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Abstract: This paper presents a case study how to apply tbentey proposed
TP model transformation technique, that has been introddoe nonlinear state-

feedback control design, to nonlinear observer design. §they is conducted
through an example. This example treats the question ofedsdesign to the pro-
totypical aeroelastic wing section with structural nodarity. This type of model
has been traditionally used for the theoretical as well agegimental analysis of
two- dimensional aeroelastic behavior. The model investig in the paper de-
scribes the nonlinear plunge and pitch motion of a wing, axtuldts complex non-
linear behavior. In preliminary works this prototypical@elastic wing section was
stabilized by a state-feedback controller designed via DEehtransformation and
linear matrix inequalities. Numerical simulations are ds® provide empirical

validation of the resulting observer.

1 Introduction

The main goal of the paper is to study how to apply the TP (TeRsaduct) model
transformation to observer design. The motivation of thialgs that the TP model
transformation was proposed under the Parallel Distrib@empensation (PDC)
design framework [1] for nonlinear state feedback corgrotlesign [2, 3]. The
TP model transformation is capable of transforming a givere tvarying (parame-
ter dependent, where the parameters may include statdlesmjdinear state-space
model into time varying convex combination of finite numbérinear time in-
variant models. Whether the given model is analytical modgust an outcome
of black box identification (e.g. neural net or fuzzy approation with Takagi-
Sugeno, Mamdani or Rudas [4, 5] type inference operatondkeivant. The result-
ing linear time invariant models can then be readily suls&d into Linear Matrix
Inequalities (LMI), available under the PDC design framekyto determine a time
varying (parameter dependent, where the parameters miylistate variables)
nonlinear controller according to given control specifimas. The whole above
design can be executed numerically by computers and heaaetitroller can be
determined without analytical derivations in acceptalsteet In most cases not all
of the state variables are available, but only some of thems Japer studies how to
apply the result of the TP model transformation to obseresigh under the PDC
design framework similarly to the controller design. Theuléng observer can then
be applied to estimate the unavailable state variables.



The example of this paper is about the observer design tathetppical aeroelas-
tic wing section. A few papers were printed in last years idgalith the state-
feedback control design of the prototypical aeroelastiognsection via TP model
transformation, for instance see [6, 7, 8]. This paper feswatention on the ob-
server design to the prototypical aeroelastic wing sectione not all of the state
variables of the prototypical aeroelastic wing sectionaaalable in reality.

2 Nomenclature

This section is devoted to introduce the notations beind ursthis paper{a,b,...}:
scalar values{a,b,...}: vectors {A,B,...}: matrices{4,B,...}: tensors.

Rl1xl2xxIN: yector space of real valuddh x 1o x --- x Iy)-tensors. Subscript
defines lower order: for example, an element of ma#iat row-column number
i,] is symbolized agA); j = a; j. Systematically, thé-th column vector ofA is
denoted as;, i.e. A=[a1 a --].9jjn,...: areindiceso gp,...: index upper
bound: forexamplei=1.I, j=1..J,n=1.Norip=1..In. A(p): "-mode matrix of
tensorq € R'1<12xxIN - g 5, U: n-mode matrix-tensor producl ®, U,: multiple
product asq x; Uy x2U> x3.. XN Un. Detailed discussion of tensor notations and
operations is given in [9].

3 Basic concepts

The detailed description of the TP model transformationRIRE design framework
is beyond the scope of this paper and can be found in [1, 2, & &je followings a
few concepts are presented being used in this paper, for detads see [1, 2, 3, 6].
3.1 Parameter-varying state-space model

Consider parameter-varying state-space model:
X(t) = A(p(t))x(t) +B(p(t))u(t) @
y(t) = C(p(t))x(t) +D(p(t))u(t),

with inputu(t), outputy(t) and state vectox(t). The system matrix

ABD) BOD) . o
S(p(‘”‘(cm(t)) D(p(t)))eRo' @

is a parameter-varying object, wheré) € Q is time varyingN—dimensional para-
meter vector, wher@ = [ag, by] x [ap,b;] x .. x [an,by] € RN is a closed hypercube.
p(t) can also include some (or all) elementsf).



