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Abstract: Following the wide spread usage of Fuzzy Systems, Rulet®edces emerged as
one of the most important areas of research in the field of Fuzzy Goktamy rule reduction
methods have been proposed in the literature and can be broadly cldsstiid osslessor
Lossywith respect to the inference, based on whether the outputs of the origidaihe
reduced rule bases are identical or not. In a typical Multi-Input-SinglggDt fuzzy system
the number of rules far exceeds the number of fuzzy sets defined anfibedomain. This
suggests that the rule base can be partitioned into sets of rules, eackisgtrhapped to
a single consequent fuzzy set. In this paper, we investigate the conditidhe inference
operators employed in a fuzzy system that enable “lossless” mergingesf with identical
consequents.

After briefly surveying the many techniques that have been proposedi®veducing the
number of rules, we propose a general framework for Inference azy$ystems and then
propose some gliciency conditions on this general framework that give us a class of Fuzzy
Systems that allow lossless rule reduction of the type mentioned above.efVexjiiore
these conditions in the setting of Fuzzy Logic. We find that R- and S-implisatiayna very
critical role. We give examples from the above class of Fuzzy Systethss &tudy we apply
the above technique only on rules whose antecedents and conseqednizzg sets.

Keywords: Fuzzy Systems, Rule Reduction, Residuated Implicatiomsg $tmplications,
Fuzzy Inference.

1 Introduction

Following the wide spread usage of Fuzzy Systems, Rule Riedutas emerged as
one of the most important areas of research in the field of fFGzmtrol. It is well
known that an increase in the number of input variablegarie number of mem-
bership functions in the input domains quickly lead to a covatorial explosion in
the number of rules. On the other hand the number of odgrisequent fuzzy sets
remains a constant and is usually far less than the numbeiles.r This suggests
that the rule base can be partitioned into sets of rules, seicheing mapped to a
single consequent fuzzy set. Thus the rules, though witkrdint antecedents, but
with identical consequents can be merged into a single mlg. such merger of
rules, though reduces the number of rules may nabbslessi.e., the inference
obtained from the original rule base and the reduced rule barsa given input
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may not be identical. In this paper, we investigate the dah on the inference
operators employed in a fuzzy system that enable "losskaesjing of rules with

identical consequents. This provides us with a class of \F8gstems in which the
antecedents of the rules with identical consequent can tmbioed to reduce the
number of rules in an inference invariant manner.

In section 2 we give a brief survey of the various rule redaurctechniques pro-
posed in the literature. In section 3 we propose a genenaleinark for Inference
in Fuzzy Systems and in section 4 we givéfisiency conditions on the inference
framework that ensure lossless rule reduction of the typetioreed above. In sec-
tion 5 we explore each of these conditions in the setting azdLogic. In section
6 we give a few examples from the above class of SISO Fuzzye®sthat satisfy
the above sfliciency conditions.

2 Rule Reduction as an Issue

2.1 Rule Reduction Techniques in the Literature

For ann-input Multi-Input Single-Output (MISO) fuzzy system, Wi, member-
ship functions defined on each of the input doma¥g = 1,2,...,n), we have
m=ng XNX...xN, = [[{L; n rules. Thus an increase in the number of input
variables antr the number of membership functions in the input domairiskiy
lead to a combinatorial explosion in the number of rules.

The several approaches taken towards Rule Reduction irylBystems can be
classified into the following categories:

e Selection of important rules that contribute significattithe inference.
¢ Elimination of redundant rules based on some criteria.

e Merger of rules that share some common property.

2.1.1 Rule Reduction while Building a Fuzzy Rule Base

While trying to build a minimal fuzzy system, the authors 2 [%3] have em-
ployed Genetic Algorithm (GA) or GA-type optimisation tarelnate redundant
rules angor identify important or significant rules.

In [44] the authors have converted a linear fuzzy system iickivthe growth of
the parameters with respect to inputs is exponential to aivalgnt non linear fuzzy
system in which their growth is linear. Works have also appedhat reduce the
number of rules by reducing the number of input variablesubh Mathematical
Fusion or through Symbolic Fusion, which involves the usenafti-dimensional
fuzzy sets. In [70] a fuzzy binary box tree data structure lbeen proposed. In
[43] the authors have designed a Fuzzy Logic Controller (Fh&sed on Variable
Structures techniques to be assured of Stability. They hedheced the number of
rules fromm" to mn where there are input domains andn fuzzy sets on each
domain.
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2.1.2 Rule Reduction in an existing Fuzzy Rule Base

Towards reducing the number of rules in an existing fuzzg halse, L.T. Koczy and
Hirota [51] reduced a dense rule base to sparse rule basgjmag the essential
information in the original rule base, and all other rulesaveeplaced by the In-
terpolation Algorithm that can recover them to a certairuaacy prescribed before
reduction.

Following the Selection of significant rules or eliminatiohredundant rules,
Rule Reduction has been addressed in [46,48,52] using GAcwallitionary Al-
gorithms, in [61,79,82] using Orthogonal Transformatioins[13] using Singular
Value Decomposition, in [72] using Linear Matrix Inverside6] employs a Simi-
larity Measure to prune the rules.

In [67] the authors use a similarity measure to merge ruldgh Wizzy an-
tecedents aridr consequents that are similar to each other above a sjgttifesh-
old. Their main stated intention is the reduction in numiddunzy sets used in the
model.

In cases where couplindtects between élierent inputs are small, the design of
an MISO fuzzy system has been reduced to that of designingaf $#SO fuzzy
systems, in a decentralised fashion, each SISO fuzzy systémy designed for a
pair of input-output variables. Many approaches based emjiproximation or de-
composition of multi-dimensional fuzzy relations into t@onensional ones have
been studied [19,47]. In [41] the conditions for reducingltirmdlimensional fuzzy
relations into two-dimensional ones are studied for systasing max-min compo-
sition operator. However, such approximation may lead &atigfactory results if
some peculiarities of the process are neglected.

In hierarchical fuzzy controllers introduced in [62] thenmoer of rules increase
linearly with the number of system inputs, but the decisibmwbere the diterent
variables are to be put in the hierarchy is oftenfaéclilt process.

2.2 Need for Lossless Rule Reduction Techniques

Many of the rule reduction methods in the literature give tig an approximation
error, i.e., the inference obtained from the original ridsdand that obtained from
the reduced rule base may not be the same.

In [14] Baranyi et al, discuss the trad@ detween Approximation Accuracy
and Complexity. See also [50] for a discussion on the tratlbeiween computa-
tion time and precision. Thus the approximation accurat¢yexed should not be
sacrificed in the process of complexity reduction. All theseessitate a study on
rule reduction techniques that are lossless with respénfdacence.

