
Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 155 –

Application of a System-Level Synthesis Tool in

Industrial Process Control Design

Péter Arató, Dezső Nagy, György Rácz

Department of Control Engineering and Information Technology, Budapest

University of Technology and Economics, Magyar tudósok krt. 2, 1117 Budapest,

Hungary; arato@iit.bme.hu; nagy.dezso@iit.bme.hu; gyuriracz@iit.bme.hu

Abstract: Complex digital systems usually demand some kind of a multiprocessing

architecture. The requirements to be fulfilled (energy and communication efficiency, speed,

pipelining, parallelism, the number of component processors, cost, etc.) and their definable

priority order may cause conflicts. Therefore, the best choice of the component processors

(beside general-purpose CPUs also DSPs, GPUs, FPGAs and other custom hardware) is

very important. Such resulting architectures are called heterogeneous multiprocessing

architectures (HMA). The system-level synthesis (SLS) methodology can be applied

beneficially in designing the HMAs. In this way, the design procedure can get rid of the

most intuitive trial and error steps including also the partly reusing of existing structures.

Therefore, the SLS methods help to optimize HMAs by reducing the intuitive steps. A high

degree of similarity can be observed between HMAs and modern distributed industrial

process control systems (DCS). This paper illustrates the procedure of adapting and

applying an SLS tool in redesigning of an existing DCS as a benchmark for analyzing,

evaluating and comparing the results. Through this adaptation, all such SLS functions

become executable on the traditional and standardized documentation form of a DCS.

Keywords: system-level synthesis; high-level synthesis; heterogeneous multiprocessing

system; industrial process control

1 Introduction

Multiprocessing can be considered the most characteristic common property of

complex digital systems. Due to the more and more complex tasks to be solved for

fulfilling often conflicting requirements (cost, speed, energy and communication

efficiency, pipelining, parallelism, the number of component processors, etc.), the

so called heterogeneous multiprocessing architectures (HMA) have become

unavoidable. The component processors of such systems may be not only general

purpose CPUs or cores, but also, DSPs, GPUs, FPGAs and other custom

hardware. A subtask must be defined for each component processor depending on

the requirements and their desired priority order [1]. Prioritizing in fulfilling the

mailto:arato@iit.bme.hu
mailto:nagy.dezso@iit.bme.hu

P. Arató et al. Application of a System-Level Synthesis Tool in Industrial Process Control Design

 – 156 –

requirements becomes critical at the highest abstraction level in the design

process. [2] Thus, it is important to predict the consequences of such decisions

already on the highest abstraction level before executing the rest of the design

process.

The cost and performance of the whole system is strongly influenced by the

definition of the subtasks, i.e. the decomposition of the task. Systematic

algorithms are very helpful to the designer in comparing and evaluating the effects

of different decompositions into subtasks in order to approach the optimal

decisions already in the system-level synthesis phase. Existing solutions are often

extended and reused intuitively in HMA design in order to shorten design time

even though this usually does not guarantee advantageous results. Such

evaluations of intuitive solutions generally cannot deliver unambiguous directions

for the necessary changes in the architecture and trial-and-error experiments could

not be avoided. This practice usually results in unnecessarily expensive and

redundant system architectures.

In contrast, the system-level synthesis methods may be able to support the

designer in finding, optimizing and evaluating the proper HMAs. Meanwhile, the

intuitive steps in the synthesis procedure can be eliminated in a great extent. By

variously allocating subtasks to different component processors, the system-level

synthesis methods of HMAs may result in several different but acceptable

solutions. Thus, efficiency checking, evaluating and comparing these different

solutions are also supported by SLS methods already on the system-level

abstraction.

Industrial Distributed Control Systems can be considered as a special case of

HMA, where the component processors and the communication buses might be

limited to certain types. Therefore, the existing SLS methods can also be adapted

to help in the design of such systems as well. The aim of this paper is to propose

such an adaptation.

