availability and potential modifiability 

of the DECHLS are the most important aspects to choose it. Also a motivation for 

choosing DECHLS is that it has been developed at the department of the authors. 

The chosen SLS tool provides the results in form of XML files or dataflow graphs 

that suit the highest abstraction level. At the same time, the chosen application 

field (industrial process control) demands several special requirements also in the 

lower abstraction levels. Therefore, special adaptation and modification 

procedures are required in order to utilize the given results. Besides, the 

application field has its special widespread traditional, even standardized 

description and design methodology. In industrial process control, the component 

processors may be placed in large distances from each other. Therefore, the 

communication time between them can be significant and must not be neglected at 

adapting the SLS tool. 

3 Adapting the DECHLS Tool 

3.1 Industrial Process Control Systems as Special Cases of 

HMA 

Modern industrial Distributed Process Control Systems (DCS) usually consist of 

many different intelligent modules. The modules of a DCS are usually connected 

by hierarchical and standardized bus systems. A DCS system performs a well-

defined set of subfunctions distributed between several special programmable 

modules (often called programmable logic controllers, PLCs). Multiprocessing is 

a characteristic property of these systems, because the PLCs perform their 

functions concurrently with each other’s and repeatedly at prescribed cycle times. 

A noticeable similarity exists between the DCSs and general HMA systems as 

shown in Fig. 1. 
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Figure 1 

The general architecture of a HMA system (left) and that of a typical DCS (right) 

The most problematic phase of a DCS’s design process is the task decomposition. 

An additional special difficulty may arise, if the number of component processors 

is also prescribed. However, the DECHLS tool can be utilized in an adapted form 

to automate and optimize the design process of the DCS. The application strategy 

of the DECHLS-DCS adaptation is shown in Fig. 2. 

 
Industrial control 
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DECHLS-DCS 

Implementation details: 

 grouping of operations 

 scheduling tasks 

 applied IO and CPU modules 

 connection of inputs and outputs 

Evaluation data: 

  Utilization of CPUs 
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 Feasibility of the schedule 

Modified industrial control 

documentation for more 

beneficial implementation  

Figure 2 

Strategy of adapting DECHLS for DCS design 

3.2 Special Requirements of DCS 

In an industrial process control project, many designer specialists usually must 

work together (e.g. architects, mechanical technologists, power engineers and 

control engineers) [11]. The complete documentation of the project must be 

understandable and unambiguous to all participants. Therefore, a traditional 

documentation form is already in use and it is standardized as IEC 61131 [11]. 

A new SLS approach to the DCS design must be adapted to this documentation 

form. This task description standard basically contains all inputs and outputs of 

the designed system and a formal description of the control algorithms to be 
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implemented. These control algorithms can also be designed by various graph-

based methods. For example, [12] is based on a CP-graph model. Usually the 

control algorithm itself is already available as a dataflow-like graph. According to 

the [11] standard, the control algorithms are implemented by visual programming 

languages such as the Sequential Function Chart (SFC) or the Functional Block 

Diagram (FBD) [13]. Neither of these programming languages can be directly 

applied in the existing SLS tools. In order to adapt the DECHLS, a new dataflow 

graph model has been developed that is able to contain all information required by 

the standard description and it is also usable in DECHLS. 

This new Functional Dataflow Graph (FDFG) can be summarized as follows: 

},,{ FEVFDFG 
 (1) 

where V is the set of nodes, E is the set of directed edges and F is the set of 

subfunctions. 

Every node in V represents an operation in the task description and a tuple of 

natural numbers is assigned to each node as: 

},{, iiii mtvVv 
 (2) 

where ti means the execution time of vi and mi is the required redundancy of vi. 

Every directed edge of the graph must have a source and a destination node and 

also must have a natural number assigned to it: 

NcceVvvvveEe iiibabaii  ,,,},,{,  (3) 

where ci is the number of data bits used in the communication between the two 

nodes belonging to the edge. The value of ci can also be 0, in this case there is no 

data communication, only timing dependency between vs and vd. 