2.2.1 Lossless Rule Reduction Techniques in the literature

A few of the rule reduction techniques that are losslessisted below. We define
"lossless” in the sense that, the inference obtained fragrotiginal rule base and
that obtained from the reduced rule base is identical.
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In [64] an enhanced two-level Boolean Synthesis methogolegemployed,
where in, a given fuzzy rule with fuzzy connectives is mapfed corresponding
expression with boolean connectives, with each input fsetybeing given a label.
The method seeks to reduce the number of connectives endglojtee antecedents
of the rule. In [45] the authors in order to apply Karnaugh sy rule reduction
represent the linguistic values on a domain as 0 or 1. Thdugheduced rule base
can infer "sensibly” even if the original rule base were imgete, if the output is
identical in rules where one or more antecedents dferdint the method does not
merge these rules and thus the rule reduction is incomplete.

In [22] the authors represent a Fuzzy System as a Fuzzy hder&raph and
try to minimise the number of nodes - rules - by a two step @mecAgain the rule
reduction is incomplete since non-interacting antecedarg not combined even
though their outputs are identical and also it is lossle$g fon the min implication
operator.

In [23] the authors have proposed a novel, though much debatke 25, 30,
59], rule configuration called the Union Rule Configuratiarherein the growth
in number of rules is only linear instead of exponential, that proposed method
is applicable only if there is monotonicity or ordering arganputs and member-
ship functions and a one-one correspondence between ingaiaput membership
functions.

In [49] the author follows a similar approach as ours, thanefging rules with
identical consequents by proposing new fuzzy operatiorerevhertain properties
of regular fuzzy operations have been either relaxed ormpobsed.

In [16] Baranyi et al., discuss both exact and non-exactaegoiu methods using
Singular Value Decomposition methods, where by removinyg the zero-Singular
values one obtains lossless rule reduction and in the case alhSingular values
below a threshold are discarded, the error bounds for soegagypes of fuzzy
systems are also given in [11, 12, 80, 81]. Also [14, 15, 1T diuss complexity
reduction in Fuzzy Rule Bases using SVD. [13, 69, 82] give>arekent review of
rule reduction techniques based on Orthogonal Transfamnmsfnd discuss their
goodness.

2.3 Our Approach towards Lossless Rule Reduction

The approach we take towards Lossless Rule Reduction isrgemeles with iden-
tical consequents even withffirent antecedents. We do not propose any new fuzzy
operations to this end, but obtain some conditions that ifierdnt operators em-
ployed in a fuzzy inference system should satisfy. Also thalfieduced rule base,
obtained by employing our method, will contain only as mauigs in the rule base,

as there are output membership functions that featureckiotiginal rule base. If
there aren input domains andhinput fuzzy sets in each domain the total number of
rules that give a complete rule baseri. The best theoretical limit, so far, of a re-
duced rule base imn[43]. With our method it reduces to, wherek is the number

of output fuzzy sets that featured in the original rule basel, typicallyk < m.
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3 A General Framework for Inferencing in Fuzzy Sys-
tems

First we give some preliminaries on Fuzzy Logic Operatoas till be required in
the rest of this work. As usual we will denote byhe unit interval [Q1].

3.1 Fuzzy Logic Operators

Definition 1 ([37], Definition 1.1, Pg 3) A Negation N is a function from | to | such
that:

e N(0O)=1; N1)=0;
e N is non-increasing.

A negationN is called strict if in additionN is strictly decreasing and con-
tinuous. A strong negatiofl is a strict negatiorN that is also involutive, i.e.,
N(N(X)) = x, ¥x € I.

Definition 2 ([34] Definition 2.1 Pg 6) A t-norm T is a function from?Ito | such
thatVa, b, cel,

e T(a, 1) =a,

e T(ab)=T(b.a),

e T(aT(b,c)) =T(T(ab).c),

e T(a,b) < T(a, c)whenever kx c.

Definition 3 ([34] Definition 3.1 Pg 1Q) A t-conorm S is a function front lto |
such thatva, b, c €,

e S(a,0) = a,
e S(a,b) = S(b,a),
* S(a S(b.c)) = S(S(a b), ),
e S(a,b) < S(a c) whenever Ix c.
Definition 4 ([34] Definitions 6.1 Pg 17 & 6.11 Pg 18A t-norm T is said to be
e Continuousif it is continuous in both the arguments;

e Archimedean if for each(x, y) € (0, 1]? there is an ne N with X <y, where
x@ =T, X);
P —
n times

e Strictif T is continuous and stricly monotone, i.e(XJy) < T(x, 2) whenever
x> 0andy< z;
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Figure 1: Fuzzy SeB (left) and the fuzzy set.@ A B (right)

e Nilpotent if T is continuous and if each & (0,1) is such that ﬁ?) = 0 for
some ne N.

Definition 5. If B : X — |, a € I, and R is any binary operator on |, i.e., R
I x| — 1, then Ra, B) is a fuzzy set on X, i.e.,(B) : X — |, defined as
R(a, B)(X) = R(a, B(X)), Yx € X.

Remark 1. Thus R can also be seen as Rx F(X) — F(X)- whereF(X) denotes
the set of all fuzzy sets on X. For example(#R) = min(a, b) then in Figure 1 we
have Be F(X) and 0.4, B) = min(0.4,B) = 0.4 A B € F(X),i.eR(0.4, B)(X) =
min(0.4, B(x)) = 0.4 A B(x), for all x € X.

Definition 6. If A,B: X — |, and R is any binary operatoron |, i.e., R x| — I,
then RA, B) is a fuzzy set on X, i.e.,(R, B) : X — |, defined as R, B)(X) =
R(A(X), B(x)), Vx € X.

Remark 2. Thus R can also be seen as: FE(X) x F(X) — F(X)- whereF(X)
denotes the set of all fuzzy sets on X.