2 Related System-Level Synthesis Tools

Most commercial SLS tools [3] can only be considered as high-level synthesis

(HLS) tools, because they are only capable to convert a high level language

(usually C) description into a hardware description and/or machine codes for

several predefined architectures, usually for FPGAs or FPGA and CPU based SoC

(System on Chip) platforms.

The recognized commercial tools are, for example, the Mentor Graphics Catapult

HLS [4] and the Xilinx Vivado Suite [5]. There are other free and open source

tools, in contrast to the commercial ones. These are mostly created for academic

and research purposes with applicable documentations. Some of them have

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 157 –

capabilities the same as or even better than the commercial ones. LegUp [6] for

example is one of the most well-known free tools. Besides being an HLS tool, it is

capable to synthesize heterogeneous architectures as well. However, it can only do

so by using predefined templates and by considering the communication time only

between components based on those templates. Most commercial HLS tools

support only a restricted subset of the given high level language. However, LegUp

supports all ANSI C syntax elements including pointers, structures and global

variables, the only exceptions being recursion and dynamic memory allocation.

The final result of LegUp is a synthesizable Verilog code for several Altera

FPGAs and one specific Altera SoC module.

The SLS methods may apply several different HLS tools and algorithms [3, 7]

supporting also the design of pipeline systems. Such tools usually start from a task

description formalized by a dataflow-like graph or by a high level programming

language [3] [4]. These algorithms can also be utilized after suitable modifications

for HMA design and in case of hardware-software co-design [8]. The latter

problem can also be considered as a special case of decomposition [8].

Table 1 summarizes some properties of several SLS tools.

Table 1

Overview of several SLS tools

Tool Input

format

Applies

preliminary

decomposition

Exchangeable

algorithms

Considers

communication time

between components

Priority order

of requirements

is variable?

PIPE [7]
Dataflow

graph
NO

YES (multiple

schedulers

selectable)
YES NO

XILINX Vivado

suite [5]

C, C++,

SystemC
NO NO

NO, communication
is only a calculated

parameter

YES, either the

latency or the

restart time can

be prioritized.

SYLVA [9]
Dataflow

graph
YES NO

NO, communication
is only a calculated

parameter

NO

LEGUP [6] C, C++ NO NO NO NO

Mentor Graphics
Catapult HLS

[4]

C, C++,

SystemC
NO NO

NO, communication
is only a calculated

parameter

YES, area,

restart time,

power

consumption

can be

prioritized.

Microsemi
Synphony

Model Compiler

[10]

MATLAB NO NO NO NO

DECHLS [2]

C,

Dataflow

graph
YES YES YES

YES, restart

time, bus

communication

time and cost

can be

prioritized.

P. Arató et al. Application of a System-Level Synthesis Tool in Industrial Process Control Design

 – 158 –

2.1 Motivation of Choosing the SLS Tool DECHLS

Based on Table 1 the DECHLS can be considered as the most suitable tool for

adaptation because it accepts dataflow graphs as its input, already includes a

preliminary decomposition phase, its algorithms are accessible as well as variable

and the priority order of the various requirements in its cost function is also

variable. In the field of industrial control, the communication time between

components can be similar of even longer than the execution time of some

operations. Therefore, it is also required to consider the communication time

which is not considered in the case of e.g. [6]. Modification is usually not allowed

for commercial products such as [4, 5, 10]. Availability and potential modifiability

of the DECHLS are the most important aspects to choose it. Also a motivation for

choosing DECHLS is that it has been developed at the department of the authors.

The chosen SLS tool provides the results in form of XML files or dataflow graphs

that suit the highest abstraction level. At the same time, the chosen application

field (industrial process control) demands several special requirements also in the

lower abstraction levels. Therefore, special adaptation and modification

procedures are required in order to utilize the given results. Besides, the

application field has its special widespread traditional, even standardized

description and design methodology. In industrial process control, the component

processors may be placed in large distances from each other. Therefore, the

communication time between them can be significant and must not be neglected at

adapting the SLS tool.