Set F consists of fi sets, each of them representing a subfunction. These fis are 

disjoint sets of nodes: 

},...,,{ 21 nfffF 
 (4) 

 where 

FfVvvf ijji  ,,...},{...,  (5) 

 and  

),(, iiii PTfFf 
 (6) 

where Ti is a natural number that means the maximum possible execution time 

limit of fi. If this subfunction does not have a defined maximum execution time, 

then Ti should be 0. The Pi is a Boolean value; it is true if all parts of this 

subfunction must be allocated to the same processor. 
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3.3 Transforming the Task Description 

As it is mentioned earlier, the FBD and SFC are not directly suitable as FDFG for 

DECHLS because of two problems. The first problem is with the order of the 

variable reads and writes. The second problem is that these graphs may have 

invalid execution orders or contain loops. These problems, however, can be solved 

by two simple algorithms as follows. 

3.3.1 Handling Variable Reads and Writes 

The PLC programs may contain variable reads and writes as elementary 

operations. These operations are used to access either actual data in temporary 

memory, or the physical inputs and outputs of the controller hardware. These read 

and write operations must be included into the resulting FDFG as part of the 

transformation process. The general rule of PLC software execution is that the 

program runs in a cycle. This must begin by reading all the input variables, then 

following by executing all the operations of the program. Finally, the modified 

variables should be written back. According to the IEC 61131-3 standard [11], 

variables should not be modified during a program unit’s execution. The reason of 

this is to prevent execution hazards. It also means that variable reads and writes 

must be handled separately. In this way, operations writing and then reading the 

same variable cannot be connected in the dataflow graph representation. This 

means that read operations never have inputs and they must be source nodes in the 

FDFG. Likewise, writes never have outputs and they must be destination nodes in 

the FDFG. 

If more than one operation within a subfunction writes to the same variable, then 

only the latest write will be valid. Since the order of the writes is known already at 

the transformation stage, the invalid writes must be removed from the resulting 

FDFG. Therefore, the occurrence of such invalid writes can be considered as a 

possible error in the task description, and the transformation algorithm should 

warn the designer about this fact. Most commercial PLC development 

environments also perform this check and issue a warning. However, in case of 

alternative data paths and conditional execution of operations, the order of writes 

is determined by input data at runtime and cannot be determined during the 

transformation step. In these cases, the transformation algorithm should preserve 

all write operations. 

3.3.2 Handling Prescribed Execution Sequence 

An FDFG can have multiple valid and unambiguous execution orders. The rule to 

create an unambiguous execution order is that operations can only be executed if 

all their input data are present. In other words, after all the nodes having a directed 

path to this node are already executed. This rule allows for many different 

execution sequences considered valid ones. The output data yielded by any valid 
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execution sequence are the same. Therefore, both the designer, both the 

scheduling algorithm can freely choose each such valid sequence. It is easy to 

prove that an FDFG containing a cycle must not have any valid execution 

sequence. 

An FBD program always prescribes the execution order of function blocks (i.e. 

the elementary operations). After transforming the FBD into an FDFG, at least 

one of the valid execution orders in the FDFG must be the same as the prescribed 

execution order of the FBD. 

If this prescribed execution sequence is also valid in the FDFG, then the graph 

needs not be modified further. However, if the prescribed execution sequence is 

not valid, then the FDFG must be modified into a form that makes the prescribed 

execution sequence also valid. 

The following simple algorithm can be used to perform the aforementioned 

modification on the FDFG, as illustrated in Fig. 3: 

1) Find an edge ei = (vs  vd), where vd precedes vs according to the 

execution order. 

2) Create a new temporary variable. 

3) Create a write operation for the new variable and create an edge leading 

from vs to this operation. 

4) Create a read operation for the new variable and create an edge from vd to 

this operation. 