3.2 Convex state-space TP model

Equ. (2) can be approximated for any parametgy as a convex combination of
the R number of LTI system matriceS, r = 1..R. MatricesS; are also termed as
vertex system matrices. Therefore, one can define weightimgtionsw; (p(t)) €
[0,1] C R such that matrixS(p(t)) belongs to the convex hull & asS(p(t)) =
co{S1, S, -+, SR}w(p(t)), Where vectow(p(t)) contains the weighting functiomg (p(t))
of the convex combination. The control design methodolégye applied in this
paper, uses univariate weighting functions. Thus, theiekpbrm of the convex
combination in terms of tensor product becomes:

(Gio)= ®

Ii Iz IN N t
(Z D |_|Wn,in(Pn(t))Sil,iz,...iN> (EEID

i1=1li=1 iy=1n=1

(3) is termed as TP model in this paper. Functa;(pa(t)) € [0,1] is the j-th
univariate weighting function defined on theth dimension ofQ, andpy(t) is the
n-th element of vectop(t). I (n=1,...,N) is the number of univariate weighting
functions used in tha-th dimension of the parameter vectoft). The multiple
index (iq,i2,...,in) refers to the LTI system corresponding to iheth weighting
function in then-th dimension. Hence, the number of LTI vertex systedns, i,

is obviouslyR = [, In. One can rewrite (3) in the concise TP form as:

(54)) =5 & wntontn) (3 @

S(p(t))?Sng%Wn(pn(t))-

that is

Here, € represents the approximation error, and row veatgip,) € R'» contains
the weighting functionswv,;,(pn), the N+ 2 -dimensional coefficient tens@& e

.....

RO*! The firstN dimensions oS are assigned to the dimensionsbf The convex
combination of the LTI vertex systems is ensured by the dondi:

Definition 1 The TP model (4) is convex if:

Vn,i, p(t) s Wni(pa(t)) € [0,1]; (®)

In
vn, pn(t) : ';Wnﬁi(pn(t)) =1 (6)

This simply means th&(p(t)) is within the convex hull of LTI vertex systems
Sii,...in fOranyp(t) € Q.



Remark 1 S(p(t)) has finite TP model representation in many cases Qin (4)).
However, one should face that exact finite element TP mogetsentation does
not exist in generalg(> 0in (4)), see [10, 11]. In this case— 0, when the number
of LTI systems involved in the TP model goestdn the present observer design,
the state-space dynamic model of the prototypical aertielasng section can be
exactly represented by a finite convex TP model.

4 Model of the prototypical aeroelastic wing section

In the past few years various studies of aeroelastic systeims emerged. [12]
presents a detailed background and refers to a number ofgpdpaling with the
modelling and control of aeroelastic systems. The follgyinovides a brief sum-
mary of this background. [13] and [14] proposed non-lineadback control method-
ologies for a class of non-linear structural effects of thegasection [15]. Papers
[13, 16, 12] develop a controller, capable of ensuring l@sgimptotic stability, via
partial feedback linearization. It has been shown that Iplyémpg two control sur-
faces global stabilization can be achieved. For instarlobafjfeedback lineariza-
tion technique were introduced for two control actuatorshie work of [12]. TP
model transformation based control design was introducd8,i7, 8]. This con-
trol design ensures asymptotic stability with one contwoface and is capable of
involving various control specification beyond stability.

4.1 Equations of Motion

In this paper, we consider the problem of flutter suppresforthe prototypical

aeroelastic wing section as shown in Figure 1. The aercfaibnstrained to have
two degrees of freedom, the plungand pitcha. The equations of motion of the
system have been derived in many references (for examgé¢l8g and [18]), and

can be written as

(o tve) (6) (5 ) (&) ™
(6 o) (a)= ()

h 1 a
2 2
L =pU*baq, <a++<— >bu)+pU ba,B (8)

where

h /1 a
A12RK2 L 2
M = pU“b“Cn, <a+u+<2 a)bu>+pU mepl37

and wherex, is the non-dimensional distance between elastic axis amddhtre
of mass;m is the mass of the windy is the mass moment of inertid;is semi-
chord of the wing, andy andcy, respectively are the pitch and plunge structural



-
v—> 2

kn
Equilibrium position % c=2%p

b

—
. ~ Ta*b Uidchord
elastic axis

h

Deflected position -y

Figure 1: Aeroelastic model

damping coefficients, ankj, is the plunge structural spring constant. Traditionally,
there have been many ways to represent the aerodynamiclfand momeni,
including steady, quasi-steady, unsteady and non-lireradgnamic models. In this
paper we assume the quasi-steady aerodynamic force andnfjsee work [17].