3 Adapting the DECHLS Tool

3.1 Industrial Process Control Systems as Special Cases of

HMA

Modern industrial Distributed Process Control Systems (DCS) usually consist of

many different intelligent modules. The modules of a DCS are usually connected

by hierarchical and standardized bus systems. A DCS system performs a well-

defined set of subfunctions distributed between several special programmable

modules (often called programmable logic controllers, PLCs). Multiprocessing is

a characteristic property of these systems, because the PLCs perform their

functions concurrently with each other’s and repeatedly at prescribed cycle times.

A noticeable similarity exists between the DCSs and general HMA systems as

shown in Fig. 1.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 159 –

Component

processor 1

Bus 1

Component

processor 2

Component

processor 3

Bus 2

Component

processor 5
Component

processor 4

PLC PLC
HMI

station

Actuator Sensor

Plant

visualization

Central server

Data logger

Central bus

Local bus 1 Local bus 2

Actuator Sensor Sensor

Figure 1

The general architecture of a HMA system (left) and that of a typical DCS (right)

The most problematic phase of a DCS’s design process is the task decomposition.

An additional special difficulty may arise, if the number of component processors

is also prescribed. However, the DECHLS tool can be utilized in an adapted form

to automate and optimize the design process of the DCS. The application strategy

of the DECHLS-DCS adaptation is shown in Fig. 2.

Industrial control

documentation

(task description)

DECHLS-DCS

Implementation details:

 grouping of operations

 scheduling tasks

 applied IO and CPU modules

 connection of inputs and outputs

Evaluation data:

 Utilization of CPUs

 Utilization of busses

 Feasibility of the schedule

Modified industrial control

documentation for more

beneficial implementation

Figure 2

Strategy of adapting DECHLS for DCS design

3.2 Special Requirements of DCS

In an industrial process control project, many designer specialists usually must

work together (e.g. architects, mechanical technologists, power engineers and

control engineers) [11]. The complete documentation of the project must be

understandable and unambiguous to all participants. Therefore, a traditional

documentation form is already in use and it is standardized as IEC 61131 [11].

A new SLS approach to the DCS design must be adapted to this documentation

form. This task description standard basically contains all inputs and outputs of

the designed system and a formal description of the control algorithms to be

P. Arató et al. Application of a System-Level Synthesis Tool in Industrial Process Control Design

 – 160 –

implemented. These control algorithms can also be designed by various graph-

based methods. For example, [12] is based on a CP-graph model. Usually the

control algorithm itself is already available as a dataflow-like graph. According to

the [11] standard, the control algorithms are implemented by visual programming

languages such as the Sequential Function Chart (SFC) or the Functional Block

Diagram (FBD) [13]. Neither of these programming languages can be directly

applied in the existing SLS tools. In order to adapt the DECHLS, a new dataflow

graph model has been developed that is able to contain all information required by

the standard description and it is also usable in DECHLS.

This new Functional Dataflow Graph (FDFG) can be summarized as follows:

},,{ FEVFDFG 
 (1)

where V is the set of nodes, E is the set of directed edges and F is the set of

subfunctions.

Every node in V represents an operation in the task description and a tuple of

natural numbers is assigned to each node as:

},{, iiii mtvVv 
 (2)

where ti means the execution time of vi and mi is the required redundancy of vi.

Every directed edge of the graph must have a source and a destination node and

also must have a natural number assigned to it:

NcceVvvvveEe iiibabaii  ,,,},,{, (3)

where ci is the number of data bits used in the communication between the two

nodes belonging to the edge. The value of ci can also be 0, in this case there is no

data communication, only timing dependency between vs and vd.

Set F consists of fi sets, each of them representing a subfunction. These fis are

disjoint sets of nodes:

},...,,{ 21 nfffF 
 (4)

 where

FfVvvf ijji  ,,...},{..., (5)

 and

),(, iiii PTfFf 
 (6)

where Ti is a natural number that means the maximum possible execution time

limit of fi. If this subfunction does not have a defined maximum execution time,

then Ti should be 0. The Pi is a Boolean value; it is true if all parts of this

subfunction must be allocated to the same processor.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 161 –

3.3 Transforming the Task Description

As it is mentioned earlier, the FBD and SFC are not directly suitable as FDFG for

DECHLS because of two problems. The first problem is with the order of the

variable reads and writes. The second problem is that these graphs may have

invalid execution orders or contain loops. These problems, however, can be solved

by two simple algorithms as follows.

