
Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 87 –

Info-Chunk Objects as New Behavior

Representation for System-based Model of

Product

Yatish Bathla

Doctoral School of Applied Informatics and Applied Mathematics, Óbuda

University, Bécsi út 96/b, H-1034 Budapest, Hungary

yatish.bathla@phd.uni-obuda.hu

Abstract: Requirement Functional Logical Physical (RFLP) structure has emerged as one

of the prominent approaches for modeling the multidisciplinary products. Information

Content (IC) provides effective interaction between the human and multidisciplinary

product model. Though it controls the RFLP level by the Multilevel Abstraction based Self-

Adaptive Definition (MAAD) structure, it needs to be further enhanced in terms of Human-

Computer Interaction (HCI), multidisciplinary product behavior representation and

structured processing of interrelated engineering objects to obtain coordinated decisions.

Therefore, this paper introduces the Object-Oriented Principle (OOP) concepts in the IC

for behaviors representation of the multidisciplinary product where Info-Chunk is

considered as an object. Here, Behavior Info-Chunk (BiC) and Context Info-Chunk (CxiC)

objects are proposed in the MAAD structure to model the behavior of the multidisciplinary

product. Further, the concepts of Info-Chunk objects are extended to Intelligent Property

(IP) that uses Initiative Behavior Context and Action (IBCA) structure to handle the RFLP

structure. Based on the communication between the MAAD and RFLP structure, an API

(Application Programming Interface) called “InfoChunkLib” is proposed. It can generate

the graphs to represent the behaviors of a multidisciplinary product model. The API is

handled by the information content to represent the behavior information and store the

results in a database.

Keywords: Behaviors representation; Multidisciplinary product modeling; Info-Chunk

based Information Content; RFLP structure; MAAD structure; IBCA structure

1 Introduction

Modeling of multidisciplinary products requires coordination of a significant

amount of model information. The integrated definition is raised to the conceptual

level of product design, which requires high-level abstraction. A four-leveled

structure of the product model using Requirement Functional Logical Physical

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 88 –

(RFLP) structure [2] was introduced in the virtual environment. It is applied from

system engineering and offers handling product and its model as a system. It

accommodates product behavior definitions on its F and L levels. Product

assembly is done in the specification tree (red square) of RFLP structure as shown

in Fig. 1. Due to complex Human-Computer Interaction (HCI), Information

Content (IC) was used to record and apply the content of information that is

represented in the product model space [19]. In this content, an intent is defined

by the human to control the definition of engineering objects [22]. IC [1] controls

the RFLP level by the Multilevel Abstraction based Self-Adaptive Definition

(MAAD) structure [2]. However, IC needs to be enhanced in terms of the practical

feasibility of HCI, behavior representation and structured processing of

interrelated engineering objects to obtain the coordinated decisions. To solve

above-mentioned issues, this research work proposes the Info-Chunk objects and

InfoChunkLib API (Application Programming Interface) is proposed in the IC.

Info-Chunk objects are based on the Object-Oriented Principle (OOP) concepts

that are used in software programming. Previous research work deployed OOP

concepts in the RFLP structure in the form of the Modelica language [6]. It is used

for logical and physical modeling of a multidisciplinary product. Here, models and

their components are defined by the object diagram. This research work uses OOP

concepts in the Functional layer and Logical layer of the RFLP structure for

behaviors representation of the multidisciplinary product modeling. Here, Info-

Chunk entity is converted into the object first. Then, Behavior Info-Chunk (BiC)

object and Context Info-Chunk (CxiC) object are introduced in the MAAD

structure and the IBCA structure to store the behaviors of the multidisciplinary

product. The proposed Info-Chunk objects are used to establish a link with the

Layer Info-Chunk (LiC) objects of RFLP structure. InfoChunkLib API is coded

based on the communication between the MAAD structure and RFLP structure.

The Java language is used as a JavaFX application. It represents the behaviors of

the components in the multidisciplinary product model. The generated output is

shown using the graph between the components of engineering disciplines. IC

imports the InfoChunkLib API and coded as a Web application. The

multidisciplinary product model can be more efficiently handled through the IC

instead of the Specification Tree. This paper begins with the conversion of Info-

Chunk entity into the object. Further, behavior Info-Chunk (BiC) objects and

context Info-Chunk (CxiC) objects are proposed in the MAAD structure and the

IBCA structure. Then, behavior storing techniques for the multidisciplinary

product are explained with the aforementioned concepts. Then, Info-Chunk

objects based Information Content (IC) is emphasized. Here, rules for generating

the BiC objects and CxiC objects in the MAAD structure are defined by using the

pseudo-codes. Then, InfoChunkLib API is over viewed. Here, LiC objects of the

RFLP structure, BiC and CxiC objects of the MAAD structure are demonstrated.

Finally, InfoChunkLib API is imported in the IC to handles the multidisciplinary

product model.

Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 89 –

Figure 1

Specification tree of the CATIA V6 RFLP structure

2 Background

The Classical Product Model (CPM) [1] is limited to the physical level. The

separated integrated mechanical engineering modeling increasingly demands

multidisciplinary integration [5]. Modeling of a multidisciplinary product must

have a means for the integration of discipline-specific models into a model with a

unified structure. It makes the product model virtually executable. Higher

abstraction is realized by using of RFLP structure product model [2]. It is

compliant with the IEEE 1220 standard. Requirement against the product function

to fulfill the requirement, product-wide logical connections, and representations of

physically existing objects was organized in the highly contextual RFLP

structure.