1 1

A 8
Ave
0 0

X X

(a) Fuzzy Set#\ andB (b) Fuzzy SeAv B

Figure 2: Fuzzy Setd andB

For example ifR(a, b) = max(, b) then in Figure 2(a) we havw&, B € E(~X) are
fuzzy sets orX and Figure 2(b) gived* = R(A, B) = max(A, B) = Av B € F(X).
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Definition 7 ([37] Definition 1.15, Pg 22) A function J: 12 — | is called a fuzzy
implication if it has the following properties:

J(p.r) = J(a.r)if g=p, (J1)
J(p,r) = J(p,9)ifr >s (J2)
JO,r)=1, VYrel, (J3)
Jp,1)=1, Ypel, (34)
J(1,0) = 0. (J5)

The following are the two important classes of fuzzy impiicas well-estab-
lished in the literature:

Definition 8 ([37] Definition 1.16, Pg 24) An S-implication dy is obtained from
at-conorm S and a strong negation N as follows:

Jsn(a b) = S(N(a).b).va,bel. @

Definition 9 ([37] Definition 1.16, Pg 24) An R -implication 3 is obtained from a
t-norm T as its residuation as follows:

Jr(a,b) =Sup{xel :T(ax) <b},Vabel. 2)

R- and S-implications satisfy (J1) - (J5). Tables 1 and 2fést of the well-
known S-implications and R-implications, respectively.

Name S(a,b) N(a,b) | Jsn(ab)
Dienes maxa, b) l1-a max1-a,h)
Reichenbach a+b-ab l1-a l-a+ab
Lukasiawicz | min(l,a+b) | 1-a min(1,1-a+b)

Table 1: Some of the well known S-implications with theirresponding t-conorms

t-norm T(a,b) Implication Jr(a,b)
Lukasiawicz| max0,a+b—1) || Lukasiawicz| min(1,1—-a+b)
. . 1, ifa<b
Mamdani min(a, b) Godel b, otherwise
. 1, ifa<b
Larsen min(1, a+ b) Goguen { b/a, otherwise

Table 2: Some of the well-known R-implications and theiresponding t-norms
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3.2 Fuzzy If-Then Rules

A linguistic statement X is A’ is interpreted as the variabbetaking the linguistic
value A. For example, ifx denotes "Temperature” (on a suitable domain), then it
can assume the following linguistic valuAsviz., high, more or less high, medium,
cool, very cold, etc. Each of the linguistic values (say f@tepresented by a fuzzy
set on the domaiiX of the linguistic variablex, i.e., A : X — |. The shape of the
graph of the function represents the concept (say high teatype). The concept
of high temperature is again context-dependent. For exanipgh temperature
(fever) for a human being is flerent from the high temperature in a blast furnace,
and accordingly the domain of the linguistic variable ies&d.

A Fuzzy If-Then rule is of the form

If xis AThenyis B, 3)

wherex, y are variables and, B are linguistic expressionsvalues assumed by the
linguistic variables. For example,

"If x (temperature) ig\ (High)
Theny (Pressure) i8 (Low)”

The above is an example of a SISO rule. A Two-Input SinglepOutule is of
the form

Ry : If xis Aandyis B ThenzisC,
where agairA, B, C are linguistic values taken by the linguistic variabkey, z over

their respective domains.

3.3 Different Stages in the inferencing of a Fuzzy System

Let us consider the following system wffuzzy if-then rules:

Ri @ IfxqisAL, ....x isA,ThenyisB
R : IfxiisA, ... .xisA ThenyisB (4)

Rn @ IfxgisAl, ....xisA} Thenyis B

whereA! € F(X) fori = 1,2,...,n are the antecedent fuzzy sets over ttheon-
empty domainsXy, Xo,..., Xn. Forj = 1,2,...,m, B; can be a fuzzy set on the
non-empty output domail, i.e., Bj € F(Y), as in the case of a Mamdani Fuzzy
System, oB; € Y as in the case of a constant-output Takagi-Sugeno-KangyFuzz
Systems.
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In the following we propose a general framework for Inferemnt Fuzzy Rule
Based Systems that captures the working of both the ediablimodels of Fuzzy
Systems - TSK and Mamdani models of Inference. Towards tids & Fuzzy Sys-
tem can be seen to consist of the following 5 stages:

3.3.1 Fuzzifier

If the given input is a crisp numbere X, it is fuzzified to get a fuzzy sef on the
corresponding input spacé i.e.,C : X — F(X), whereC(x) = X. Thus given a
vector of crisp pointX = [Xy, X, . .., %], wherex € X;, for every input spac;,
we get a vector of Fuzzy se¥s= [X1, Xo, . . ., Xn]. The often used [40,7%ingleton
Fuzzifierof a crisp numbexk is given as

Soa 1 ify=x (SF)
X) _{ 0 otherwise

Remark 3. It can be readily seen that the above stage of "Fuzzifier” is thverse
of "Defuzzification” - wherein we obtain a crisp number fronflezy set (See 3.3.6
below). Though in many actual implementations of Fuzzye8ysh crisp value is
directly given as input, the above stage has been added fmrgkty. Also many
times the input given to a fuzzy system is not precise owintatyy types of obser-
vation errors. For example, a reading from a sensor that Inees an input for the
controlling fuzzy system may be inherently imprecise duestoument errors. In
such cases a fuzzy set about the reading may be a more redaljstit. In this paper,
crisp inputs are identified with their fuzzified version agegi by(S F).

3.3.2 Matching

The input fuzzy sets{y, Xs, . . ., X,) are matched against their corresponding if-part
fuzzy sets in each of the rule antecedents in the Fuzzy Syseem

M : F(X) x F(X) — | (5)
whereM(A, X)) = a for Al andX; € F(X), j=1,...,m
A few matching functions used in the literature are giveedat section 5.4.1.

3.3.3 Combining

In a multi-antecedent fuzzy system, the various matchirtgge{BaiJ of then input
fuzzy sets to the antecedent of tffefuzzy if-then rule are combined to give thfi
values”u;j ,

wil" =1 (6)

Wherep(a{, cees af‘;) =uj, j=1,2,...,m yucan be any t- or t-conorms (see Section
3.1).
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3.3.4 Rule Firing

The combined valug; fires the rule consequent or the output fuzzyBesf the j™

rule. ThisB; can be a fuzzy set o,i.e.B; € F(Y), or a value inY, i.e.BjeY.
Thus we have
filxz->2Z 7

e WhenZzZ = F(Y) - the set of all fuzzy sets on the output domdini.e.B; €
F(Y), f(u;, Bj) = f; € F(Y) and is defined a$(u;, B;(y)) = fj(y),¥y e Y

e WhenZ =Y, the output domain itself, i.eB; € Y, thenf; € Y and is defined
an(/,tj, Bj) = fj.