3.3.1 Handling Variable Reads and Writes

The PLC programs may contain variable reads and writes as elementary

operations. These operations are used to access either actual data in temporary

memory, or the physical inputs and outputs of the controller hardware. These read

and write operations must be included into the resulting FDFG as part of the

transformation process. The general rule of PLC software execution is that the

program runs in a cycle. This must begin by reading all the input variables, then

following by executing all the operations of the program. Finally, the modified

variables should be written back. According to the IEC 61131-3 standard [11],

variables should not be modified during a program unit’s execution. The reason of

this is to prevent execution hazards. It also means that variable reads and writes

must be handled separately. In this way, operations writing and then reading the

same variable cannot be connected in the dataflow graph representation. This

means that read operations never have inputs and they must be source nodes in the

FDFG. Likewise, writes never have outputs and they must be destination nodes in

the FDFG.

If more than one operation within a subfunction writes to the same variable, then

only the latest write will be valid. Since the order of the writes is known already at

the transformation stage, the invalid writes must be removed from the resulting

FDFG. Therefore, the occurrence of such invalid writes can be considered as a

possible error in the task description, and the transformation algorithm should

warn the designer about this fact. Most commercial PLC development

environments also perform this check and issue a warning. However, in case of

alternative data paths and conditional execution of operations, the order of writes

is determined by input data at runtime and cannot be determined during the

transformation step. In these cases, the transformation algorithm should preserve

all write operations.

3.3.2 Handling Prescribed Execution Sequence

An FDFG can have multiple valid and unambiguous execution orders. The rule to

create an unambiguous execution order is that operations can only be executed if

all their input data are present. In other words, after all the nodes having a directed

path to this node are already executed. This rule allows for many different

execution sequences considered valid ones. The output data yielded by any valid

P. Arató et al. Application of a System-Level Synthesis Tool in Industrial Process Control Design

 – 162 –

execution sequence are the same. Therefore, both the designer, both the

scheduling algorithm can freely choose each such valid sequence. It is easy to

prove that an FDFG containing a cycle must not have any valid execution

sequence.

An FBD program always prescribes the execution order of function blocks (i.e.

the elementary operations). After transforming the FBD into an FDFG, at least

one of the valid execution orders in the FDFG must be the same as the prescribed

execution order of the FBD.

If this prescribed execution sequence is also valid in the FDFG, then the graph

needs not be modified further. However, if the prescribed execution sequence is

not valid, then the FDFG must be modified into a form that makes the prescribed

execution sequence also valid.

The following simple algorithm can be used to perform the aforementioned

modification on the FDFG, as illustrated in Fig. 3:

1) Find an edge ei = (vs  vd), where vd precedes vs according to the

execution order.

2) Create a new temporary variable.

3) Create a write operation for the new variable and create an edge leading

from vs to this operation.

4) Create a read operation for the new variable and create an edge from vd to

this operation.

5) Delete edge ei

6) Continue with step 1 until all the problematic edges have been tested.

Vs

2. Vd

1.

TMPei

TMPei

X

2.

3.

4.

5.

Figure 3

Illustration of the steps needed to enforce the prescribed execution order

This algorithm can also be applied to solve the problem of cycles in the FBD. It is

easy to prove that cycles in the FDFG will always contain at least one edge that

will be found by the aforementioned algorithm. By performing the algorithm, this

edge will be eliminated and the cycle will cease to exist. The effect of execution

order on the resulting FDFG is illustrated in Fig. 4, where the FBD on the left and

the FBD on the right differs only in the execution sequence order of the TO_IN

and the TO_RE function blocks. The FDFG resulted from this valid execution

order is seen on the left.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 163 –

It can be observed that the execution sequence on the right means that the FDFG

has two disjoint parts connected only by variables. Therefore, the TO_RE

operation uses the previous output of the TO_IN operation that was saved from

the previous cycle. It must be noted that this transformation also introduces one

cycle of intentional signal delay between the affected blocks.