It is assumed that andM are accurate for the class of low velocities concerned.
Wind tunnel experiments are carried out in [14]. In the abegeationp is the air
density,U is the free stream velocity;, andcy, respectively, are lift and moment
coefficients per angle of attack, ang and Cing» respectively are lift and moment
coefficients per control surface deflection, ani$ non-dimensional distance from
the mid-chord to the elastic axi.is the control surface deflection.

Several classes of non-linear stiffness contributiy{s) have been studied in
papers treating the open-loop dynamics of aeroelastiesyssf19, 20, 21, 22]. We
now introduce the use of non-linear stiffness tég(o) as obtained by curve-fitting
on the measured displacement-moment data for non-lineagsas [23]:

ke(@) = 2.82(1— 22.1a + 1315502 + 85803 + 172897a%).

The equations of motion, derived above, exhibit limit cyoeillation, as well as
other non-linear response regimes including chaotic msp{0, 21, 23]. The sys-
tem parameters to be used in this paper are given in the Appand are obtained
from experimental models described in full detail in work&,[23].

With the flow velocityu = 15(m/s) and the initial conditions oft = 0.1(rad)
andh = 0.01(m), the resulting time response of the non-linear system ésHikmit
cycle oscillation, in good qualitative agreement with tled@viour expected in this
class of systems. Papers [15, 23] have shown the relatiamgeber limit cycle
oscillation, magnitudes and initial conditions or flow vet@s.

Let the equations (7) and (8) be combined and reformulattx State-space



model form:

X1 h
X(t) = Z = ?1 and u(t) =p.
X4 a
Then we have:
) _ x(t)
X(t) = A(p(O)X() +B(p()u(t) = S(p(1) () ) (©)
where
X3
A(p() = “

—kixg — (KU 2 + p(X2)) X2 — C1X3 — CoXa
—kax1 — (KgU? + q(X2))X2 — C3X3 — CaX4

0

wherep(t) € RN=2 contains values, andU. The new variables are given in the
Appendix. One should note that, the equations of motion e dependent upon
the elastic axis locatioa.

5 Observer design

The recently proposed very powerful numerical methods @ssbciated theory)
for convex optimizatiomvolving Linear Matrix Inequalities (LMI) help us with the
analysis and the design issues of dynamic systems modete@pi@ble computa-
tional time [24]. One direction of these analysis and desigrithods is based on
LMI's under the PDC design framework [1]. In this paper we lgghe TP model
transformation in combination with the PDC based obseresigh technique to de-
rive viable observer methodologies for the prototypicabatastic wing section de-
fined in the previous section. The key idea of the proposeiddesethod is that the
TP model transformation is utilized to represent the mo#@leir{ convex TP model
form with specific characteristics, whereupon PDC corgralesign techniques can
immediately be executed. The following sections introdute observer design:

5.1 TP model form of the prototypical aeroelastic wing sectio

5.1.1 TP model transformation

The goal of the TP model transformation is to transform amgste-space model
(1) into convex TP model [2, 3, 6], in which the LTI systemsnfoa tight convex



hull. Namely, the TP model transformation results in (4)wébnditions (5) and
(6), and searches the LTI systems as a points of a tight cdnyérf S(p(t)).

The detailed description of the TP model transformationissuksed in [2, 3,
6]. In the followings only the main steps are briefly presdnt&he TP model
transformation is a numerical method and has three key .stpsfirst step is the
discreatisation of the giveB(p(t)) via the sampling o§(p(t)) over a huge number
of pointsp € Q, whereQ is the transformation space. The sampling points are
defined by a dense hyper rectangular grid. In order to loosénmal information
during the discretisation we apply as dense grid as posSibkesecond step extracts
the LTI vertex systems from the sampled systems. This stepésialized to find
the minimal number of LTI vertex systems, as the vertex goirfithe tight convex
hull of the sampled systems. The third step constructs thend&el based on the
LTI vertex systems obtained in the second step. It definesdhenuous weighting
functions to the LTI vertex systems.