Usually, f = &, the product, is commonly employed whBn € Y C R, while
a t-norm or any Fuzzy Implication Operator (Section 3.1his prefered choice if
Bj € F(Y).
3.3.5 Aggregation of Individual Inferences:

The fired output fuzzy sets (or crisp real numbefg) j = 1,2,...,m are then
aggregated to obtain the final inferred fuzzy set (or crigh member)

g:Z2">Z (8)
where again

o If Z = F(Y), the infered output sef(f1, .. ., fm) = B € F(Y). One can use any
of the fuzzy logic operators, t- or t-conorms, to obtBir F(Y).

e If Z =Y C R then the Weighted Average or the Weighted Sum are the com-
monly used aggregation operators fpr

3.3.6 Defuzzification

WhenZ = F(Y), g(fs, ..., fn) = B € F(Y) and we need to defuzzifg - a fuzzy
set onY - to a single valud € Y, using an appropriate defuzzification methods
follows:

h: F(Y) > Y 9)

The Centre of Area or the Mean of Maxima methods [42, pp. 3388] are the
most widely used Defuzzification methods.

The diferent stages and the corresponding mappings capturingattiins are
given in Table 3.

3.4 Different Models of Fuzzy System in the literature

Following are the two most established models of Fuzzy fyste
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Fuzzifier: X =C(X) C: X - F(X)

Matching: al = M(A, X) M : F(X) x F(X) - |
Combining: pi=p@,....a0) | pil"—>1

Firing: fj = f(uj, Bj) filxZ->2Z=F{)orY
Aggregation: B=g(f,...,fm) | 09:Z2">2Z

Defuzzification: | b = h(B) h:F(Y)->Y

Table 3: Diterent stages of a Fuzzy System

3.4.1 Mamdani Fuzzy System

E.H. Mamdani and S. Assilian [57] proposed the first type ofZyuRule Based
Systems. The rules in a Mamdani Fuzzy System are specifigdiditically both
for antecedents and consequents. Given a vector of crisgsirp= [X. % ..., X,
wherex' € X;, the final output fuzzy seB on Y for the fuzzy rule base in (4) is
obtained as follows:

BY) =VIL{IAL&IAB)LYyeY (10)

wherea/ = A/(x).

Though the Mamdani model is usually used with crisp inptitsai handle both
crisp and fuzzy inputs. In the case of a fuzzy inputs, %815 Ay, ..., X, IS Ay,
whereA; is a fuzzy set on the domai, the final output fuzzy seB on'Y for the
fuzzy rule base in (4) is given by (10), but Wi&#\ given by (11)

al = maxex (min(Al (x), A(x))) (11)

Also in the case of a crisp input, the crisp input can be stogléuzzified by
(SF*) (Section 3.3.1) into a fuzzy set and can be given as an inpttigduzzy
system. Thus given a vector of crisp inputs= [X], X, ..., %], wherex' € X,
for every input spaceX;, we get a vector of fuzzy input¥ = [Xg, Xz, ..., Xl
It can be easily seen that if instead of the crisp inpyisif their correspond-
ing singleton fuzzified inputs are given, i.éy, = X are inputs,@ = Al(X) =
MaXex, (MIN(A (X), Ai(X)} = Maxex (Min(A)(X), Xi(X)}. Thus we can always con-
sider an input for the Mamdani model of fuzzy system to be yuwaith the under-
standing that any crisp input is singleton fuzzified acangdi (SF*) and (10) can
be employed with (11).

Let the Matching Functiomaxex{min(A(X), B(x))} of two fuzzy setsA,B :
X — | be denoted by (A, B). Now, comparing the inference in (10) to the dif-
ferent stages in Section 3.3, it can be seen fhat My, u = A, f = A,g = Vv and
Z =F(Y).
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3.4.2 Takagi - Sugeno - Kang Fuzzy System

Instead of working with the linguistic rules of the kind eropéd in Mamdani Fuzzy

Systems, Takagi and Sugeno [71] proposed a new model basetesrwhose an-

tecedent is composed of linguistic variables and the caresgqs represented by a
real function of the input variables. TSK modefférs from the Mamdani model
both in the form of their rules and the inference operatoedudf in the case of

Mamdani model of a SISO fuzzy system a fuzzy rule has the f&m (

If xisAThenyisB

whereA andB are fuzzy sets oiX andY, respectively, then in the case of the TSK
model the rules have the form (12)

If xis A Then y= b(x) (12)

and the input is a crisp value for Their conclusion contains the real valued func-
tion b(x) and not a fuzzy set. This function can be non-linear, alifnousually
linear functions are applied. Then the TSK rules have thefor

If xis ATheny= px+q (13)

where the input is a crisp value farand p, g are constants. In general the rules
of a SISO and MISO TSK fuzzy systems are of the form given by @t (15),
respectively.

Rj : If xis Ay Theny=bj(x) (14)
R; : IfxlisAi, xnisALThenyzbj(Y) (15)

for j = 1,...,mand the input vectox’ = [x}, %5, ..., %] and eachx is a crisp value
inX fori=1,...,n.

Let us again consider a fuzzy rule basenofules of the form (15) and a vector
of crisp inputsx’ = [X]. %, ..., X ], wherex' € X, be given. In the TSK model of
fuzzy systems, the final crisp output is obtained as the Weth8um offit values”
and the rule consequents as given in (16).

FOO) = D () - bj(xX) (16)
j=1

wherey;(X) =TI & =TI, A/ (X) = AL(X) - AS(X) - ... - AN(X). _
As in Section 3.4.1, by taking the singleton fuzzified crigjput vectorx’,
as given by(SF*), it can be seen that, iy = X are inputs,a’ = Al(x) =
MaXex IMIN(A (x), A(X)} = maxex {min(A (x), Xi(x)}. Thus again one can always
consider the singleton fuzzified fuzzy $&tof a crisp inputx’ as being the input for
a TSK model of fuzzy system. Also product is the antecedemtxioer, i.e.u = [].
Though the product between the "fit value” of the given inutite antecedents of
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rule j, uj(x’) and its consequethij(x’) is an éfect of the Weighted Sum aggregation
employed and is not a rule connective, per se, one can pedoaggler it such so
that f = x for the TSK model in the above framework, i.€.; | x Z — Zis such
that f (uj(x), bj(x)) = uj(X) - bj(x), whereZ = Y c R, the actual domain of the
output fuzzy sets.

Now, comparing the inference in (16) to thdfdrent stages in Section 3.3, it
can be seenthdMl = My, u=n,f =r,g=XandZ=Y c R.

From the above two sections, it is clear that th&edéent stages in the inference
of an output, given an input, in a fuzzy system can be mappddierent functions
capturing the actions performed at every stage.

Definition 10. A model of Inference in a fuzzy system is given by the quantupl
Q = {M,u, f,0,Z} where My, f,g are the corresponding operators of the above
framework and Z is the domain of consequents of the rule.

