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Abstract: In this paper, a new multiobjective optimization approach is proposed for the 
selection of the optimal values for cutting conditions in the face milling of cobalt-based 
alloys. This approach aims to handle the possible manufacturing errors in the design stage. 
These errors are taken into consideration as a change in design parameter, and the design 
most robust to change is selected as the optimum design. Experiments on a cobalt-based 
superalloy were performed to investigate the effect of cutting speed, feed rate and cutting 
depth on the cutting forces under dry conditions. Material removal rate values were also 
obtained. Minimizing cutting forces and maximizing the material removal were considered 
as objectives. It is believed that the used method provides a robust way of looking at the 
optimum parameter selection problems. 
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1 Introduction 

Cobalt-based superalloys are used extensively in applications that require good 
wear, corrosion and heat resistance [1, 2]. Such features make them preferable in 
the nuclear and aerospace industries [3-5]. Among the cobalt-based superalloys, 
the most common ones are stellite alloys, especially the well-known stellite 6. The 
use of this alloy in industry has been increasing recently. Application areas 



S. Aykut et al. Robust Multiobjective Optimization of Cutting Parameters in Face Milling 

 – 86 – 

include pulp and paper processing, oil and gas processing, pharmaceuticals, 
chemical processing and medical applications. It is also employed in applications 
where corrosion resistance is an important factor. 

As the use of cobalt-based stellite alloys has extended into various industrial 
sectors, the need for improving corrosion resistance of stellite alloys has increased 
as well. It has been observed that processing changes most probably affect the 
corrosion performance due to its effect on the microstructure of stellite alloy [6]. 

Cobalt-based superalloys are primarily based on carbides in Co matrix form. Their 
strength at grain boundaries, distribution, size and shape of carbides depend on 
processing conditions. Solid solution strength of Co-base alloys is normally 
provided by tantalum, tungsten, molybdenum, chromium and columbium [7-9]. 
Today, these alloys exist in a variety of more than 20 commercially available 
products, being used extensively in high temperature applications requiring 
superior wear, corrosion and heat resistance [10-11]. 

There are two main problems in machining cobalt-based superalloys. The first one 
is short tool life due to the working hardening and attrition properties of the 
superalloys. The second is the severe hardening of the surface of machined work 
pieces due to heat generation and plastic deformation. In order to achieve adequate 
tool life and the surface integrity of the machined surface, it is crucial to select 
reasonable machining conditions and parameters [4]. 

It is difficult to machine superalloys. The machinability of superalloys has not 
been improved enough, although there are new improvements in cutting tools. 
Machinability can be improved by minimizing tool-chip connection area, 
providing a sharp cutting edge and minimizing cutting depth. Machinability can be 
also improved further by providing minimum heat extraction, which results in a 
slow cutting speed and feed rate [4]. 

Metal machining not only requires knowledge of related areas of science and 
technology, but also plays an important role in manufacturing [12]. Because of its 
significance and complication, much attention has been paid to the cutting 
process, and many approaches have been attempted to get a better understanding 
of metal cutting principles. So far these methods have been mainly confined to 
either theoretical or experimental works. It is well-known that experimental 
studies are reliable and practical, but they are usually time-, labor- and material-
consuming. Regarding theoretical analyses, there is experience in establishing and 
handling mathematical models, but much less experience and even avoidance of in 
experimental studies. The optimization method used in this paper utilizes few 
experimental results; therefore, it avoids lengthy operations. In addition, it uses a 
simple mathematical model of the cutting forces. Thus, it avoids complicated 
mathematical models. The combination of both approaches achieves a robust and 
reliable estimation. 
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There are several studies on surface milling [13-15]. These studies show that 
cutting forces also increase when feed rate and cutting depth increase. As cutting 
speed is a parameter directly affecting tool life, cutting forces are not directly 
related to the cutting speed. Since tool life is longer in asymmetric milling than in 
symmetric milling [4, 14], asymmetric face milling was preferred in this study. 
Additionally, inclined cutting theory is used in which cutting the tool grasps the 
work piece well and chip is removed as soon as possible. 

This paper mainly focuses on finding the optimum parameters considering the 
cutting forces and material removal rate for milling of cobalt-based alloys. The 
cutting tests were carried out under dry conditions using PVD coated inserts. The 
machining parameters are optimized by using a new approach based on 
robustness. The practical cutting parameters can be different from what the 
manufacturers predict due to the uncertainties in material properties and the 
variations of the parameters in manufacturing. The used method takes care of 
these uncertainties by giving small deviations to parameters. From this 
perspective, this study is unique as an application to machining of cobalt-based 
alloys. Furthermore, suitability of the method is also analyzed by finding the 
optimum parameters. 