Human-Computer Interaction (HCI) during the multidisciplinary product

modeling is a challenging task. Therefore, Information Content (IC) [1] assists in

effective communication between engineers of different disciplines and

information-oriented product modeling procedures. Community zones [17] are

used in the IC to organize the product model entities and their relationship.

Further, behaviors of the modeled entities are evaluated in the information content

by the process plane [13]. IC requires MAAD structure to drive the levels of

RFLP structure. This structure is used for self-adaptive modeling, where the

objectives and requests level, product behaviors level, contexts level, actions

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 90 –

level, and feature objects are applied in order to connect engineers with RFLP

implementations [4]. The MAAD modeling methods and model structures are

introduced as a generalized means for the support of higher level abstraction-

based generation of RFLP elements. The MAAD modeling was based on the

knowledge representation, contextual change propagation, and extended feature

definition capabilities for advanced modeling systems [4]. Further, active

knowledge in a product model has become organized in the form of Intelligent

Property (IP) of the company. Here, IP drives the RFLP level by the IBCA

structure which represents active knowledge content [5].

To store the information of a multidisciplinary product, Info-Chunk entity is

introduced in the logical level of the RFLP structure [9]. This entity is mapped

with the information content to control the structure activities through the MAAD

structure. Here, the Layer Info-Chunk (LiC) entity stores the information of the

Logical layer and the Component Info-Chunk (CiC) entity stored the information

of the logical component. Then, the Info-Chunk entity is defined in the Functional

layer of the RFLP structure [19]. Here, the Layer Info-Chunk (LiC) entity stores

the information of the main function of the Functional layer of the RFLP structure

and Sub-function Info-Chunk (SFiC) entity stores the information of sub-function.

Nowadays, OOP concepts are used in system engineering as object-oriented

system engineering (OOSE) [3]. OOSE blends system engineering with software

engineering.

3 Info-Chunk as an Object

In this research work, OOP concepts are used for multidisciplinary product

modeling. Encapsulation, inheritance, and polymorphism are the three principles

of OOP methodology. This work starts with the entities and their relationship.

Info-Chunk [9] [19] is an entity defined in the RFLP structure. However, OOP

concepts are not directly applicable to an entity. For InfoChunkLib API, Info-

Chunk entity must be converted into the Info-Chunk object for communication

between IC and RFLP structure. Based on the entity-object conversion process by

Ou Y. [10] and Bernhard Thalheim [11]:

 The parameters of an Info-Chunk entity is equivalent to the attribute of an

Info-Chunk object

 ER (Entity Relationship) between Info-Chunk is equivalent to the OR

(Object Relationship). Here, the method of an Info-Chunk object is

derived from the OR as per the requirement of a specific discipline

Then, behavior Info-Chunk (BiC) object and context Info-Chunk (CxiC) object

are proposed in the MAAD structure and IBCA structure. According to the

proposed concept of Info-Chunk objects:

Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 91 –

 In the RFLP structure, logical layer Info-Chunk (LiCL) object consist of

the attributes and methods of the Logical level and functional layer Info-

Chunk (LiCF) objects consist of the attributes and methods of Functional

level

 In the MAAD structure, behavior layer Info-chunk (BiC) object consist

of the attributes and methods of Behaviors level and context layer Info-

Chunk (CxiC) objects consist of attribute and method of Contexts level

 In the IBCA structure, behavior layer Info-chunk (BiC) objects consist of

the attributes and methods of Situation defining behaviors (SB) level of

Behavior substructures and context layer Info-Chunk (CxiC) objects

consist of attribute and method of Product definition Activity Contexts

(AC) level, Adaptive Drive Contexts (DC) level, Product Feature

Contexts (FC) level of Contexts substructures

4 Behavior Storing Techniques using Info-Chunk

Objects

Behavior is based on well-defined situations for sets of circumstances. It is

represented in the Functional level and Logical level of the RFLP structure. BiC

objects and CxiC objects represent dynamic behavior information. They are stored

in the MAAD structure and IBCA structure to communicate with the LiC objects

of the RFLP structure. Information Content operates the RFLP structure by the

MAAD structure. Also, Intelligent Property (IP) operates the RFLP structure by

IBCA structure. The behavior storing techniques are classified as the operation

performed by the BiC objects and CxiC objects in the MAAD structure and IBCA

structure.

4.1 Info-Chunk Objects-based MAAD Structure

The Behavior level of the MAAD structure drives the Functional level and

Logical level of the RFLP structure. The relationship between the abstraction

levels of the MAAD structure is described by using the Unified Modelling

Language (UML) diagram as shown in Fig. 2. In the Object-Oriented

Programming, a UML diagram is used to define the relationship and model the

behavior of the product.

Here, Entities Relationship Modeling (ERM) of the MAAD structure is converted

into object relationship modeling (ORM). As per the ORM concept, the

relationship between objects is defined by the composition, aggregation, and

association. Hence, there is a bi-directional association relationship between the

Objectives and Requests level, Behaviors level, Contexts level, and Actions level.

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 92 –

Inside the Behaviors level, the behavior object has a composite relationship with

the situation object, which further has an aggregation relationship with the

circumstances object. Also, the behavior object has a bi-directional association

with the Adaptive Drive object. In the MAAD structure, a behavior is represented

at Behaviors and Contexts level. For behavior representation, communication

between the RFLP structure and the MAAD structure is done by using the

proposed BiC objects and CxiC objects.

Figure 2

UML representation of MAAD structure with the Info-Chunk based RFLP Structure

The BiC objects communicate with the LiC objects as shown in Fig. 3, where the

main contextual connections of the MAAD structure are organized as follow:

 The solid line is the inside contexts (C) of Behaviors levels for the

MAAD structure. It is explained in the paper [18], where the contextual

connection of model entities in the MAAD level is defined.

Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 93 –

 The bold line is the driving contexts (D) of Behaviors levels for the

MAAD structure. It drives the Functional level and Logical level of the

RFLP structure. The dashed lines are the information retrieved by the

BiC objects from the LiC objects of the Functional level and Logical

level.

In the case of the Logical layer of RFLP structure, it retrieves the situation

attribute of the LiCL object {LiCL1, LiCL2, .. LiCLo} and corresponding

behavior attribute of their CiC objects {CiC1, CiC2, .. CiCn}. It is represented

inside the oval shape in the diagram. The information retrieved by the driving

contexts populates the BiC objects in the Behaviors level of MAAD structure.

Here, n is the number of CiC objects in a LiCL object and o is the total number of

LiCL objects in the logical layer. The information retrieved is the actual situation,

circumstances for the situation and the adaptive drive to drive context definitions.

Figure 3

Communication between RFLP and MAAD structure at Behaviors level

In the case of Functional layer of RFLP structure, driving contexts (D) retrieves

the requirement class attribute of the LiCF object {LiCF1, LiCF2, .. LiCFl} and

corresponding elements description attributes of the SFiC objects {SFiC1, SFiC2,..

SFiCk}. It is represented inside the oval shape in the diagram. The information

retrieved by the driving contexts populates the BiC objects in the Behaviors level

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 94 –

of MAAD structure. Here, k is the number of SFiC objects in a LiCF object and l

is the number of LiCF objects in the functional layer of RFLP structure

The retrieved BiC objects are represented as {BiC1, BiC2,... BiCj}. Here, j is the

number of BiC objects in the Behaviors substructure. The CxiC objects

communicate with the LiC objects is shown in Fig. 4, where the main contextual

connections of the MAAD structure is organized as follows:

Figure 4

Communication between RFLP and MAAD structure at Contexts level

 The solid line is the inside contexts (C) of Contexts levels for the MAAD

structure. It is explained in the paper [18], where the contextual

connection of model entities in the MAAD level is defined.

 The bold line is the driving contexts (D) of Behaviors levels for the

MAAD structure. It drives the Logical level of the RFLP structure. The

dashed line is the information retrieved by the CxiC objects from the LiC

objects of the Logical level.

In the case of the Logical layer of RFLP structure, it retrieves the data model

attribute of the LiCL object {LiCL1, LiCL2, .. LiCLo} and corresponding data

model attribute of CiC objects {CiC1, CiC2, .. CiCm}. Here, m is the number of

CiC objects in a LiCL object and o is the total number of LiCL objects in the

Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 95 –

logical layer. The information retrieved is the concept behavior, activity, adaptive

and product feature contexts, connection behavior definitions, model definition

activities, contexts for an adaptive drive, and context for physical level product

and knowledge features. The retrieved CxiC objects are represented as {CxiC1,

CxiC2,... CxiCh}, where, h is the number of CxiC objects in the Contexts

substructure.

4.2 Info-Chunk Objects-based IBCA Structure

The driving generation of the RFLP element is done by the Intelligent Property

(IP). Human-initiated engineering activities with the company IP by using IBCA

structure for the generation of RFLP elements. It leads to the analysis of self-

adaptive product lifecycle management (PLM) modeling. The Info-Chunk objects

based IBCA structure drives the RFLP structure as shown in Fig. 5. The solid

lines are the interaction between the IBCA structure and RFLP structure. The

dashed lines are the information retrieved by the BiC objects and CxiC objects

from the LiC objects of the Functional level and Logical level. On the Behavior

(B) level of the IBCA structure, situations defining behaviors (SB) substructure

are configured to define behaviors by a set of BiC objects.

 In the Logical level of the RFLP structure, the situation attribute &

behavior attribute of the LiCL object {LiCL1, LiCL2,... LiCLd} and the

corresponding behavior attribute of the CiC objects {CiC1, CiC2,...

CiCa} are stored in the BiC objects of the SB element. Here, a is the

number of CiC objects in a LiCL object and d is the total number of

LiCL objects.

 In the Functional level of the RFLP structure, requirement attribute of the

LiC object {LiC1, LiC2,... LiCc} and corresponding elements description

attributes of the SFiC objects {SFiC1, SFiC2,.. SFiCb} are stored in the

BiC objects of the SB element. Here, b is the number of SFiC objects in a

LiC object and c is the number of LiC objects in the functional level.

The stored information in the BiC objects is behavior definition (IEBD) and the

related situation (IEBT) [12]. The total BiC objects obtained from the LiC objects

of the functional and logical layer is represented as {BiC1, BiC2,... BiCn}. Here, j

is the number of BiC objects in the SB element. On the Contexts (C) level of the

IBCA structure, product definition activity contexts (AC) level, adaptive drive

contexts (DC) level, and product feature contexts (FC) level are configured to

define behaviors by a set of CxiC objects. In the logical level of the RFLP

structure, the data model attributes of LiC objects {LiC1, LiC2,... LiCd} & CiC

objects {CiC1, CiC2,.. CiCa} are stored by the CxiC objects of AC, DC and FC

elements. Here, a is the number of CiC objects in a LiC object and d is the total

number of LiC objects. The stored information in the CxiC objects is the product

behavior (IECB). The total CxiC objects obtained from the LiC objects of logical

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 96 –

layer is represented as {CxiC1, CxiC2, .. CxiCx}, {CxiC1, CxiC2, .. CxiCy},

{CxiC1, CxiC2, .. CxiCz}. Here, x, y, z are the number of CxiC objects stored in

the AC, DC and FC elements.