5) Delete edge ei 

6) Continue with step 1 until all the problematic edges have been tested. 
 

Vs 

2. Vd 

1. 

TMPei 

TMPei 

X 

2. 

3. 

4. 

5. 

 
Figure 3 

Illustration of the steps needed to enforce the prescribed execution order 

This algorithm can also be applied to solve the problem of cycles in the FBD. It is 

easy to prove that cycles in the FDFG will always contain at least one edge that 

will be found by the aforementioned algorithm. By performing the algorithm, this 

edge will be eliminated and the cycle will cease to exist. The effect of execution 

order on the resulting FDFG is illustrated in Fig. 4, where the FBD on the left and 

the FBD on the right differs only in the execution sequence order of the TO_IN 

and the TO_RE function blocks. The FDFG resulted from this valid execution 

order is seen on the left. 
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It can be observed that the execution sequence on the right means that the FDFG 

has two disjoint parts connected only by variables. Therefore, the TO_RE 

operation uses the previous output of the TO_IN operation that was saved from 

the previous cycle. It must be noted that this transformation also introduces one 

cycle of intentional signal delay between the affected blocks. 

Fig. 5 illustrates the extended DECHLS flowchart adapted to DCS design. 

 

Figure 4 

Effect of execution order of the FBD on the FDFG 

3.4 The Adaptation Algorithm 

The proposed adaptation algorithm consists of the following phases: 

 Transformation phase, that produces the FDFG from the standard 

task description formalism of the DCS (given in SFC or FBD 

languages). [14] 

 Preliminary Functional Decomposition phase (PFD) prevents 

separating the user-defined logically coherent functions, in contrast 

to usual decomposition [15] algorithms. 

 Multirate Function Scheduler phase (MFS) can enforce different 

cycle times (latency times) for some subfunctions in the FDFG [16]. 
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 Extended Allocation phase (EA) that is also capable to handle 

additional replication constraints arising after the decomposition. 

The aim of this step is to ensure safety-critical redundancy and 

availability, if any. 
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Figure 5 

Flowchart of the extended DECHLS tool adapted to DCS design 

3.4.1 The Decomposition Phase 

The main goal of the original preliminary decomposition in DECHLS is to reduce 

the number of elementary operations for the scheduler and allocation phases. In 

this way, the performance of those may be improved [2]. An additional benefit of 

the primary decomposition is that some special requirements can be taken into 

account with a higher priority. In case of DCS, the main goal of the decomposition 

is to distribute the workload uniformly along with also minimizing 

communication between segments. Segments will be treated as atomic in the 

scheduler. This means that operations assigned to the same segment will not be 

overlapping in time and cannot be allocated between multiple component 
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processors. Therefore, the decomposition can easily ensure that elementary 

operations of those subfunctions that must be allocated together due to the 

serviceability constraint (Pi = true) should never overlap in time. Each of such 

elementary operation will form a separate segment, independently of the other 

segments. 

There can be more decomposition algorithms used in DECHLS. The spectral 

clustering based algorithm has proved to be the most suitable for industrial control 

system tasks because it is capable to a simpler parameterization [14, 2]. 

3.4.2 The Scheduling Phase 

The scheduler algorithm used in DECHLS is a modified force directed one [7]. 

The scheduler can be simplified because pipeline execution in DCS systems is 

usually not allowed. 

In this case, the scheduler only needs to determine the starting time of the 

segments created already in the decomposition step. This starting time of most 

segments can range up to the maximum cycle time (the latency time, L), which is 

an input parameter to the scheduler. A minimum latency (Lmin) can also be 

determined based on the shortest execution path in the FDFG. The scheduler 

cannot find a valid solution when L<Lmin, therefore it must stop in this case. Such 

minimum latencies also exist for each subfunction (subgraph) of the FDFG. 

Some functions (segments) must be completed faster than L, because their 

prescribed cycle time is Ti<L. The force directed algorithm should be modified to 

take into account the Ti of each subfunction by implementing a multi-rate 

scheduler as in [16]. 