5.2 Determination of the convex TP model form of the aeroelas-
tic model

We execute the TP model transformation on the model (9)1 Birall, according
to the three steps of the TP model transformation, let us eldfia transformation
spaceQ. We are interested in the intervdl € [14,25](m/s) and we presume that,
the intervala € [—0.1,0.1](rad) is sufficiently large enough. Therefore, le® :
[14,25 x [-0.1,0.1] in the present example (note that these intervals can aribjtr
be defined). Let the grid density be definedvsx M2, M1 = 100 andM, = 100.
Step 2 of the TP model transformation yields 6 vertex LTI egst (singular values
are: first dimension: 16808, 1442 and 2; second dimensic®4@and 7970):

0 0 1 0 0
0 0 0 1 0
A11=10° 02314 00095 —0.0034 —00001| B11=| _g6
02780 -1.1036 00071 —0.0000 324
0 0 1 0 0
- 0 0 0 1 B, 0
217 | _2313804 463063 -4.3776 —0.2573 217 | —27.3677
2779906 —9667931 106520 04104 1034344
0 0 1 0 0
0 0 0 1 0
Ag1=10° 02314 00227 —0.0039 —00002| B31=| _154

0.2780 —1.0543 00089 00002 —58



0 0 1 0

Ao 0 0 0 1
1271 _2313804 —165786 —3.4333 —0.1425 85825
2779906 230842 71447 —0.0157 ~324370
0 0 1 0
Ao 0 0 0 1
227 | _2313804 —534094 —4.3776 —0.2573 273677
2779906 1598695 106520 04104 ~1034344
0 0 10000 0
Ay 0 0 0 10000
327 | _2313804 -29.8524 —3.9054 —0.1999 153526
2779906 723823 88983 01974 ~580244

The third step results in weighting functiomg ;(U) andw, j(a) depicted in
Figure 2. When we numerically check the error between the h(@deand the
resulting TP model, we find that the error is about ¥0that is caused by the nu-
merical computation.

In conclusion, the aeroelastic model (9) can be describactkyin finite convex
TP form of 6 vertex LTI models, also see [6]. Note that, one rimgyo derive the
weighting functions analytically from (9). The weightingrfctions ofa can be
extracted fromky (a). Finding the weighting functions &, however, seems to be
rather complicated. In spite of this, the computation oftRemodel transformation
takes a few seconds.

6 Observer design to the prototypical aeroelastic wing
section

6.1 Method for observer design under PDC framework

In reality not all the state variables are readily availahlenost cases. Unavailable
state variables should be estimated in the case of staibdek control strategy.
Under these circumstances, the question arises whettepdsisible to determine
the state from the system response to some input over somoe pétime. Namely,
the observer is required to satisfy:

X(t)—X(t)—0 as t— oo,

whereX(t) denotes the state vector estimated by the observer. Thiit@onguar-
anties that the steady-state error betwegn andX(t) converges to 0. We use the
following observer structure:

X(t) = A(p(t)X(t) +B(p(t))u(t) + K (p(t)) (y(t) — ¥(t)
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That is in TP model form:

X(t) = ASW(Pa(t) R(1) + BEW(Pa(®))u(t)+ (10)

+K@w(pn(t))(y(t) = Y(1)
§(t) = Caw(pa(t)X(t).

At this point, we should emphasize that in our example theovgmt) does
not contain values form the estimated state-veg{d), sincep;(t) equalsU and
p2(t) equals the pitch anglex{(t)). These variables are observable. We estimate
only state-valuegs(t) andx,(t). Consequently, the goal in the present case, is to
determine gains in tensak for (10). For this goal, the following LMI theorem
can be find in [1]. Before dealing with this LMI theorem, weroduce a simple
indexing technique, in order, to have direct link betweenT™® model form (4) and
the typical form of LMI formulations:

Method 1 (Index transformationl.et

A B
5= (c; D;) = Sivi.-ins

where r= ordering(iy, iz, ..,in) (f = 1L..R=[]nIn). The function "ordering" results
in the linear index equivalent of an N dimensional arraydeést i, i», .., in, when the
size of the array isilx |2 x .. x ly. Let the weighting functions be defined according

to the sequence of r:
W (P(t)) = [ ] Whin (Pn(t))-
n

Theorem 1 (Globally and asymptotically stable observer )
In order to ensure
X(t)—X(t)—0 as t— oo,

in the observer strategy (10), fill> 0 and N, satisfying the following LMI’s.
~ATP—PA; +CIN] +N,C; >0 (11)

forall r and
—ATP—PA —AIP—PAs+ (12)
+CINJ +NsCr +CINT +N,Cs > 0.
forr < s<R, except the pairér,s) such that w(p(t))ws(p(t)) = 0,Vp(t).