Figure 5

Communication between RFLP and IBCA structure at Behavior and Contexts substructure

5 Info-Chunk Objects-based Information Content

Behavior models with intelligent content involve specifications and knowledge for

the design processes. The most appropriate forms of knowledge are formulas,

rules, and checks. In the following sections, this work focuses on Info-Chunk

object activities in the information content (IC). Here, the MAAD structure is the

driving factor for representing the behavior of the RFLP structure.

5.1 Rules for the Generation of Info-Chunk Objects

Rules are the set of instructions that can be executed for generating and storing the

Info-Chunk objects in the MAAD and IBCA structure. Rules are defined by using

pseudo-codes.

Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 97 –

 In the case of the MAAD structure, the behavior objects {BiC1, BiC2,...

BiCj} are stored in the behaviors level and the context objects {CxiC1,

CxiC2,... CxiCh} are stored in the contexts level. The Process plane of IC

[13] can elaborate on the BiC and CxiC objects for the behavior

representation of the multidisciplinary product. After the analysis

process, the analyzed objects are stored with the nomenclature of BiCab.

If a human wants to evaluate the context of one analyzed object on the

other analyzed object, the context object undergoes the effect process.

The resultant objects are stored as CxiCec. Further, If a human wants to

optimize the contextual object, it is stored as BiCob after the optimization

process. It is also possible to optimize the behavior of an object without

analysis. Information content (IC) retrieve and store required objects at

the Engineering objectives level to drive the behavior of RFLP structure.

 In the case of the IBCA structure, the behavior objects {BiC1, BiC2 , ..

BiCn} are stored in the behavior substructure and the context objects

{CxiC1, CxiC2, .. CxiCx}, {CxiC1, CxiC2, .. CxiCy}, {CxiC1, CxiC2, ..

CxiCz} are stored in the contexts substructures. IP could retrieve and

store these objects to drive the behavior of the RFLP structure. The IP

level and process plane of IP are not defined yet. The behavior

representation for IP is the topic of future work.

Pseudo Codes for BiC & CxiC objects

 BEGIN LOOP

 Initialize a Process

 IF ‘Process’ is ‘Analysis’

o BEGIN LOOP

o Store ‘BiCab’ in ‘Behaviors level’ where 1 ≤ ab ≤ j

o IF ‘Process’ is ‘Effect’

 BEGIN LOOP

 Store ‘CxiCac’ in ‘Contexts level’ where 1 ≤ ac

≤ h

 IF ‘Process’ is ‘Optimization’

 BEGIN LOOP

 Store ‘BiCob’ in ‘Behaviors level’ where 1 ≤

ob ≤ j

 END LOOP

 END LOOP

o END LOOP

 IF ‘Process’ is ‘Optimization’

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 98 –

o BEGIN LOOP

o Store ‘BiCob’ in ‘Behaviors level’ where 1 ≤ ob ≤ j

o END LOOP

6 Overview of the InfoChunkLib API

The InfoChunkLib API is coded in the JavaFX application as shown in Fig. 6. It

consists of two Java packages. The informationcontent Package consists of all the

classes related to the Information Content (IC) like MAADStructure class, BiC

class, CxiC class, and CommunityZone class. The rflp Package consists of all the

classes related to the RFLP structure like LiCL class, LiCF class, CiC class, and

SFiC class.

6.1 Demonstration of Info-Chunk Objects in the RFLP

Structure

To explain the proposed concepts in the system

behavior, let us consider a car as an example.

According to the community concepts [17], a

car system is the combination of various

communities where the Electrical supply

system is one of the community. It consists of

components like battery, starter, alternator,

heater, fan, distributor, etc. Here, battery and

alternator components are used for the Info-

Chunk objects concept explanation. Then, the

following scenario is considered as an

example: The oil consumption of car depends

on the engine behavior that must be modeled

according to the situation such as the

experience of the driver with the sets of

circumstances like path traveled by car, the

condition of the car, surrounding environment,

etc. Figure 6

 InfoChunkLib API

Here, the dynamic behavior of the engine strongly is influenced by the situation

and weakly influenced by the circumstances. The parameters of the LiCL objects

and CiC objects are described in the paper [9]. Also, the parameters of LiCF

objects and SFiC objects are described in the paper [19]. The descriptions of LiCF

Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 99 –

class and LiCL class are shown in the code below. The LiCF class is written to

show the layer Info-Chunk object of the functional layer in the RFLP structure.

Here, the array of SFiC objects, ReqInfoChunk object, LiCFLink object and

String parameters are used as an argument in the constructor. The constructor

arguments of the ReqInfoChunk object are populated from the Requirement layer

of the RFLP structure. The ReqInfoChunk class is written to show the customer

requirements in the requirement layer of the RFLP structure. The SFiC class is

written to show the sub-functional Info-Chunk object in the functional layer of the

RFLP structure. The LiCFLink is the enumeration class to store connector

information. The concepts of constructor overloading are used so that LiCF can

accept various sets of the argument depends on the initialization of the object.