The commonly used quantitative methods consider a single objective, such as 
minimization of cost or maximization of profit, for the optimization of the 
machining operations. For the process of the single objective optimization, several 
different techniques were proposed such as differential calculus [16], geometric 
and stochastic programming [17], regression analysis [18, 19], linear 
programming [20], genetic algorithm [21], and computer simulation [22]. In 
addition, there are also other local search methods, such as tabu search, ant colony 
optimization, pattern search, scatter search and fuzzy possibilistic programming 
[23]. 

In this study, optimization of the machining operation is considered as a 
multiobjective optimization problem. The new approach, considering robustness 
that does not require gradient calculations, useful with discrete variables, has 
shown its effectiveness and usability [24]. 

2 Optimization Methodology 

Generally, uncertainty can be classified into two types: reducible and irreducible 
[25, 26, 27, 28]. Reducible uncertainty, often referred to as epistemic uncertainty, 
is used to represent incomplete information about an event such as a simulation or 
model of an engineering problem. In contrast, irreducible uncertainty, often 
referred to as aleatory uncertainty [25, 26], arises due to the inherent uncertainty 
associated with an engineering system under consideration. Irreducible uncertainty 
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refers to the uncertainty or a part of uncertainty that cannot be reduced at any 
expense due to its inherent nature such as the likelihood of the fractional 
components in raw crude oil. Thus, it is treated as irreducible. Research streams 
have been extensively developed to understand and deal with uncertainty in design 
problems along two inter-related, but different directions: robust optimization [29] 
and sensitivity analysis [30]. Li [31] proposed an integrated approach that 
incorporates two existing approaches into one optimization procedure: a robust 
optimization approach used to design around irreducible uncertainty [32] and a 
global sensitivity analysis to deal with reducible uncertainty [33, 34]. Despite the 
fact that this study employs the same approach, it focuses on implementation 
problems having a discrete solution set and on the investigation of the effect of 
certain change in parameters, instead of performing sensitivity analysis. The 
implementation of the proposed approach to find the optimum cutting conditions 
in machining a superalloy does exist in literature, although it has already 
implemented in two different problems [24, 35]. 

This approach has two main steps: obtaining Pareto optimum points and selecting 
the robust optimum point. In this study, the design space is formed by the obtained 
data from the experiments. The Pareto points are obtained by using weighting 
function methodology and the optimum point is selected among them according to 
the new approach considering robustness. A comprehensive survey on robust 
optimization can be found in [36]. According to this analogy, this study can be 
described as a tolerance design treating uncertainty at deterministic parameters. 
This approach has proved that it is quite useful in dealing with discrete variables 
defined on a population of cutting condition values obtained from experiments. 

2.1 Obtaining Pareto Optimum Set 

Over the past few decades, multiobjective optimization has been acknowledged as 
an advanced design technique in optimization. The reason is that the most real-
world problems are multidisciplinary and complex, since it is common to have 
more than one important objective in each problem. To accommodate many 
conflicting design goals, one needs to formulate the optimization problem with 
multiple objectives. 

A multiobjective optimization problem can be formulated as follow: 

Min  [f1(x), f2(x),..., fn(x)] 

subject to          

gj(x) ≥ 0     j = 1,2,...,m                                              (1) 

hj(x) = 0    j = 1,2,...,p< n 

where x is a n-dimensional design variable vector, fi(x) is the objective function, 
gj(x) and hj(x) are inequality and equality constraints. 
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A variety of techniques and applications of multiobjective optimization have been 
developed over the past decade. The progress in the field of multiobjective 
optimization was summarized by Marler and Arora [37] and later by Chinchuluun 
and Pardalos [38]. It is inferred from these surveys that if one has decided that an 
optimal design is to be based on the consideration of several objectives, then the 
multiobjective theory (Pareto theory) provides the necessary framework. If the 
minimization or maximization is the objective for each criterion, then an optimal 
solution should be a member of the corresponding Pareto set. In addition, further 
improvements in one criterion require a clear tradeoff with at least one another 
criterion. 