The multi-rate scheduler has different queues for different operation groups as 

seen in Fig. 6. Operations belonging to subfunctions without a defined execution 

time limit will be scheduled in the general queue. Subfunctions, having longer or 

equal execution time limits than the given latency, are also scheduled in this 

general queue because their execution time limits will be trivially met. 

Subfunctions having a smaller time limit than L must be handled in different 

queues. The queue of function fi with time limit Ti will have a multi-rate latency 

of Li, where 

i
i

k

L
L 

              










i
i

T

L
k

 (7) 

All the separate queues will have the same force function, and operations 

potentially overlapping in any queues will increase the force. Because of this, the 

scheduler will attempt to prohibit overlapping operations as long as possible in 

order to reduce the required number of processors. There is one more important 

task of the scheduler. If any subfunctions’ minimum latency (Lmin,i) defined by its 
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FDFG is smaller than its specified Ti, then the scheduler must report an error and 

stop. In this case, the execution time constraints are too strict and cannot be met 

by this algorithm. 

 

v1 
General queue: 

v2 v3 v6 v7 

L 

fi queue: v4 v5 v4 v5 v4 v5 

Li Li Li 

Ti 

 
Figure 6 

Multi-rate scheduler 

3.4.3 The Allocation Phase 

The allocation phase is the simplest among the modifications. It should be able to 

allocate mi copies of every operation. These multiple copies must be allocated into 

different processors, irrespective of their timings. This can be done even before 

the actual allocation phase as a previous step, or by slightly modifying an existing 

allocation algorithm. In case of the graph-coloring based algorithm in DECHLS, 

this modification can be done in the following way. 

The existing allocation algorithm builds a conflict graph, based on the scheduled 

dataflow graph. The nodes of this conflict graph represent the nodes of the 

scheduled dataflow graph, but the edges in the conflict graph represent the time 

overlapping between nodes. If two operations are overlapping in time, they cannot 

be executed by the same component processor. In this sense, the allocation 

basically means the coloring of the conflict graph, by the least amount of colors. 

Thus, any two adjacent nodes are colored differently. 

In case of DCS, the redundancy criteria may require the replication of certain 

nodes. Those nodes are already replicated before scheduling and they will appear 

as two separate nodes in the scheduled dataflow graph. Since multiple copies of 

the same logical node are scheduled independently, it may happen that they are 

not overlapping. However, they are not allowed to be allocated into the same 

processing unit because their multiplication would not result a real redundancy. 

Such a scenario is seen in Fig. 7, where nodes 5, 6 and 7 are replicated (5’, 6’ and 

7’). The scheduler placed some of the replicated nodes into different time slots for 

minimizing the resource usage. In this way, only 3 processors will be required. 
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Figure 7 

An example for a scheduled dataflow graph with replicated nodes 

In order to solve the problem, additional edges are needed in the conflict graph 

between redundant copies of the same node. In Fig. 8 these edges are marked as 

double lines for easy identification. Otherwise in the remaining steps of the graph 

coloring algorithm, these additional edges are treated the same as regular edges. 

This way, the redundancy can be safely handled, by the allocation algorithm. 
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Figure 8 

A conflict graph with the additional edges and a possible coloring 
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4 Benchmark Results 

The chosen benchmark application is an existing DCS that was programmed in the 

FBD language by using the ABB Freelance development environment [17]. The 

benchmark consists of 29 program blocks. Each of the program blocks are 

logically coherent functions. Some blocks are scheduled to operate with 1000 ms, 

while others with 500 ms cycle times. The program blocks are distributed between 

two separate ABB AC800F3 PLCs. There are two special functions that 

redundantly implement the same safety critical function (burner control). These 

two tasks must never be allocated to the same PLC for safety reasons. This is the 

main reason why two PLCs were needed in this implementation. 