Thus Mamdani Model of inference in a fuzzy system is definetthagjuintuple
Qm = {My, A, AV, IE(\O} while the TSK model of inference in a fuzzy system is
given by Qrsk = {M1, [[,T],2,Y € R}. We do not consider the fuzzifier stage
since a crisp input to the fuzzy system can be thought of asgleton fuzzified
input fuzzy set usingg F). Table 4 summarises the above discussion, whgre
Product,>. = Sum,v = max,A = min.

Name/ Type | M | u | f | g | Fuzzifier Z
TSK My [ TTTTT | 2 SF YCR
Mamdani My | A | AV SF F(Y)

Table 4:M, u, f, g andZ for the diferent models of fuzzy systems in Section 3.4

3.5 A Rule Reduction Technique for a Class of Fuzzy Systems

More often than not, the number of fuzzy sétsjefined on the single output domain
Y, is typically much less than the number of ruled.e.,.k < m. This suggests that
the antecedents of more than one rule lead to the same camgeda eliminate this
redundancy, we propose a new type @flme rule reduction where the rules with
the same consequent butfdrent antecedents are merged into a single rule. Then
we will have only as many rules as there are output membefghigions, in fact
only those that are part of the original fuzzy system.

The issue involved here is that despite the merging of thealbales, there
should be no loss of inference, i.e., the inference obtafmed the original rule base
and that obtained from the reduced rule base should be @@éniihis necessitates
the functionsM, i, f andg to possess some properties. These are explored in the
next section.

Remark 4. Also in the rest of the paper, we will only consider fuzzys®ISO or
MISO, as the case may be) of the type where both the antesamt@htonsequents
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are fuzzy sets on their respective domains. The inputs masidgeor fuzzy. In the
case of crisp inputs, we will consider their fuzzified vansas obtained usin{S F)
on the input.

4 Conditions on the General Framework for Lossless
Rule Reduction

The rule reduction procedure we propose is filine procedure, i.e., from the given
original rule base we club the rules with same consequettifiarent antecedents,
to produce new rules to replace old rules. In this, sectiod&termine the structure
of the antecedents of the newly formed rules. The followireptem gives dicient
conditions that the operators of the above proposed framieslmould satisfy to
obtainlosslessor inference invariantrule reduction by combining antecedents of
rules that have identical consequents.

4.1 The Restrictions ong, f,uand M :

Theorem 1. Let a model of inference in a fuzzy system be defined by Q
{M,, f,9,Z = F(Y)}, where Y is the output domain. The following conditions
on the operators Mu, f and g are sfficient to ensure inference invariant rule re-
duction, by combining antecedents of rules that have idahtionsequents, in any
MISO fuzzy system:

There exist operators,gg, 0, Which are commutative and associative binary
operators on | and for any.®, a;,ap, b1, by € 1, Aq, Ay, A which are fuzzy sets
defined on an input domain X and<CF(Y),

glf(aC), f(b,C)] = f(aoy b,C) (17)
u(ag, by) 0og u(ag, bp) = u(ay 0, az, by 0, by) (18)
M(A1, A) 0, M(Az, A) = M(A; 0, Az, A) (19)

Remark 5. In the LHS of (19) pis a binary operator on | while in the RHS of (19)
0, is the extension of,do fuzzy sets on X (See Definition 6 and Remark 2 in Section
3.1).

Proof. Without loss of generality, let us take a 2-input 1-outpwzfyisystem con-
sisting of three rules, wher¥; and X, are the input domains and the output
domain. Consider the fuzzy system given by the followingsuhritten in a sim-
plified form:

Ry :A,B — C
Ry: Az, B;, > C (20)
R;: Az, Bs > D
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whereAy, Ay, Az are fuzzy sets oiXy; By, By, Bs are fuzzy sets oiX, andC, D are
fuzzy sets ory.

Let us consider the inference in the above MISO - fuzzy systetime presence
of an input, say ¥ is A and x is B’, which is represented as = (A, B), where
A € F(X,) andB € F(X,). The MISO inference from the original rule base (20) is
given as:

ot flu(M(AL, A), M(B1, B)).C],
flu(M(A2, A), M(Bz, B)),C],
flu(M(As, A), M(Bs, B)), D]} (21)

Letting u(M(Aq, A), M(By, B)) asa andu(M(Az, A), M(By, B)) asb we have from
(17), withg being associative,

(21)

glol flu(M(Ag, A), M(By, B)), C],
f[u(M(Az, A), M(Bg, B)), C]},
f[u(M(As, A), M(Bs, B)), DI}
= oif[u(M(A1, A), M(By, B))
0g #(M(A2, A), M(Bz, B)), C],
flu(M(As, A), M(Bs, B)), D]} (22)

Again lettingM(A,A) = a € |, M(B;,B) = bj € I, i = 1,2, we have using (18) and
(19)

(22)

gl f[u(M(A1, A) 0, M(Az, A),
M(By, B) 0, M(B», B)),Cl,
f[u(M(As, A), M(Bs, B)), D} (23)
gl f[u(M(AL 0, A2, A), M(B: 0, Bz, B)).C],
f[u(M(As, A), M(Bs, B)), D} (24)

Thus the rule base in (20) can be reduced to the followingbvate containing just
two rules:

R; : A]_ OH A2, Bl O# Bz - C (25)
Ry :A3,Bs—> D

It can be easily seen that for a given input (A, B), the inference obtained from
the reduced rule base (25) under the given model of inferénhde identical to
(24). O

The above requirements on the general framework give usa ofd-uzzy Sys-
tems that allow lossless rule reduction by combining rulgh same consequent.

-127-



Conditions for Inference Invariant Rule Reduction in FRBS by combining rules with
J. Balasubramanian identical consequents

5 Analysis of the Requirements for Lossless Rule Re-
duction

In this section, we explore each of the above conditions émsless Rule Reduction
in the setting of Fuzzy Logic operators.

5.1 Conditions ong, o4 and o,

In this study we consider only continuous t-norms and t-corsofor g, oy ando,,,
which are by definition both commutative and associativas €hables us to extend
them to functions fromi" to | in the case oh-input domains.

5.2 On the Equation (17)

Typically in a Fuzzy Systenf (the rule firing operation) is interpreted either as a
t-norm, for example Mamdani®nin, or a Fuzzy Implication operator. In this work
we investigate the solution of (17) both withas a Fuzzy Implication Operator and
as a t-norm. We explore equation (17) in the following way:

e Fix f to be in a specific class of Fuzzy Implications or any t-norm @aryg
and henceg over conitnuous t-norms and t-conorms.