Fig. 5 illustrates the extended DECHLS flowchart adapted to DCS design.

Figure 4

Effect of execution order of the FBD on the FDFG

3.4 The Adaptation Algorithm

The proposed adaptation algorithm consists of the following phases:

 Transformation phase, that produces the FDFG from the standard

task description formalism of the DCS (given in SFC or FBD

languages). [14]

 Preliminary Functional Decomposition phase (PFD) prevents

separating the user-defined logically coherent functions, in contrast

to usual decomposition [15] algorithms.

 Multirate Function Scheduler phase (MFS) can enforce different

cycle times (latency times) for some subfunctions in the FDFG [16].

P. Arató et al. Application of a System-Level Synthesis Tool in Industrial Process Control Design

 – 164 –

 Extended Allocation phase (EA) that is also capable to handle

additional replication constraints arising after the decomposition.

The aim of this step is to ensure safety-critical redundancy and

availability, if any.

Node: operation

Edge: data dependency

Sets of nodes can have

additional properties

 Constraints and user requirements Description of the task for the system

SFC and FBD programming language

implementation of the control system

Transformation to

extended Dataflow

Graph

Preliminary decomposition

(grouping operations)

Finding parallelization possibilities, ensuring required

execution cycle time limits are met (Scheduling algorithm)

Allocating operations into tasks and to

physical processing units (Allocation

algorithm)

List of applied CPU and IO modules

Program lists of tasks (IL language)

Connections of inputs and outputs

Execution time limits

and cycle time limits

for each function

Description of control

algorithms

Definition of Inputs and Outputs

Execution time of

elementary library

functions

Database of

applicable CPU

and IO modules

Definition of redundant or

replicated subfunctions

Previous Additional

Forming tasks based on:

 execution time constraints

 minimizing communication time

 uniform CPU utilization

Elimination of race conditions

Meeting execution time constraints by

pipelining or multiplications if necessary

Definition of the

functionally related

operations (subfunctions)

Error if constraints

are impossible to

meet.

Utilization ratio of

communication busses
Utilization ratio

of CPU modules

Figure 5

Flowchart of the extended DECHLS tool adapted to DCS design

3.4.1 The Decomposition Phase

The main goal of the original preliminary decomposition in DECHLS is to reduce

the number of elementary operations for the scheduler and allocation phases. In

this way, the performance of those may be improved [2]. An additional benefit of

the primary decomposition is that some special requirements can be taken into

account with a higher priority. In case of DCS, the main goal of the decomposition

is to distribute the workload uniformly along with also minimizing

communication between segments. Segments will be treated as atomic in the

scheduler. This means that operations assigned to the same segment will not be

overlapping in time and cannot be allocated between multiple component

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 165 –

processors. Therefore, the decomposition can easily ensure that elementary

operations of those subfunctions that must be allocated together due to the

serviceability constraint (Pi = true) should never overlap in time. Each of such

elementary operation will form a separate segment, independently of the other

segments.

There can be more decomposition algorithms used in DECHLS. The spectral

clustering based algorithm has proved to be the most suitable for industrial control

system tasks because it is capable to a simpler parameterization [14, 2].

3.4.2 The Scheduling Phase

The scheduler algorithm used in DECHLS is a modified force directed one [7].

The scheduler can be simplified because pipeline execution in DCS systems is

usually not allowed.

In this case, the scheduler only needs to determine the starting time of the

segments created already in the decomposition step. This starting time of most

segments can range up to the maximum cycle time (the latency time, L), which is

an input parameter to the scheduler. A minimum latency (Lmin) can also be

determined based on the shortest execution path in the FDFG. The scheduler

cannot find a valid solution when L<Lmin, therefore it must stop in this case. Such

minimum latencies also exist for each subfunction (subgraph) of the FDFG.