The first step is the transformation of the existing FBD task description into FDFG 

form. Only an essential part of the original description (one subfunction) and the 

resulting FDFG is illustrated in Fig. 9 and Fig. 10. 

The FDFG was then given to the preliminary decomposition phase and the 

algorithm divided it into 97 subfunctions instead of the original 29. For example, 

the #27 subfunction was divided into 6 parts as illustrated in Fig. 11. Increasing 

the number of subfunctions provides more freedom in the later phases, namely the 

scheduling and the allocation. 

The purpose of Figs. 9, 10 and 11 is only to illustrate the structures of the original 

and the transformed graphs, the text fields in the blocks are not important in this 

sense. 

After the decomposition, the scheduler and allocation phases of the experimental 

DECHLS-DCS tool have determined the required number of PLCs. The average 

utilization of PLCs as well as the average communication bus utilization at several 

different cycle times were also computed and these are shown in Fig. 12. 

The cycle times indicated in the Fig. 12 are the longest ones in each case, some 

functions have shorter cycle times. The reason of this is the fixed 500 ms cycle 

time of the critical functions in the original implementation. For the rest of the 

functions, there are no cycle time prescriptions. If the actual cycle time is shorter 

than the prescribed one, the whole system runs at the actual cycle time. If the 

actual cycle time is longer, then the critical functions must still run at least as fast 

as the prescribed cycle time. The diagram has markers at specific cycle time 

values to show where practical solutions are obtained. Between 400 ms and 450 

ms there are many markers, because the tool was restarted many times in this 

interval in order to find the shortest possible cycle time allowing the task to be 

solved by only 2 processors. 
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Figure 9 

FBD form of subfunction #27 in the benchmark 

 

Figure 10 

FDFG form of subfunction #27 in the benchmark 
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Figure 11 

The 6 new subfunctions resulted from subfunction #27 
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Figure 12 

The resulted number of PLCs and their utilization levels at different cycle times 

Fig. 12 shows in the left axis that only 2 PLCs are required at 450 ms cycle time 

(blue line). In this case, the average utilization (purple line) is only about 80%, as 

seen on the right axis. All functions are still able to run at this speed. Less than 2 

PLCs are never enough to solve the task, because of the redundancy constraint. It 

can be observed that prescribing 1000 ms cycle time was not necessary in the 

existing implementation. 

The DECHLS-DCS also shows that the average utilization of CPUs and 

communication busses in the existing system were only around 37% and 11%. 

The official ABB Freelance development tool cannot deliver such estimations 

without completely building the system, followed by downloading, running and 

profiling the whole software. 
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Summarizing above simulation results: 

 A 450 ms cycle time could be achieved safely by utilizing the same 

number of CPUs 

 79% CPU utilization was achieved instead of 37% 

 22% communication bus utilization was achieved instead of 11% 

Conclusions 

This paper has illustrated how an SLS tool (DECHLS) can be adapted, modified 

and utilized in designing a specific form of HMA (an industrial process control 

system). For this proper adaptation, DECHLS have been modified in order to be 

capable to handle the application-specific standardized task input graph 

descriptions (SFC or FBD). A converting algorithm has been presented for this 

extension. The additional necessary extensions for adaptation have been also 

presented in the paper: a special decomposition algorithm, a multirate function 

scheduler algorithm, an extended allocation algorithm handling safety-critical 

redundancy. By these modifications and extensions, DECHLS became a capable 

tool for providing various resulting designs to compare and evaluate them already 

on the SLS level without any lower level implementations. 

The benchmark presented in the paper illustrates on comparing with existing 

solutions that the preliminary decomposition in DECHLS increased the number of 

subfunctions. Hereby, more freedom remains for the scheduling and allocation 

phases. It can also be observed that a proper systematic scheduling could lead to 

higher processor utilization even at high communication times between 

processors. 

Consequently, such an adaptation of the DECHLS tool, helps to compare and 

evaluate various resulting HMAs exclusively on the SLS level, without 

implementing the whole system. 
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