In this study, we consider the two most established and viedlisd families of
Fuzzy Implication Operators, viz., R- and S-Implicatio(See Definitions 8 and 9
in Section 3.1).

When f is fixed in (17),g and oy are taken to be any/$norms, we have the
following 4 possibilities:

f(T(p.q).r) = S(f(p.r). f(a.r)) (26)
f(S(p,q).r) = T(f(p.), f(q.1)) (27)
f(Ta(p. ).r) = T2(f(p. 1), f(a.1)) (28)
f(S1(p.q). 1) = Sz(f(p. 1), f(q.1)) (29)

5.2.1 f = JaFuzzy Implication

Fixing f to be any Fuzzy Implicatiod, we get the following four equations from
the above:

I(T(p.a). 1) = SQ(p. ). I(a.r)) (30)
ISP a).1) = TW(p.1). (@, 1)) (31)
I(Ta(p. ). 1) = T2(I(p, ), I(, 1)) (32)
I(S1(p. a). 1) = S2(3(p. 1), I(a, 1)) (33)

Recently withf = J interpreted as an R- or an S-implication amg S, an
t-conorm andby = T , a t-norm, Trillas and Alsina [76] have investigated (303 an
proven the following:
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Theorem 2. An S- or an R-implication J satisfies (3@)$ = max and T= min.

In [7] the authors have proven the following Theorem 3 conicey equation
(31) obtained by lettingd = J to be an R- or an S-implication am@} = S, an
t-conormandy=T , a t-norm,

Theorem 3. An S- or an R-implication J satisfies (3)$ = max and T= min.
Also we have the following result:

Lemma 1. For no Fuzzy Implication J, t-norm T (t-conorm S, respedyiveo
equations (32) ((33), respectively) hold.

Proof. Let p = 1,q = r = 0. Then using the property of t-normBg(1,0) = 0 and
(J3), we have that,

LHS 0f(32) J(T1(1,0),0) = J(0,0) = 1
RHS 0f(32) = T»(J(1,0),J(0,0)) = T»(0,1)=0

LHS= RHSimplies that 1= 0, which is absurd. Similarly, that (33) does not have a
solution can be seen by again fixipg= 1,g=r = 0. O

5.22 f=Tat-norm

In [76] it is also shown that (30) does not hold for the Mamd&ahinimum f =

J = A and the Larsen’s Produdt= J = [] operators. That (26) and (27) do not
hold whenf is any t-normT can be easily seen by takiq@g=r = 1 andqg = 0.
Thus fixingf = T to be a t-norm,we need to consider only the equations (28) and
(29) which become:

T(Tl(ps q)’ r) = TZ(T(p’ r)’ T(q’ r)) (34)
T(Sl(p’ Q)’ r) = SZ(T(p’ r)’ T(q’ r)) (35)

We have the following theorems:
Theorem 4. (34) is valid jfwhen T, = T, = min.

Proof. Claim: Ty = Toonl x I.
Letr = 1. Thenvp,qe€ |, we have

LHS of (34)= T(T1(p, ), 1) = T1(p, )

RHS of (34)= To(T(p,1), T(q,1)) = To(p,q) = LHS of (34)Vp,qe | iff T, = T,.
Now, letp=q=1,r €l. Then

LHS of (34)=T(T+(L, 1),r) =T(Lr) =r.

RHS of (34)= T(T(1,r), T(1,r)) = Ta(r,r) =1, ¥r € | iff T; = min, the only

idempotent t-norm. O

Theorem 5. (35) is valid ffwhen S =S, =S and T distributes over S.
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Proof. Claim: § =S,onl x 1.
Letr = 1. ThenVp,q € I, we have
LHS of (35)= T(S1(p, ), 1) = S1(p. 9)
RHS of (35)= So(T(p,1), T(q,1)) = S2(p.q) = LHS of (35)Vp,qe | iff S; = S,.
Thus the equation (35) becomes

T(S(p,a),r) = S(T(p,r), T(q,1)) (36)
which is true ff T distribuites ovelS. |

Corollary 1. (36) is true if S= max.

5.3 On the Equation (18)

Continuing along the same vein, we have investigated thergéised bisymmetry
equation (18)

p(@u, br) 0g p(a2, b2) = pu(an 0, a2, 01 0, )
involving og, # andoy, with ag, ap, by, by € I.
Definition 11. A function B: [a,b]? — [a, b] is said to be bisymmetric if
B(B(x,y), B(u,V)) = B(B(x, u), B(Y,V)), YX,Y,u,V € [a,b].

For a comprehensive coverage on Bisymmetry Equations [tefet, 74]. Also
[38,39] list many results on bisymmetry equations on the imérval. Allowing
0y, ando, to be t- and t-conorms, we get the following 8 possible casesl]
which for convenience we have grouped into two sets:

Group 1
T1(T2(a, by), T2(az, 02)) = Ta(Ta(as, ), T3(by, b2)) (37)
S1(Sz(au, b1), Sa(az, b2)) = S2(Ss(a, a2), Sa(b1, b2)) (38)
Group 2
T1(S(ag, b1), S(az, b)) = S(T3(ay, az), Ta(b1, b2)) (39)
T1(T2(a1, b1), T2(az, b2)) = T2(S(au, a2), S(b1, b2)) (40)
T1(S1(a1, b1), Sa(a, b2)) = S1(Sa(a1, @), Sa(bs, b2)) (41)
S1(T (a1, b1), T(ae, b2)) = T(S2(as, az), S2(b1, b)) (42)
S1(S2(a1, b1), Sa(az, b)) = Sa(T (a1, @), T (b1, b)) (43)
S1(T1(ag, b1), T1(az, b2)) = Ta(T2(au, @), Ta(by, b2)) (44)
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We show that only 2 of the above 8 equations, the ones belgngiGroup 1
have solutions, while the rest of the equations belonginGrmup 2do not have
solutions as given by the following theorems, the proofs biclv can be found in
the Appendix.

Theorem 6. If T1, T, and T3 are any t-norms then the equation (37) obtained by
letting oy = Ty, u =Trand g, = Tzin (18) isvalid f T, = To = Tz on 12

Theorem 7. If S;, S, and S are any t-conorms then the equation (38) obtained by
letting @y = Sy, = Sz and g, = Sz in (18) is valid jfS1 = S, = Sgon 2.

Theorem 8. The equations belonging &roup 2do not have solutions.