// LiCF.java

/**This class is written to show the layer Info-Chunk

object of the functional layer in the RFLP structure

*@param func_name This parameter stores the name of a

function

*@param func_descrip This parameter stores the

description of a function

*@param comm_name This parameter stores the community

name of a function

*@param func_input This parameter stores the inputs to

a LiCF object

*@param func_output This parameter stores the outputs

from a LiCF object

*@param arrySFiC This parameter stores the array of the

SFiC(Sub-Function InfoChunk) objects

*@param req This parameter initializes the

RFiC(Requirement InfoChunk) object

*@param funct_link This parameter stores links between

the two function of LiCFLink type. It could be Data

flow or Control flow

*/

package org.obuda.infochunklib.rflp;

public class LiCF {

 String func_name, func_descrip, comm_name, func_input,

func_output; SFiC[] arrySFiC = null; ReqInfoChunk req =

null; LiCFLink func_link;

/**

*This constructor is used to initialize the LiCF

objects without information from the requirement layer

*@param name_func This parameter defines the name of a

function

*@param descrip_func This parameter defines the

description of a function

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 100 –

*@param name_comm This parameter stores the community

name of a function

*@param link This parameter stores links between the

two function of LiCFLink type. It could be Data flow or

Control flow

*@param input_func This parameter stores the inputs to

a LiCF object

*@param output_func This parameter stores the outputs

from a LiCF object

*@param subArry This parameter initialize the array of

the SFiC(Sub-Function InfoChunk) objects

*/

 public LiCF (String name_func, String descrip_func,

String name_comm, LiCFLink link, String input_func,

String output_func, SFiC[] subArry) {

func_name = name_func; func_descrip = descrip_func;

comm_name = name_comm; func_link = link; func_input =

input_func; func_output = output_func; arrySFiC =

subArry;}

/**

*This constructor is used to initialize the LiCF

objects with the information from the requirement layer

*@param spec_LiC This parameter stores the

specification of a LiCF object

*@param design_LiC This parameter stores the design of

a liCF object

*/

 public LiCF (String name_func, String descrip_func,

String name_comm, LiCFLink link, String input_func,

String output_func, SFiC[] subArry, String spec_LiC,

String design_LiC) {func_name = name_func; func_descrip

= descrip_func; comm_name = name_comm; func_link =

link; func_input = input_func; output_func =

func_output; arrySFiC = subArry; req = new ReqInfoChunk

(spec_LiC, design_LiC);

 }}

Further, the LiCL class is written to show the layer Info-Chunk object of the

logical layer in the RFLP structure. Here, the array of CiC objects, LiCLGeometry

object, LiCLSituation object, LiCLProcess object, LiCLDataModel object, LiCF

object, LiCLConnector object, integer parameter, boolean parameter, string

parameters, and the array of string parameters are used as an argument in the

constructor. The constructor arguments of a LiCF object are populated from the

Functional layer of the RFLP structure. The concepts of constructor overloading

are used so that LiCL can accept various sets of the argument depends on the

initialization of the object. The CiC class is written to show the component Info-

Chunk object in the logical layer of the RFLP structure. The LiCLGeometry class

Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 101 –

is written to show the geometry of the multidisciplinary product. Here, it could be

possible for data retrieval of the product model and part model’s STEP files in the

LiCL class. In that case, LiCLGeometry constructor’s arguments part_info and

assembly_info are converted from string types into the STEP file format. Here,

JSDAI API could be the possible approach to read and write the STEP file format.

Then, LiCLGeometry object, affect zone and array of circumstances are used as a

constructor argument for the LiCLSituation object. The LiCLSituation class is

written to show the situation with a set of circumstances applicable to a LiCL

object. The LiCLProcess class is written to show the process plane of the IC. It

accepts String and Boolean values of processes as a constructor argument. The

string values store the name of the processes whereas Boolean value stores the

status of a process. The LiCLConnector is the enumeration class to store connector

information. The get method returns the value of objects required to the main

application. It is used in the next subsection.

// LiCL.java

/** This class is written to show the layer Info-Chunk
object of the logical layer in the RFLP structure*/

/**This class is written to show the layer Info-Chunk

object of the functional layer in the RFLP structure

*@param comp_name This parameter stores the name of a

component

*@param community_name This parameter stores the

community name of a component

*@param descrp_CiC This parameter stores the

description of a component

*@param contrib_product This parameter stores the

contribution of the component in the product modeling

*@param type_output This parameter stores the outputs

from the LiCL object

*@param type_input This parameter stores the inputs to

the LiCL object

*@param comp_connected This parameter stores the number

of connected components in a LiCL object

*@param connect This parameter stores information of

connector type. It could be Inner connector or Extended

connector

*@param components This parameter stores the array of

the CiC(Component InfoChunk) objects

*@param functionality This parameter stores the feature

of a LiCL object with LiCF type

*@param gmtry This parameter stores the geometry of the

components in a LiCL object

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 102 –

*@param situation This parameter stores the information

of influenced components and geometry of the components

in a LiCL object at the given situation

*@param process This parameter stores the process

involved in a LiCL object

*@param data_model This parameter stores the detail

description of a LICL object in the context of the

physical object such as process, geometry, and

situation

*/

package org.obuda.infochunklib.rflp;

public class LiCL {

private String comp_name, community_name, descrp_CiC,

contrib_product, type_input, type_output; int

comp_connected; LiCLConnector connect; CiC[] components

= null; LiCF functionality = null; LiCLGeometry gmtry =

null; LiCLSituation situation = null; LiCLProcess

process = null; LiCLDataModel data_model = null;