Some functions (segments) must be completed faster than L, because their

prescribed cycle time is Ti<L. The force directed algorithm should be modified to

take into account the Ti of each subfunction by implementing a multi-rate

scheduler as in [16].

The multi-rate scheduler has different queues for different operation groups as

seen in Fig. 6. Operations belonging to subfunctions without a defined execution

time limit will be scheduled in the general queue. Subfunctions, having longer or

equal execution time limits than the given latency, are also scheduled in this

general queue because their execution time limits will be trivially met.

Subfunctions having a smaller time limit than L must be handled in different

queues. The queue of function fi with time limit Ti will have a multi-rate latency

of Li, where

i
i

k

L
L 











i
i

T

L
k

 (7)

All the separate queues will have the same force function, and operations

potentially overlapping in any queues will increase the force. Because of this, the

scheduler will attempt to prohibit overlapping operations as long as possible in

order to reduce the required number of processors. There is one more important

task of the scheduler. If any subfunctions’ minimum latency (Lmin,i) defined by its

P. Arató et al. Application of a System-Level Synthesis Tool in Industrial Process Control Design

 – 166 –

FDFG is smaller than its specified Ti, then the scheduler must report an error and

stop. In this case, the execution time constraints are too strict and cannot be met

by this algorithm.

v1
General queue:

v2 v3 v6 v7

L

fi queue: v4 v5 v4 v5 v4 v5

Li Li Li

Ti

Figure 6

Multi-rate scheduler

3.4.3 The Allocation Phase

The allocation phase is the simplest among the modifications. It should be able to

allocate mi copies of every operation. These multiple copies must be allocated into

different processors, irrespective of their timings. This can be done even before

the actual allocation phase as a previous step, or by slightly modifying an existing

allocation algorithm. In case of the graph-coloring based algorithm in DECHLS,

this modification can be done in the following way.

The existing allocation algorithm builds a conflict graph, based on the scheduled

dataflow graph. The nodes of this conflict graph represent the nodes of the

scheduled dataflow graph, but the edges in the conflict graph represent the time

overlapping between nodes. If two operations are overlapping in time, they cannot

be executed by the same component processor. In this sense, the allocation

basically means the coloring of the conflict graph, by the least amount of colors.

Thus, any two adjacent nodes are colored differently.

In case of DCS, the redundancy criteria may require the replication of certain

nodes. Those nodes are already replicated before scheduling and they will appear

as two separate nodes in the scheduled dataflow graph. Since multiple copies of

the same logical node are scheduled independently, it may happen that they are

not overlapping. However, they are not allowed to be allocated into the same

processing unit because their multiplication would not result a real redundancy.

Such a scenario is seen in Fig. 7, where nodes 5, 6 and 7 are replicated (5’, 6’ and

7’). The scheduler placed some of the replicated nodes into different time slots for

minimizing the resource usage. In this way, only 3 processors will be required.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 167 –

 1

 OUT

3

4

5

6

7

 9

 IN3 IN1 IN2 IN4

Time step 1

Time step 2

Time step 3

Time step 4

 6’

7’

5’

 2

8

Figure 7

An example for a scheduled dataflow graph with replicated nodes

In order to solve the problem, additional edges are needed in the conflict graph

between redundant copies of the same node. In Fig. 8 these edges are marked as

double lines for easy identification. Otherwise in the remaining steps of the graph

coloring algorithm, these additional edges are treated the same as regular edges.

This way, the redundancy can be safely handled, by the allocation algorithm.

 7

 6

 2

 3

 1

 8

 4

 6’

 7’

 9

 5’

 5

Figure 8

A conflict graph with the additional edges and a possible coloring

P. Arató et al. Application of a System-Level Synthesis Tool in Industrial Process Control Design

 – 168 –

4 Benchmark Results

The chosen benchmark application is an existing DCS that was programmed in the

FBD language by using the ABB Freelance development environment [17]. The

benchmark consists of 29 program blocks. Each of the program blocks are

logically coherent functions. Some blocks are scheduled to operate with 1000 ms,

while others with 500 ms cycle times. The program blocks are distributed between

two separate ABB AC800F3 PLCs. There are two special functions that

redundantly implement the same safety critical function (burner control). These

two tasks must never be allocated to the same PLC for safety reasons. This is the

main reason why two PLCs were needed in this implementation.