Since the above equations are LMI’s, with respect to vaesilandN,, we can
find a positive definite matri® and matrixN, or determine that no such matrices
exist. This is a convex feasibility problem. Numericallyistproblem can be solved
very efficiently by means of the most powerful tools avaiaisl the mathematical
programming literature e.g. MATLAB-LMI toolbox [24].

The observer gains can then be obtained as:

K, =P IN;. (13)
Finally, by the help of = ordering(iy, i», ..,in) in Method 1 one can defirt€;, i, iy
from K, obtained in (13) and store into tensfrof (10).

6.2 Observer design to the prototypical aeroelastic wing s#ion

This section applies Theorem 1 to the TP model of the aerelsig section. We
define matrixC for all r from:

y(t) = Cx(t),

1 0 0O
Cr= (o 10 o)
The LMIs of Theorem 1, applied to the result of the TP modeidfarmation,
are feasible:

that is in present case:

32142 0 0 0
.2l 0o 32142 0 0
N1 =10 0 0 32142 0
0 0 0 32142

3.3743 01523 00358 00020
0.1523 14305 —-0.0233 -0.0031
0.0358 —0.0233 00196 00010
0.0020 —-0.0031 00010 00034

Thus, equ. (13) yields 6 observer feedbacks:

N, = 10°

0.3691 06921 0.2796 09673
K. _ | —00027 07410 K, _ | o.0664 06824
117 | —46.1240 —21.6020 217 | —382972 -57.1578
2539914 6765871 2512960 5424373
0.3234 07934 0.3449 00771
0.0405 07144 ~0.0336 12358

K31 = Kiz2=

—41.9448 —34.5500 —44.0427 —31.0104
2499595 —-6280852 2643622 4480143



0.3006 03599 0.3169 01815
0.0197 10976 K., | ©-0008 11785
—39.6387 —64.5575 327 | —411822 —-433241]"
2524420 5858035 2565618 4985251

In conclusion the state valugs(t) andx,(t) are estimated by (10) as:

Koo =

where
_ (xa(t) oy — (%alt) _ (VY
vio= () and s = (50) ane po=(3).
(x1(t) = h, plunge, and;(t) = a, pitch). In order to demonstrate the accuracy
of the observer, numerical experiments are presented inekiesection.

6.3 Simulation results

We simulate the observer for initiak§0) = (0.01 01 01 01 )T and
X(0)=(0 0 0 O)T, for the open loop case. Figure 3 shows how the ob-

server is capable of converging to the unmeasurable st&iesss(t) and xa(t)
(dashed line is estimated by the observer).

7 Conclusion

The paper presents how to use the TP model transformatidmchean be used for
observer design in uniform way for controller and obsenesigin. The paper also
shows how to determine observer for the prototypical aastiel wing section.
Appendix

System parameters

b = 0.135m; span= 0.6m; ky = 28444N/m; ¢, = 27.43Ns/m; ¢y = 0.036Ns
p= 1.225kg/m3; ¢, =6.28; Gy = 3.358;cn, = (0.5+a)c,; Cmg = —0.635;m=
12.387g; xq = —0.3533—a; |q = 0.065kgn?; cq = 0.036;

System variables

d=m(lqg — m¥b?);
o =l gy — o
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ks = —m>§,bkh; Ky = 7m>@b2pc|g—n‘pb2cm, :
p(0) = ~GPka (0); () = Tha(@);

c1(U) = (la(ch+pUba,) + mxpU3cy, ) /d;
c2(U) = (lapUb?ey, (3 — @) — mxg by + mxgpU b, (3 —a)) /d;
c3(U) = (—mxbo, — mxgpUbZc, — mpUb?cry ) /d;
ca(U) = (meg — mxgpUb3c, (3 —a) —mpUbcn, (3 —a)) /d;
g3 = (—lapba, — mxb>pcny, ) /d;
g4 = (Mxsb?pay, + mpbZcnn, ) /d;
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