/**

*This constructor is used to initialize the LiCL object

without the information to the physical layer

*@param name_comp This parameter stores the name of a

component

*@param name_community This parameter stores the

community name of a component

*@param connected_comp This parameter stores the number

of connected components in a LiCL object

*@param product_contib This parameter stores the

contribution of the component in the product modeling

*@param input_type This parameter stores the inputs to

the LiCL object

*@param output_type This parameter stores the outputs

from the LiCL object

*@param affect_zone This parameter stores the

influenced components during the analysis in a LiCL

object

*@param part_info This parameter stores part

information in the geometry of a LiCL object

*@param assembly_info This parameter stores assembly

information in the geometry of a LiCL object

*@param form_features This parameter stores form

feature information in the geometry of a LiCL object

*@param circum This parameter stores the array of the

circumstance of a situation in a LiCL object

*@param arryCiC This parameter stores the array of the

CiC(Component InfoChunk) objects

Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 103 –

*@param function This parameter stores the feature of a

LiCL object with LiCF type

*/

 public LiCL(String name_comp, String

name_community, int connected_comp, String

product_contib, String input_type, String output_type,

String affect_zone, String part_info, String

assembly_info, String form_features, String[] circum,

CiC[] arryCiC, LiCF function) {

comp_name = name_comp; comp_connected = connected_comp;

community_name = name_community; contrib_product =

product_contib; type_input = input_type; type_output =

output_type; functionality = function; connect

=connection; components = arryCiC; gmtry = new

LiCLGeometry(part_info, assembly_info, form_features);

situation = new LiCLSituation(affect_zone, circum,

gmtry);

 }

/**

*This constructor is used to initialize the LiCL object

with the information to the physical layer

*@param process_analysis This parameter stores the

status of the analysis process in a LiCL object

*@param process_effect This parameter stores the status

of the effect/contextual process in a LiCL object

*@param process_optimization This parameter stores the

status of the optimization process in a LiCL object

*@param value_analysis This parameter stores the array

of analysis process values in a LiCL object

*@param value_effect This parameter stores the array of

contextual process values in a LiCL object

*@param value_optimization This parameter stores the

array of optimization process values in a LiCL object

*@param connection This parameter stores information of

connector type. It could be Inner connector or Extended

connector

*@param contexual_PO This parameter stores knowledge of

contextual Physical object/s in a LiCL object

*@param connected_PO This parameter stores knowledge of

connected Physical object/s in a LiCL object

*/

 public LiCL(String name_comp, String

name_community, int connected_comp, String

product_contib, String input_type, String output_type,

String affect_zone, String part_info, String

assembly_info, String form_features, String[] circum,

Boolean process_analysis, Boolean process_effect,

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 104 –

Boolean process_optimization, String[] value_analysis,

String[] value_effect, String[] value_optimization,

LiCLConnector connection, String contexual_PO, String

connected_PO, CiC[] arryCiC, LiCF function) {

comp_name=name_comp; community_name=name_community;

comp_connected = connected_comp; contrib_product =

product_contib; type_input = input_type; type_output =

output_type; functionality = function; connect

=connection; components = arryCiC;

gmtry = new LiCLGeometry(part_info, assembly_info,

form_features);

situation = new LiCLSituation(affect_zone, circum,

gmtry); process = new LiCLProcess(process_analysis,

process_effect, process_optimization, value_analysis,

value_effect, value_optimization); data_model = new

LiCLDataModel(contexual_PO,process,situation,connected_

PO, type_input, type_output);

 }

 private String getSituation() {

 return situation.affect_zone;}

 private String [] getCircumstances() {

 return situation.circumtnces ; }

 private CiC[] array_Components(){

 return components;}

 private LiCF getLiCF(){

 return functionality;}

 private LiCLProcess getProcessInfo(){

 return process;}}

6.2 Demonstration of Info-Chunk Objects in MAAD Structure

The BiC and CxiC class are the application classes for the behavior representation

of the multidisciplinary product model as shown in the code below. The output is

the graph between the components of various disciplines. It is the outcome of the

process plane of the IC. The BiC class accepts the LiCL and LiCF objects as a

constructor argument. Using the LiCL object, the LiCLProcess object can check

the status of the analysis and optimization process. If the value is true, then it can

generate the graph related to the process. The outcome of the Analysis process is

shown in Fig. 7. The graph explains the displacement of the battery, starter and

attenuator components w.r.t to time after the Thermal Analysis process. The

outcome of the optimization process is shown in Fig. 8. The graph explains the

voltage required w.r.t time for the optimized battery response.

Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 105 –

//BiC Class

/**

This class is written to show the behavior Info-Chunk

object of the Behaviors layer in the MAAD structure

*@param bfunc This parameter initializes the LiCF

(Layer InfoChunk in the functional layer) object.

*@param blogic This parameter initializes the LiCL

(Layer InfoChunk in the logical layer) object.*/

public class BiC extends Application {

 LiCF bfunc = null;

 LiCL blogic = null;

/**

*This is the only constructor used to initialize the

BiC (Behavior InfoChunk) object with the information of

LiCF and LiCL object*/

 public BiC(LiCF funct, LiCL logic) {

 funct = bfunc; logic = blogic; }

/*This method is used to generate the graph obtained

from the analysis and optimization process. The

parameters could be the components, parts or expected

changes in the assembly. */

 @Override

 public void start(Stage stage) {

if(blogic.getProcessInfo().isAnalysisProcess()){

//generate graph

}

if(blogic.getProcessInfo().isAnalysisProcess()){

//generate graph

}

if(blogic.getProcessInfo().isOptimizationProcess()){

//generate graph

}}

The CxiC class accepts LiCL object as a constructor argument. Using LiCL

object, the LiCLProcess object can check the status of the effect (contextual)

process. If the value is true, then it can generate the graph based on the contextual

relationship between engineering objects. The outcome of Effect process is shown

in Fig. 9 where contextual relation between attenuator and battery is explained by

varying the battery output current with the attenuator speed. Here, XYChart class

is used for generating the Line Chart graph.