Radfors, et al [39] in their study has explored the role of Pareto optimization in 
computer-aided design. They used the weighting method, the noninferior set 
estimation (NISE) method, and the constraint method for generating the Pareto 
optimal. Marler and Arora [40] have investigated the fundamental significance of 
the weights in terms of preferences, the Pareto optimal set, and objective-function 
values. Kim and de Weck [41] presented an adaptive weighted sum (AWS) 
method for multiobjective optimization problems. In the first phase, the usual 
weighted sum method is performed to approximate the Pareto surface quickly, and 
a mesh of Pareto front patches is identified. Each Pareto front patch is then refined 
by imposing additional equality constraints that connect the pseudonadir point and 
the expected Pareto optimal solutions on a piecewise planar hypersurface in the m-
dimensional objective space. In this study, the weighted sum method was used and 
a brief explanation of the method is given at the following paragraphs. 

Pareto serves optimality as the basic multiobjective optimization concept in 
virtually all of the previous literature [42]. The Pareto optimal is stated in simple 
words as follows: A vector X* is Pareto optimal if there exists no feasible vector 
X which would decrease some objective function without causing a simultaneous 
increase in at least one objective function. This definition can be explained 
graphically. An arbitrary collection of feasible solutions for a two-objective 
minimization problem is shown in Figure 1. The area inside of the shape and its 
boundaries are feasible. The axes of the graph are the objectives: F’ and Q’. It can 
be seen from the graph that the noninferior solutions are found in the portion of 
the boundary between points A and B. Thus, here arises the decision-making 
problem from which a partial or complete ordering of the set of nondominated 
objectives is accomplished by considering the preferences of the decision maker. 
Most of the multiobjective optimization techniques are based on how to elicit the 
preferences and determine the best compromise solution. From this perspective, 
the used approach differs from other techniques. This approach chooses the 
optimum point by considering the change in parameters and the effect of change 
to objectives. 
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Figure 1 
Graphical interpretation of Pareto optimum 

The weighted sum method is based on the preference techniques of the weights’ 
prior assessment for each objective function. It transforms the multiobjective 
function to a single criterion function through a parameterization of the relative 
weighting of the objectives. With the variation of the weights, the entire Pareto set 
can be generated. This means that we change the multiobjective optimization 
problem to a single optimization problem by creating one function of the form. 
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where wi ≥ 0 are the weighting coefficients representing the relative importance of 
the objective. 

The best results are usually obtained if objective functions are normalized. In this 
case, the vector function is normalized to the following form 
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Here, fi° is generally the maximum value of ith objective function (A condition 
fi

°≠0 is assumed). 

In this study, the total force and cutting flow of material are considered as 
objectives. The total force value is the resultant force of the obtained forces in 
experiments, and the cutting flow value is obtained by using Equation 5. 
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where ap, ae and f represents cutting depth, cutting width (constant) and feed, 
respectively. The cutting flow of material, Q, should be maximized, and total force 
F should be minimized to minimize the tool wear and used power. Thus, to 
maximize the composite weighted function, inverse of the force is taken as 
objective and the objective function (J) is set as 

Qw
F

J .1
+=         (6) 

where w is a weighting co-efficient varied to obtain Pareto optimum points. In 
order to bring the values in the same range, Q and (1/F) are normalized with their 
maximum values where the relation in Equation 7 is used to obtain Pareto 
optimum values; 

max

max .'.'
Q

Qw
F

FQwFJ +=+=      (7) 

The design space is related with the allowed maximal dimension of the controlled 
variable vectors used during the machining operation. The design variables are the 
cutting speed (Vc), the feed (f) and the cutting depth (ap). The design space is a 
typical discrete and non-convex domain. 

2.2 Selecting the Robust Optimum Point 

At the second step, according to the Pareto optimum points, the optimum point is 
selected based on changes in the objective function when small variations are 
permitted in design variables. In this study, equal contributions of each variable 
are considered. Based on positive/negative variations in design variables, and 
average changes in the objective function values are calculated at every Pareto 
optimum point. Figure 2 shows the change in parameter and objective values for 
two parameter case. 

The optimum point is selected as the one having the minimum changes on 
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where n is the number of design variable change around every Pareto optimum 
point, F’(zo), Q’(zo) are the objective function values at the Pareto optimum point, 
F’(zi), Q’(zi) are the objective function values when a certain change is applied to 
a design parameter, and j is the index of the Pareto optimum point [24]. While 
calculating the change in objectives, the objective values that are not in the 
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feasible region are not taken into account. For example, the changes in objective 
values at point 1, 5 and 6 in Figure 2 are not considered because they are not in the 
feasible region. 