The first step is the transformation of the existing FBD task description into FDFG

form. Only an essential part of the original description (one subfunction) and the

resulting FDFG is illustrated in Fig. 9 and Fig. 10.

The FDFG was then given to the preliminary decomposition phase and the

algorithm divided it into 97 subfunctions instead of the original 29. For example,

the #27 subfunction was divided into 6 parts as illustrated in Fig. 11. Increasing

the number of subfunctions provides more freedom in the later phases, namely the

scheduling and the allocation.

The purpose of Figs. 9, 10 and 11 is only to illustrate the structures of the original

and the transformed graphs, the text fields in the blocks are not important in this

sense.

After the decomposition, the scheduler and allocation phases of the experimental

DECHLS-DCS tool have determined the required number of PLCs. The average

utilization of PLCs as well as the average communication bus utilization at several

different cycle times were also computed and these are shown in Fig. 12.

The cycle times indicated in the Fig. 12 are the longest ones in each case, some

functions have shorter cycle times. The reason of this is the fixed 500 ms cycle

time of the critical functions in the original implementation. For the rest of the

functions, there are no cycle time prescriptions. If the actual cycle time is shorter

than the prescribed one, the whole system runs at the actual cycle time. If the

actual cycle time is longer, then the critical functions must still run at least as fast

as the prescribed cycle time. The diagram has markers at specific cycle time

values to show where practical solutions are obtained. Between 400 ms and 450

ms there are many markers, because the tool was restarted many times in this

interval in order to find the shortest possible cycle time allowing the task to be

solved by only 2 processors.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 169 –

Figure 9

FBD form of subfunction #27 in the benchmark

Figure 10

FDFG form of subfunction #27 in the benchmark

P. Arató et al. Application of a System-Level Synthesis Tool in Industrial Process Control Design

 – 170 –

Figure 11

The 6 new subfunctions resulted from subfunction #27

0

1

2

3

4

5

6

7

8

9

10

11

0 100 200 300 400 500 600 700 800 900 1000

Cycle time [ms]

N
u

m
b

e
r

o
f

C
P

U
 m

o
d

u
le

s
 [

d
b

]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
ti

li
z
a

ti
o

n
 [

%
]

Number of PLC CPU modules Utilization of CPU modules Utilization of communication busses

Figure 12

The resulted number of PLCs and their utilization levels at different cycle times

Fig. 12 shows in the left axis that only 2 PLCs are required at 450 ms cycle time

(blue line). In this case, the average utilization (purple line) is only about 80%, as

seen on the right axis. All functions are still able to run at this speed. Less than 2

PLCs are never enough to solve the task, because of the redundancy constraint. It

can be observed that prescribing 1000 ms cycle time was not necessary in the

existing implementation.

The DECHLS-DCS also shows that the average utilization of CPUs and

communication busses in the existing system were only around 37% and 11%.

The official ABB Freelance development tool cannot deliver such estimations

without completely building the system, followed by downloading, running and

profiling the whole software.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 171 –

Summarizing above simulation results:

 A 450 ms cycle time could be achieved safely by utilizing the same

number of CPUs

 79% CPU utilization was achieved instead of 37%

 22% communication bus utilization was achieved instead of 11%

Conclusions

This paper has illustrated how an SLS tool (DECHLS) can be adapted, modified

and utilized in designing a specific form of HMA (an industrial process control

system). For this proper adaptation, DECHLS have been modified in order to be

capable to handle the application-specific standardized task input graph

descriptions (SFC or FBD). A converting algorithm has been presented for this

extension. The additional necessary extensions for adaptation have been also

presented in the paper: a special decomposition algorithm, a multirate function

scheduler algorithm, an extended allocation algorithm handling safety-critical

redundancy. By these modifications and extensions, DECHLS became a capable

tool for providing various resulting designs to compare and evaluate them already

on the SLS level without any lower level implementations.

