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Abstract. Correlation coefficients (association measures) were introduced more than one 

hundred years ago as measures of relationship between variables that usually belong to 

one of the following basic types: continuous, ordinal, or categorical. Nowadays, it appears 

the growing demand for the development of new correlation coefficients for measuring 

associations between variables or objects with more sophisticated structures. The paper 

presents a non-statistical, functional approach to the study of correlation coefficients. It 

discusses the methods of construction of correlation coefficients using similarity and 

dissimilarity measures. Generally, all these measures are considered as functions defined 

on the underlying (universal) domain and satisfying some sets of properties. The methods 

of construction of correlation functions on the universal domain can be easily applied for 

constructing correlation coefficients for specific types of data. The paper introduces a new 

class of correlation functions, satisfying a weaker set of properties than the previously 

considered correlation functions (association measures) defined on a set with involution 

(negation) operation called here strong correlation functions. The methods of constructing 

both types of correlation functions are discussed. The one-to-one correspondence between 

the strong correlation functions and the bipolar similarity and dissimilarity functions is 

established. The theoretical results illustrated by examples of construction of classical 

Pearson’s product-moment correlation coefficient, Spearman’s and Kendall’s rank 

correlation coefficients, etc. from similarity and dissimilarity functions. 

Keywords: similarity; dissimilarity; correlation; association; Spearman’s and Kendall’s 

rank correlations; Pearson’s correlation; cosine similarity, and cosine correlation 

1 Introduction 

Similarity and association measures actively studied more than one hundred years 

as measures of relationship between data initially in pattern classification and 

statistics and later in data mining and machine learning [1, 9-11, 13, 14, 16-20]. 

Correlation coefficients (association measures) were introduced in statistics as 

measures of the relationship between variables of one of the following types: 

continuous, ordinal, or categorical. Nowadays, we see the growing demand for 
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measuring the relationship between data with diverse structures: sequences and 

time series, rating profiles, vectors with different attributes, fuzzy sets, matrices, 

images, texts with syntactic structures, etc. An application of classical correlation 

coefficients to new types of data often impossible or gives misleading results. For 

this reason, to have the correlation coefficients specific for the analyzed data type 

is of great interest. 

The paper considers the methods of construction of correlation coefficients using 

similarity and dissimilarity measures defined on an underlying set referred to as a 

universal domain. One can easily apply these methods to a specific type of data. 

The similarity, dissimilarity, and correlation measures are considered as functions 

satisfying some sets of properties [3, 4, 8]. This paper introduces a new class of 

correlation functions, satisfying a weaker set of properties than the previously 

considered correlation functions (association measures) [4, 8] called here strong 

correlation functions and defined on a set with involution (negation) operation. 

We discuss the methods of constructing both types of correlation functions using 

(dis)similarity functions. We establish the one-to-one correspondence between the 

strong correlation functions and “bipolar” (dis)similarity functions. The examples 

of the construction of correlation coefficients for specific domains illustrate the 

theoretical results. 

The paper has the following structure. Section 2 gives definitions of similarity and 

dissimilarity functions. Sections 3 and 4 consider the methods of construction of 

strong correlation functions (association measures) on the set with involution 

operation. In Section 5, we introduce generalized correlation functions that can be 

defined on a set without involution operation and study their relationships with 

(dis)similarity functions. In Section 6 we establish one-to-ome correspondence 

between strong correlation functions and bipolar (dis)similarity functions. Section 

7 discusses related works and includes the conclusion. 

2 Similarity and Dissimilarity Functions 

The paper considers similarity, dissimilarity, and correlation measures or 

coefficients as functions defined on some nonempty underlying set Ω [8]. As such 

set one can use, for example, any specific domain: the set of all real-valued n-

tuples, the set of binary vectors, the set of membership values, the set of images, 

etc. To emphasize that the underlying set Ω is not a specific domain but any 

domain this set will be referred to as a universal domain. 

Definition 1. A similarity function on a set Ω is a function S:Ω×Ω→[0,1] 

satisfying for all x, y in Ω the properties: 

S(x,y) = S(y,x),     (symmetry) 

S(x,x) = 1.            (reflexivity) 
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If for some x, y in Ω it is fulfilled: 

S(x,y) = 0, 

then S is called (0)-normal (in (x,y)). 

Definition 2. A dissimilarity function on a set Ω is a function D:Ω×Ω→[0,1] 

satisfying for all x, y in Ω the properties: 

D(x,y) = D(y,x),     (symmetry) 

D(x,x) = 0.             (irreflexivity) 

If for some x, y in Ω it is fulfilled: 

D(x,y) = 1, 

then D is called 1-normal (in (x,y)). 

Dissimilarity functions are dual to similarity functions. 

Definition 3. Similarity S and dissimilarity D functions are called complementary 

if for all x, y in Ω it is fulfilled: 

S(x,y)+D(x,y) = 1. 

One can obtain one of these functions from the corresponding complementary 

function for all x, y in Ω as follows: 

S(x,y) = 1 – D(x,y), 

D(x,y) = 1 – S(x,y). 

It is clear that a similarity function is 0-normal if and only if its complementary 

dissimilarity function is 1-normal. 