 
Figure 2 

Change in design parameters (a) and objectives (b) 

3 Experimental Setup 

The experiments to investigate the cutting forces for asymmetric face milling were 
carried out on a CNC milling machine. The influence of the other machining 
conditions (feed rate, axial depth of cut and feed rate per tooth) on the cutting 
forces in dry cutting were also considered. A 9 kW Johnford WMC-850 series of 
CNC milling machine was used. The cutting forces were measured by using a 
Kistler 9265B series dynamometer. 

Surface machining was done with the parameters selected by considering the 
recommended values of ISO for superalloys [43]. The experiments are given 
parameter values as shown in Table 1. 

Table 1 
Cutting conditions for face milling 

Cutting speeds Vs m/min 30,35,40 
Feed rates f mm/min 60,70,80,90,100 
Depths of cut ap mm 0.25, 0.5, 0.75 
Widths of cut ae mm 50 
Feed rates per 

h
Fz mm/tooth 0.1 

Coolant -- -- Dry 
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To avoid thermal effects, lower cutting speeds were chosen. In addition, higher 
cutting speeds result in severe tool wear and the higher feeds cause a large 
deformation rate. Ranges for process parameters and the obtained results are 
shown in Table 2. 

The stellite 6 workpiece used in the machining test is made from cast material. 
The chemical composition of the workpiece material is given in Table 3. The 
hardness of the workpiece is 44 HRC. The tool material ISO P30 (SECO grade 
H40, quality insert) was coated using PVD (Physical Vapor Deposition) [44]. 

4 Results and Discussion 

The approach described above was applied to the experimental data given in 
Section 3. In this study, three parameters (the cutting speed, the feed and the 
cutting depth) were considered. The experiments in Table 3 were used in the 
calculation. The change in cutting depth was assumed as 0.25 mm, the change in 
feed was assumed as 10 mm/min. and the change in cutting speed was assumed as 
5 m/min. The objective functions were evaluated under these assumptions. Then, 
the Pareto points were evaluated using weighting function. A sample calculation is 
given in Table 4 for the first data of Table 2 and w=0.1. 

For every point, objective function values were calculated. Even though the 
weighting coefficient of the objective function is firstly changed from 10-6 to 106, 
it has been seen that it is enough to change from 10-1 to 10 to get the Pareto 
optimum points (Table 5). 

Table 2 
The experimental values obtained in machining 

Data ap (mm) f (mm/min) Vc (m/min) Fz(N) Fy(N) Fx(N) 
1 0.25 60 30 140 50 40 
2 0.25 70 30 150 70 70 
3 0.25 80 30 170 90 90 
4 0.25 90 30 210 130 140 
5 0.25 100 30 300 140 200 
6 0.25 60 35 220 125 180 
7 0.25 70 35 240 140 175 
8 0.25 80 35 360 175 240 
9 0.25 90 35 380 150 250 
10 0.25 100 35 400 180 265 
11 0.25 60 40 250 160 140 
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12 0.25 70 40 280 165 150 
13 0.25 80 40 300 170 170 
14 0.25 90 40 320 180 175 
15 0.25 100 40 360 200 180 
16 0.50 60 30 240 120 160 
17 0.50 70 30 280 120 170 
18 0.50 80 30 310 150 175 
19 0.50 90 30 340 280 180 
20 0.50 100 30 380 300 200 
21 0.50 60 35 150 200 160 
22 0.50 70 35 190 210 200 
23 0.50 80 35 200 200 200 
24 0.50 90 35 250 210 250 
25 0.50 100 35 350 220 300 
26 0.50 60 40 280 130 150 
27 0.50 70 40 300 210 200 
28 0.50 80 40 320 200 210 
29 0.50 90 40 330 210 230 
30 0.50 100 40 500 310 300 
31 0.75 60 30 325 160 300 
32 0.75 70 30 350 170 320 
33 0.75 80 30 365 185 325 
34 0.75 90 30 400 225 335 
35 0.75 100 30 450 250 360 
36 0.75 60 35 250 180 180 
37 0.75 70 35 280 200 220 
38 0.75 80 35 300 220 250 
39 0.75 90 35 310 250 250 
40 0.75 100 35 410 310 380 
41 0.75 60 40 330 300 310 
42 0.75 70 40 380 320 325 
43 0.75 80 40 425 280 355 
44 0.75 90 40 500 330 360 
45 0.75 100 40 530 375 375 
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Table 3 
Composition of the experimental material Stellite 6 