The benchmark presented in the paper illustrates on comparing with existing

solutions that the preliminary decomposition in DECHLS increased the number of

subfunctions. Hereby, more freedom remains for the scheduling and allocation

phases. It can also be observed that a proper systematic scheduling could lead to

higher processor utilization even at high communication times between

processors.

Consequently, such an adaptation of the DECHLS tool, helps to compare and

evaluate various resulting HMAs exclusively on the SLS level, without

implementing the whole system.

References

[1] Gy. Rácz, P.Arató, „A System-Level Synthesis Approach to Industrial

Process Control Design”, 23rd IEEE International Conference on Intelligent

Engineering Systems, Gödöllő, Hungary, 2019

[2] Rácz, Gy.; Arató, P. "A decomposition-based system level synthesis

method for heterogeneous multiprocessor architectures," 2017 30th IEEE

International System-on-Chip Conference (SOCC), Munich, Germany,

2017, pp. 381-386

[3] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, D. Stroobandt, “An

overview of today’s high-level synthesis tools”, Design Automation for

Embedded Systems, 16(4), 31-51, 2012

[4] Mentor Graphics Catapult C software manual:

https://www.mentor.com/hls-lp/catapult-high-level-synthesis/

P. Arató et al. Application of a System-Level Synthesis Tool in Industrial Process Control Design

 – 172 –

[5] Xilinx Vivado design Suite Manual:

https://www.xilinx.com/products/design-tools/vivado.html

[6] A. Canis, J. Choi, B. Fort, B. Syrowik, R. L. Lian, Y. T. Chen, H. Hsiao, J.

Goeders, S. Brown, J. H. Anderson, "LegUp High-Level Synthesis,"

chapter in FPGAs for Software Engineers, Springer, 2016

[7] P. Arató, T. Visegrády, I. Jankovits, “High Level Synthesis of Pipelined

Datapaths“, John Wiley & Sons, New York, ISBN: 0 471495582 4, 2001

[8] N. Govil, S. R. Chowdhury, “GMA: a high speed metaheuristic algorithmic

approach to hardware software partitioning for Low-cost SoCs”, 2015

International Symposium on Rapid System Prototyping (RSP), Amsterdam,

2015

[9] L. Shuo, “System-Level Architectural Hardware Synthesis for Digital

Signal Processing Sub-Systems.” PhD thesis, Stockholm, 2015

[10] Microsemi Synphony Model Compiler User Guide:

https://www.microsemi.com/product-directory/dev-tools/4899-

synphony#documents

[11] IEC, IEC 61131 en:2003, Programmable Controllers

[12] K. M. Hangos, F. Friedler, J. B. Varga, L. T. Fan, “A graph-theoretic

approach to integrated process and control system synthesis”, IFAC

Proceedings Volumes, 27(7), 1994, 61-66

[13] IEC, IEC 61131-3 en:2003, Programmable Controllers - Part 3:

Programming languages, 2018

[14] Gy. Rácz, P. Arató, “Adapting the system level synthesis methodology to

industrial control design”, Proceedings of the Workshop on the Advances

of Information Technology: WAIT 2018, Budapest, 2018, 131-136

[15] P. Arató, D. Drexler, Gy. Rácz, “Analyzing the Effect of Decomposition

Algorithms on the Heterogeneous Multiprocessing Architectures in System

Level Synthesis” Scientific Buletin of Politechnica University of Timisoara

Transactions on Automatic Control and Computer Science, 60(74) 39-46,

2015

[16] X. Y. Zhu, M. Geilen, T. Basten and S. Stuijk, "Static Rate-Optimal

Scheduling of Multirate DSP Algorithms via Retiming and Unfolding,"

2012 IEEE 18th Real Time and Embedded Technology and Applications

Symposium, Beijing, 2012, 109-118

[17] ABB Freelance Engineering, https://new.abb.com/control-

systems/essential-automation/freelance/engineering