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 106 –

//CxiC Class

/**

This class is written to show the Contexts Info-Chunk

object of the Behaviors layer in the MAAD structure

*@param blogic This parameter initialize the LiCL

(Layer InfoChunk in the logical layer) object */

public class CxiC extends Application {

 LiCL blogic = null;

/**

*This is the only constructor used to initialize the

CxiC (Contextual InfoChunk) object with the LiCL

object*/

 public CxiC(LiCL logic) {logic = blogic;}

/**This method is used to generate the graph obtained

from the contextual process. The parameters could be

the components, parts or expected changes in the

assembly. */

 @Override

 public void start (Stage stage) {

if(blogic.getProcessInfo().isEffectProcess()){

//generate graph}

}}

The MAADStructure class is the main method class that launches the application

by calling the objects of BiC and CxiC objects.

//MAADStructure Class

/** This class is written to show the main application

of the InfoChunkLib API. */

public class MAADStructure {

 /** This method is used to start the main application

by calling the BiC and CxiC objects and generate the

graphs*/

 public static void main(String args[]) throws

Exception {

 Application.launch(BiC.class, args);

 new Thread(){

 Application.launch(CxiC.class, args);

 }} }

Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 107 –

Figure 7

The graph of components after thermal analysis

Figure 8

The graph of the battery component after the optimization process

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 108 –

Figure 9

The graph between battery and attenuator component after effect/contextual process

6.3 Implementation of InfoChunkLib API in the Information

Content

InformationContent class is the application which imports the InfoChunkLib API

and handles the multidisciplinary product model. It could be a Java application or

Web application. The output is stored in the database. As shown in the code

below, SFiC objects and CiC objects are initialized first. Then, LiCF objects are

initialized from SFiC objects and LiCL objects are initialized from CiC objects

and LiCF objects. Then, BiC objects are initialized by LiCF objects and LiCL

objects. CxiC objects are initialized by LiCL objects. Finally, the MAADStructure

class is called by InformationContent arguments and graphs are generated for the

behavior representation of multidisciplinary product model.

//InformationContent.java

/**This class is written to use InfoChunkLib API to

drive the multidisciplinary product model*/

import org.obuda.infochunklib.rflp.SFiC;

import org.obuda.infochunklib.rflp.SFiCLink;

import org.obuda.infochunklib.rflp.CiC;

Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 109 –

import org.obuda.infochunklib.rflp. ConnectorCiC;

import org.obuda.infochunklib.rflp.LiCF;

import org.obuda.infochunklib.rflp. FunctionLink;

import org.obuda.infochunklib.rflp.LiCL;

import org.obuda.infochunklib.rflp.ConnectorLiC;

public class InformationContent{

public static void main(String args[]) throws

Exception{

//Extract SFiC object arguments information from the

functional layer and physical layer (.step file)

SFiC subfunc1 = new SFiC("To recharge the battery",

"Energize a field current that turns a rotor inside a

set of stators that can produce high current in

alternating directions", SubfunctionLink.DataFlow,

"Mechanical energy", "Electrical energy", "The

electrical system of a car is a closed circuit with an

independent power source the battery");

//Extract CiC object arguments information from the

logical layer and physical layer (.step file)}}

CiC comp1 = new CiC("Alternator", "Electrical supply",

"large BATT terminal connected to battery positive,

Relay Terminal connected to the connect to the dash

warning light, Sense Terminal connect the pigtail

directly to the BATT terminal", "provide power to the

car electrical system", subfunc1, "Magnet movement",

"Energy", "Battery", "Engine and Starter",

ConnectorCiC.Inner);

//Extract LiCF object arguments information from the

functional layer and physical layer (.step file)

LiCF funct = new LiCF("To power the car system", "The

battery provides juice to the starter. Then, the

alternator gives that battery the energy required to

power the car system", "Electrical Group",

FunctionLink.DataFlow, null, "Power", arrySFiC);

//Extract LiCL object arguments information from the

logical layer

LiCL logic = new LiCL("Electrical supply", "Electrical

Group", 3, "To supply power to Car system", "Mechanical

Energy", "Power", "Experienced_driver","Alternator,

Starter and Battery", assembly_info, null, true, false,

circumstnce, true, false, true, value_analysis_thermal,

null, value_optimization_global, ConnectorLiC.Extended,

"Lighting and signaling system", "Ignition electronic

system", arryCiC, func); }}

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 110 –

//Initialize BiC object and CxiC object from LiCL

object and LiCF object

BiC behav = new BiC(funct, logic);

CxiC context = new CxiC(logic);

//Call MAADStructure class for behavior representation

of multidisciplinary product model

String[] args = new String[0];

MAADStructure.main(args);}

6.4 Testing Phase of the Info-Chunk Objects

It is necessary to check the stored information in the Info-Chunk objects. In the

OOP based language like Java, JUnit testing is a popular tool to check the

behavior of an object. The behavior of a multidisciplinary product can be tested by

varying the attributes and methods of the BiC and CxiC objects in the virtual

environment. These values are compared with the values obtained from the

physical environment. Further, formulas can be derived from the consistent values

obtained from the virtual and physical environment.

Conclusion

This research work focuses on the behavior representation of a multidisciplinary

product model by introducing Info-Chunk objects in the Information Content (IC).

It started with the conversion of Info-Chunk entities into the Info-Chunk objects.

Further, “InfoChunkLib” API is proposed based on the communication between

the MAAD structure and RFLP structure in terms of LiC, BiC, and CxiC objects.

Information Content (IC) is an application that imports InfoChunkLib API to

handle and drive a multidisciplinary product model. The generated graph obtained

from the IC evaluate the behavior of product components at various processes.