Element C Si Mn Cr Ni Mo W Ti Fe Ta Co 
Weight (%) 1.09 1.07 0.49 28.17 1.92 0.96 5.17 0.01 2.88 0.04 Balanced 

Table 4 
Calculation of an objective function value (Fmax=153.948 and Qmax=3.75 for the case) 

Data ap (mm) f (mm/min) Vc (m/min) Q Q/Qmax Fz(N) Fy(N) Fx(N) Fr Fmax/Fr J 
1 0.25 60 30 0.75 0.2 140 50 40 153.948 1 1.02 

Table 5 
Pareto optimum points 

Data ap (mm) f (mm/min) Vc (m/min) Weighting Coefficients 
1 0.25 60 30 0.1, 0.5 
2 0.75 100 30 1, 5, 10 

Change is given to the design parameters of obtained Pareto optimum points and 
deviation in objectives is calculated (Table 6). Only feasible points are given in 
this table. 

Table 6 
Change in parameter and objective for Pareto optimum points 

Change in Pareto 
Point 1 Obj. Func. Fmax/F Obj. Func. Q/Qmax

Deviation in 
Fmax/F 

Deviation in 
Q/Qmax 

0.25;60; 30 1 0.2 0 0 
0.25;60; 35 0.495769 0.2 0.504231 0 
0.25;70; 30 0.85659 0.233333 0.14341 0.033333 
0.25;70; 35 0.468829 0.233333 0.31171 0.033333 
0.5; 60; 30 0.492776 0.4 0.507224 0.2 
0.5; 60; 35 0.518664 0.4 0.481336 0.2 
0.5; 70; 30 0.441295 0.466667 0.558705 0.266667 
0.5; 70; 35 0.44404 0.466667 0.55596 0.266667 

Change in Pareto 
Point 2 Obj. Func. Fmax/F Obj. Func. Q/Qmax

Deviation in 
Fmax/F 

Deviation in 
Q/Qmax 

0.75;100;30 0.245073 1 0 0 
0.75; 90; 30 0.27094 0.9 0.025867 0.1 
0.75;100;35 0.240838 1 -0.00424 0 
0.75; 90; 35 0.327401 0.9 0.082328 0.1 
0.5; 100; 30 0.293888 0.666667 0.048815 0.333333 
0.5; 90; 30 0.323546 0.6 0.078473 0.4 

0.5; 100; 35 0.301396 0.666667 0.056323 0.333333 
0.5; 90; 35 0.374371 0.6 0.129298 0.4 
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As a last step, the squares of total deviations and their mean were calculated by 
using Equation 8. It is seen that the first Pareto point has a total average deviation 
of 0.236451 and the second Pareto point has a total average deviation of 0.074765. 
the second Pareto point is the optimum point, having the minimum deviation. The 
optimum cutting condition found is at ap=0.75 mm; f=100 mm/min; Vc=30 m/min. 

Conclusions 

Since cutting conditions regulate the machining process through the developed 
cutting forces, the optimization of machining parameters is important. 
Uncontrollable variations are unavoidable in machining due to the quality of 
manufacturing tools, measurement tools, operators’ mistakes, imperfections 
during the manufacturing processes, etc. The method used was to evaluate average 
deviations from the Pareto optimum points because of uncontrollable variations. 
The selection of the optimum design point with the minimum deviation is the 
criterion to find the robust optimum point. 

Although there are several methods in literature for the multiobjective 
optimization of machining processes, a new approach is used in this work. The 
main advantage of this approach is to get the robust optimum point. In addition, 
there is no need to calculate complex modeling formulations or simulations of the 
process, which requires a lot of time and hardware. Instead, simple statistical 
calculations are enough to get acceptable results. Moreover, this approach gives 
much more reliable solutions because experimental data were used, and these data 
were the exact values to represent the process. 

The used method has proved that it is very useful when dealing with discrete 
variables defined on a population of cutting condition values obtained from 
experiments. It is believed that this method provides a robust way of looking at the 
optimum parameter selection problem. In addition, it can easily handle those cases 
where each of the design variables has different uncertainty ranges. 

The results of the case study have shown the benefits of the new approach. The 
optimum cutting conditions are determined for the machining of Cobalt-based 
alloy stellite 6 material as ap = 0.75 mm; f = 100 mm/min and Vc = 30 m/min. 

When the results are compared with previous study which considered surface 
roughness, it is seen that feed values were same, but depth of cut and cutting speed 
get higher values since material removal rate and resultant force are considered in 
the meantime. 
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