5.4 On the Equation (19)
In this section, we investigate equation (19), namely,
M(Al9 A) OH M(AZ’ A) = M(Al O,u A29 A)

whereM is a matching function that compares two fuzzy sets on theestomain,
i.e., M : F(X) x F(X) — I, with o, a t- or t-conorm, in which case we get the
following equations (45) and (46):

TIM(Ag, A), M(Az, A)] = M(T (A1, A2), A) (45)
S[M(Aq, A), M(Az, A)] = M(S(A1, A2), A (46)
5.4.1 A few Matching functions existing in the literature
Below we list a few of the matching functions commonly emgdyn the literature.
e Zadeh’'s Sup-min My (A, A’) = max, min(A(x), A’ (X))

o Magrez - Smets’ Measure [58](A, A') = max min(A(x), (X)) , where
A(X) is the negation oA(X).

e Sup-T :M3(A, A') = max T(A(X), A'(X)) , whereT is any t-norm.
o Sup-T-NMy(A, A') = max T(A(X), A'(x)).

e Inf- max :Ms(A, A") = ming, maxA(x), A’(X)).

e Inf-max- N: Mg(A, A) = min, maxA(x), A'(x)).

e Inf-S: M7(A, A") = ming S(A(X), A’(X)) , whereS is any t-conorm.
e Inf-S-N: Mg(A A) = min, S(AX), A'(x)).

Note: Mg andMy4 (M7 andMg) are generalisations &fl; and M, (Ms and Mg),
respectively, whileMs, Mg, M7 andMg are duals oM, M, M3 and M.
The proofs of the following results can be found in the Apprnd
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Theorem 9. M3, M2, M3 and M, satisfy equation (46)fiS = max.
Theorem 10. Ms, Mg, M7 and M satisfy equation (45)fiT = min.

Remark 6. Mj, My, M3 and M, (Ms, Mg, M7 and Mg) do not satisfy (45) (resp.
(46)) since there does not exist any t-conorm S (resp. t-ndjnsuch that
S(mingay, mingby) = minS(ax, by) (such that Tmaxay, maxby) =
max T (ax, by)). We refer the readers to [20, 21] for the corresponding fisoo

Combining the results of section 5.1 - 5.4, we get the folfaytiable - Table 5 -
of operators available for equations (17),(18) and (19enelis, Jr denote S- and
R-implication, whileT andS denote a t-norm and t-conorm, respectively.

f 9|0y | p¢|0,| Conditions Examples oM
JsorJg | V A A A - Ms, Mg, M7, Mg
JsorJg | A Vv \% \% - M1, M2, M3, Mg
T A A A A - Ms, Mg, M7, Mg
T S| S|S| S | TdistoverS| M, Mz, M3, My;S =V

Table 5: Table of operators for (17),(18) and (19) to be Batls

6 Examples of a few Fuzzy Systems from the above
class

In this section we show how the results from Section 5 can péexpto particular
models of inferencing in Fuzzy Systems. For throughoutdbigtion, we consider
the following SISO fuzzy system with 3 rules as given in (47).

Ri:AL—> B

R:A, — B (47)

Ry: Az > C

whereAy, Ay, Az are fuzzy sets oiX; B,C are fuzzy sets oY and— is any rule
firing operation relating the antecedent to the consequent.

6.1 Mamdani Model of Inference in Fuzzy Systems

Consider the following set afn Single-Input Single-Output (SISO) fuzzy if-then
rules of Mamdani type:

If xisAjThenyisB, j=1,2---,m
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whereA, B; are fuzzy sets on the input and output domain¥, respectively. From
Section 3.4.1, we know a Single-Input Single-Output (SIS@jndani type Fuzzy
System has the final output fuzzy $egiven by

By) =VL{AMXABMWLYYeY (48)
which corresponds tQy = {M1,na A, Vv, f(Y)}.
Remark 7. Since in the case of SISO rule base, the antecedent combittes not
play a role we have indicated it as Not Applicable - na - iR .Q
6.1.1 Lossless Rule Reduction in Mamdani Model of Inference i8ISO Fuzzy
Systems

Theorem 11. Inference Invariant Rule Reduction is possible in Mamdaod® of
Inference, in the case of SISO fuzzy rules, by combiningttezadents of rules that
have identical consequent.

Proof. We know thatf - the rule firing operator - is the t-norminin (48). In the
presence of an input, sayis A denoted aX = A, we have from (48), the final
output fuzzy seB’ is given by

B'(Y) = [Mi(A,A)AB]
V[M1(Az2, A) A B]
V[M1(As, A) A C] (49)

¢ From (49) by the distributivity of overv we have (50),

B'(Y) = {[Mi(A,A) Vv (My(Az, A)] A B}
Vv [M1(As, A) A C] (50)
= [Mi(ALV A, A) A B
V [(M1(As, A) A C] (51)
= [Mu(AL, A) A B] V [(M1(Ag, A) A C] (52)

We know from Theorem 9 thatl;(Aq, A) V M1(Az, A) = M1(Ar Vv A, A), using
which we obtain (51) from (50). In (52); = A1 V Az, which is again a fuzzy set on
X, by Definition (6) and Remark 2.

Thus instead of the SISO fuzzy rule base of 3 rules (47), thewing reduced
rule base with two rules can be used, without any loss ofémfee for a given input,
while employing the Mamdani Model of Inference.

R, A?[—)B
R : A3—C (53)

- 133-



Conditions for Inference Invariant Rule Reduction in FRBS by combining rules with
J. Balasubramanian identical consequents

6.2 General Mamdani Model of Inference in Fuzzy Systems

A slight generalisation of the Mamdani model of inference ba seen as follows:
Let QIA = {M,na, T*, S*, I?(Y)} denote a General Mamdani Model of Inference
whereT* is any t-norm that distributes over the t-cono8h Then the following
can be easily shown as above:

Theorem 12. Inference Invariant Rule Reduction is possible in Mamdaad®! of
Inference, in the case of SISO fuzzy rules, by combiningttezadents of rules that
have identical consequent, if the Matching function M ishsihat

S'[M(A1, A). M(A2, A)] = M(S*[A1. Ag]. A). (54)

In the cases* = max the matching functioiM, among others, can be one of
My, M2, M3, My.

6.3 Modified Mamdani Model of Inference in Fuzzy Systems

By a Modified Mamdani Model of Inference we refer to the follog quintuple
Qﬁ,, = {M,na J A, F(Y)}, whereM is any Matching function and is either an
R- or an S-implication. In this model of inference an Implioa OperatorJ is

employed to relate the antecedent and the consequent aizbg fules. The final
output fuzzy seB in Q,JvI for a SISO rule base is given by

By) = ALl[A®X - BWhYyeY (55)

where— is either an R- or an S-implication.