The IC facilitate the HCI of multidisciplinary product model by initializing the

parameters through the application. Info-Chunk objects provide necessary

specification and knowledge representations to simulate the behavior of the

complex multidisciplinary product model.

Future Work

A web server could be the next step for this research work, where a database is

populated by the proposed API and a web application is used to access the IC.

Dassault Systemes has implemented the RFLP structure in the CATIA V6 and

3DEXPERIENCE (3DXP) platforms for the multidisciplinary product model.

Here, Dymola [16] is used to analyze the dynamic logical behavior and Modelica

is used for logical and physical modeling of a product. The Java language and

Modelica language are based on OOP concepts. Hence, API could be translated

accordingly. The author could further update the API and database. Also,

InfoChunkLib API can be extended and deployed in the IP.

Acta Polytechnica Hungarica Vol. 16, No. 4, 2019

 – 111 –

Acknowledgment

The author gratefully acknowledges his supervisor, Dr. Horváth László, for

guidance while writing this article.

References

[1] L. Horváth and I. J. Rudas: Towards the Information Content-driven

Product Model, Proceedings of the IEEE International Conference on

System of Systems Engineering, Singapore, 2-4 June 2008, pp. 1-6

[2] L. Horváth and I. J. Rudas: Systems engineering in product definition,

Proceedings of the IEEE 13th International Symposium on Applied

Machine Intelligence and Informatics (SAMI), Slovakia, 22-24 Jan. 2015,

pp. 181-186

[3] H. F. Krikorian: Introduction to object-oriented systems engineering.1,

Journal of IT Professional, V(2), pp. 38-42, 2003

[4] L. Horváth and I. J. Rudas: Multilevel Abstraction Based Self Control

Method for Industrial PLM Model, Proceedings of the IEEE International

Conference on Industrial Technology, South Korea, 26 Feb.-1 March 2014,

pp. 695-700

[5] L. Horváth and I. J. Rudas: Active Driving Content in RFLP Structured

Product Model, Recent Advances on Mechanics, Materials, Mechanical

Engineering, and Chemical Engineering, MMMCE, Barcelona, 2015, pp.

123-131

[6] Peter Fritzson: Principles of Object-Oriented Modeling and Simulation with

Modelica 3.3: A Cyber-Physical Approach, Wiley-IEEE Press, John Wiley

& Sons Inc, 2015, pp. 45-97

[7] Detterfelt, Jonas and Johansson, Gert: A UML Based Modeling Approach

for Multi Domain System Products, Nordic Conference on Product

Lifecycle Management - NordPLM, 2006, pp. 39-50

[8] John Stark: Product Lifecycle Management: 21st Century Paradigm for

Product Realisation, Springer-Verlag, London, 2011, pp. 10-25

[9] Yatish Bathla: Conceptual Models of Information Content for Product

Modeling, Acta Polytechnica Hungarica, XV (2), 2018, pp. 169-188

[10] Ou Y.: On Mapping Between UML and Entity-Relationship Model, The

Unified Modeling Language, Schader M., Korthaus A. (eds), Springer

Nature, Switzerland, 1998, pp. 45-57

[11] Bernhard Thalheim: Entity-Relationship Modeling: Foundations of

Database Technology, Springer-Verlag, New York, 2000, pp. 124-145

[12] L. Horváth, J. Fodor, I. J. Rudas: Manufacturing Aspect of the IBCA

Structure for Active Knowledge Content Representation in Product Model,

Journal of IFAC- PapersOnLine, 48(3), 2015, pp. 1616-1621

Y. Bathla Info-Chunk as New Behavior Representation for System-based Model of Product

 – 112 –

[13] Yatish Bathla: Different types of process involved in the information

content product model. In Proceedings of the IEEE 14th International

Symposium on Intelligent Systems and Informatics (SISY), 2016, pp. 99-

104

[14] L. Horváth and I. J. Rudas: Integrated Associative Modeling of Parts and

their Machining Process by Features, Proceedings of the IEEE International

Conference on Microelectronic Test Structures (ICMTS) conference, 2001,

pp. 316-321

[15] Ian Sommerville: Software Engineering: 9th edition, Addison-Wesley,

Pearson Education & Sons Inc, 2011, pp. 216-421

[16] Dassault Systemes AB: Dymola Dynamic Modeling Laboratory Getting

started with Dymola. Dymola User Manual Volume 1, Dassault

Syst emes, Lund, Sweden, 2013, pp. 23-48

[17] Yatish Bathla: Structured organization of Engineering Objects in the

information content of the PLM system. In Proceedings of the IEEE 11th

International Symposium on Applied Computational Intelligence and

Informatics (SACI), 2016, pp. 473-478

[18] L. Horváth and I. J. Rudas: Behavior and Design Intent Based Product

Modeling, Acta Polytechnica Hungarica, 1(2), 2004, pp. 17-34

[19] Yatish Bathla: Info-Chunk driven RFLP Structure based Product Model for

Multidisciplinary Cyber Physical Systems, Proceedings of the IEEE 16th

International Symposium on Intelligent Systems and Informatics (SISY),

2018, pp. 000327-000332

[20] L. Horváth and I. J. Rudas: Bringing up product model to thinking of

engineer, Proceedings of the IEEE International Conference on Systems,

Man and Cybernetics, 2008, pp. 1355-1360

[21] László Horváth: New methods on the way to intelligent modeling in

computer integrated engineering. In Proceedings of the 36th Annual

Conference on IEEE Industrial Electronics Society (IECON), 2010, pp.

1359-1364