Recently Li et al [54,55] have shown that the above Modifiedridani Model
of Inference in Fuzzy Systems with R- or S-implications foe tule firing operation
and with Trapezoidal or Triangular membership functiores @niversal Approxi-
mators both in the case of SISO and MISO fuzzy systems. (lrcdéise of MISO
systems the antecedent combiper A). These considerations make Modified
Mamdani Model of Inference very attractive. In this sectio& show that lossless
rule reduction is possible in Modified Mamdani Model of Irdace in the SISO
case.

6.3.1 Lossless Rule Reduction in Modified Mamdani Model of Infeznce in
SISO Fuzzy Systems

Theorem 13. Inference Invariant Rule Reduction is possible in Modifieahidani
Model of Inference, in the case of SISO fuzzy rules, by congpine antecedents of
rules that have identical consequent, if the Matching fiamcM obeys (56).

M(AL, A) V M(Ag, A) = M(A1 V Ag, A). (56)

Proof. Let us now interpref - the rule firing operator - as an R- or an S-implication
in (55). Let us again consider the above SISO fuzzy systemrafe® as given in
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(47), but where the- is any R- or S-implication. Also let the Matching functitvh
obey (56).

In the presence of an input, sayis A denoted aX = A, we have from (55),
the final output fuzzy se®’ is given by

B'(Y) = [M(A1, A) = B] A [M(Az, A) — B]
AIM(Ag, A) - C] (57)

¢From (57) by using Theorem 3 we obtain (58),

B(Y) = {[M(A,A) v (M(A2, A)] — B}
A [M(Ag, A) - C] (58)
= [M(ALV Ay A) — B
A [M(As, A) - C] (59)
= [M(A}, A) > B] A[M(Ag, A) > C] (60)

We obtain (59) by using the fact thit obeys (56). In (60A; = A; v Az, which is
again a fuzzy set oiX, by Definition (6) and Remark 2. Thus again instead of the
SISO fuzzy rule base of 3 rules (47), we have the reduced ade (563). O

Examples of Matching functionl§l that satisfy (56) aré1, M2, M3, My.

In general, the number of rules can be reduce& fovherek is the number
of output fuzzy sets that featured in the original rule bagest importantly, this
type of rule reduction is lossless w.r.to inference and @&xdummarises the above
discussion for the SISO case with the following:

Condition (i) T* distributes ove6*
Condition (ii) M satisfies (54).
Condition (iii) M satisfies (56).

Name/ Type Q| M| f | g |o4=0, | Conditions
Original Mamdani | Qy | My | A | V v -
GeneralMamdani | Q, | M | T* | S* S (i) and (ii)
Modified Mamdani| Qy, | M | J | A v (iii)

Table 6:M, f, g, og ando, for the diferent models of inference discussed in Sections
6.1-6.3

7 Conclusion

In this work we have proposed a simple rule reduction tealnthat combines rules
with identical consequents, which is lossless with resfeeictference. Towards this
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end, we proposed a general framework for Inference in Fuggiehs and imposed
certain requirements on thefidirent inference operators employed in a Fuzzy Sys-
tem. Also we have explored these requirements in the seaifiRgzzy Logic Oper-
ators. We have also given a few examples of Models of Inferém&uzzy Systems
that have the required properties for inference invariatg reduction. We note a
few observations below:

e Merging of rules, in some cases, may turn out to be compualipinten-
sive, but this is a one timefisline job which even though might reduce in-
terpretability will make computation of inferences mucbkté&. Perhaps the
original rule base can still be preserved for interpreigbilonsiderations.

e In some instances, the above method may even increase theenamd the
complexity of the fuzzy sets defined orfférent input domains.

In this work, we have considered only S- and R-implicatiamsthe fuzzy im-
plication J and have shown the important role played by their distriiiytiover
t-norms and-conorms in the inference scheme in Section 6.3. Recehdyetare a
few more families that have been proposed, Wzimplications and the residual im-
plications of uninormgly.. in [29] and the recently proposed familiesfofyenerated
implicationsJs andg-generated implicationdy by Yager in [85] anch-generated
implications Jy, in [8], [9]. The distributivity of Jy. andU-implications over uni-
norms - which are generalisationstefiorms and-conorms (see [84]) - is studied
in [27] and [28] while that ofJ; overt-norms and-conorms is done in [9]. Hence
these families of fuzzy implications can also be employedtie inference scheme
in Section 6.3.

In this work we have considered in detail the proposed rudecton technique
only in the SISO case explicitly. Recently we have done somkwn rule reduc-
tion in the MISO case also, as has been demonstrated withiscthpe of Similarity
Based Reasoning in [10].
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Proof. Proof of Theorem 6
Claim Ty = T,: Leta; = b, = 1. ThenVay, by € |, we have
LHS T1(T2(1, b1), Ta(az, 1)) = T1(by, @)
RHS = Ty(T3(L ap), T3(by, 1)) = Ta(az, b1) = To(by, a2)

which impliesTi(bs, @) = Ta(by, a2) Yap, by € | and thusT; = T, = T. Now (37)
becomes

T(T(a, by), T(az, b)) = T(T3(a, @), Ta(by, b)) (61)
Now, sinceT is a t-norm,

T(T (a1, b1), T(az, b2)) = T(T (a1, @), T (b1, b2)) (62)
and we have from (61) and (62) tHBt = T, = T3 on 2. i

Proof. Proof of Theorem 8
Let us consider (40) fron®roup 2 Leta; = by = 1 anday, by € (0,1). Then we
have that

LHS
RHS

Tl(TZ(l’ bl)’ TZ(a-Zs 1)) = T]_(b]_, a.z)
T2(S(1,a),S(by, 1)) =To(1,1) =1

which implies thail1 (b, a2) = 1, with a,, by € (0, 1), which is absurd. Similarly, all
the other equations, (39), (41) - (44)@roup 2can be shown to have no solutions.

o
Proof. Proof of Theorem 10
We give the proof foM = My. The proofs forM = Ms, Mg and Mg are similar.
LHS of(45) = T[ inxf S(Aw(x), A'(X),
inf S(A2(x), A'(x))] (63)
= inf T[S(A(), A'(x),
S(Az(x). A'(x))] (64)
= inf S(T[A(), A(X)], A' (X)) (65)
= M7[T(A, A2), A']
= RHS of(45)

SinceT(infy ay, infyx by) = infy T(ay, by) iff T = min, we have that (64) is equiv-
alent to (63) ff T = min. Also since any t-conorr8 is distributive overT = min
[20], we obtain (65) from (64). O
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