Example 1. Let Ω be a set of nonnegative real-valued n-tuples x = (x1,…,xn) such 

that x ≠ (0,…,0). Then for any x = (x1,…,xn) and y = (y1,…,yn) in Ω the following 

function: 

𝑆(𝑥, 𝑦) =
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1

√∑ 𝑥𝑖
2𝑛

𝑖=1 √∑ 𝑦𝑖
2𝑛

𝑖=1

 ,
 

is the symmetric and reflexive similarity function called a cosine similarity 

measure and denoted as cos(x,y). It is 0-normal for orthogonal pairs of n-tuples x 

and y such that xiyi = 0 for all  i=1,…,n. 

The similarity function cos(x,y) has the following complementary dissimilarity 

function [8]: 

𝐷(𝑥, 𝑦) =
1

2
∑ (

𝑥𝑖

√∑ 𝑥𝑖
2𝑛

𝑖=1

−
𝑦𝑖

√∑ 𝑦𝑖
2𝑛

𝑖=1

)

2

𝑛
𝑖=1 .
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Due to the duality of similarity and dissimilarity functions, one can consider only 

one of these functions, but they have different interpretations and methods of 

construction; hence, we consider them together. These functions studied in [8]. 

For short, we call them also (dis)similarity functions. 

3 Strong Correlation Functions 

The correlation functions (association measures) were introduced in [3, 4, 8] on a 

universal domain Ω with an involutive operation N as functions satisfying several 

properties of Pearson’s product-moment correlation coefficient. Here these 

correlation functions called strong correlation functions. The methods of 

construction of correlation functions using similarity functions have been 

proposed, and it was shown how the Pearson’s correlation and Yule’s Q 

association coefficient could be constructed using suitable similarity functions [2, 

5, 8]. In the following sections, we will consider correlation functions satisfying a 

weaker set of properties. 

Definition 4. A function N:Ω→Ω satisfying for all x in Ω the property: 

N(N(x))=x,      (involutivity) 

is called a reflection or a negation on Ω if it is not an identity function, i.e. if for 

some x in Ω it is fulfilled: 

N(x) ≠ x. 

An element x in Ω such that N(x) = x is called a fixed point and the set of all fixed 

points of the negation N in Ω is denoted as FP(N, Ω) or FP(Ω). 

Below Ω\FP(Ω) denotes the set of all elements in Ω, which are not fixed points. 

The set FP(Ω) can be empty. It is easy to show that the set Ω\FP(Ω) is closed 

under reflection operation. 

Proposition 1 [4]. Let N:V→V be a reflection on a set V, and R:V×V→R be a 

symmetric real-valued function, i.e.: 

R(x,y) = R(y,x), 

for all x,y in V. The function R satisfies for all x,y in V the property: 

R(N(x),N(y)) = R(x,y), 

if and only if it is fulfilled: 

R(x,N(y)) = R(N(x),y). 

Symmetric function R satisfying these properties will be called a co-symmetric 

function [8]. Further, we will consider co-symmetric similarity, dissimilarity, and 

correlation functions. 
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A similarity function S:V×V→[0,1] satisfying for all x, y in V the property: 

S(x,N(x)) = 0, 

is called a consistent similarity function [8]. 

Dually, a dissimilarity function D:V×V→[0,1] will be called a consistent 

dissimilarity function if for all x, y in V  it is fulfilled: 

D(x,N(x)) = 1. 

A similarity function S is consistent or co-symmetric if and only if its 

complementary dissimilarity function is consistent or co-symmetric, respectively. 

Definition 5 [4]. Let N be a reflection on Ω and V be a subset of Ω∖FP(Ω) closed 

under N. A strong correlation function (association measure) on V is a function 

A:V×V→[–1,1] satisfying for all x, y in V the properties: 

A(x,y) = A(y,x),              (symmetry) 

A(x,x) = 1,                     (reflexivity) 

A(x,N(y)) = –A(x,y).      (inverse relationship) (1) 

A strong correlation function will be also referred to as an invertible correlation 

function. 

Proposition 2 [4]. A strong correlation function A on V satisfies for all x, y in V 

the following properties: 

A(x,N(x))  = –1, 

A(N(x),N(y))  = A(x,y).      (co-symmetry) 

Example 2. Let Ω be the set of all real-valued n-tuples x = (x1,…,xn) with the 

reflection operation N(x) = –x = (–x1,…, –xn). Let V be a set of all non-constant n-

tuples from Ω such that x≠(q,…,q) for any real value q. It is clear that V is closed 

under N, and it has no fixed elements. It is easy to check that the Pearson’s 

product-moment correlation coefficient: 

𝐴(𝑥, 𝑦) =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

 ,
 (2) 

where 𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  , 𝑦̅ =

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1   is the strong correlation function on V. 

Consider the methods of construction of strong correlation functions (association 

measures) [3, 4, 8]. 

Theorem 1. Let N be a reflection on Ω and V be a nonempty subset of Ω\FP(Ω) 

closed under N. Let S:V×V→[0,1] be a co-symmetric and consistent similarity 

function, then the function A:V×V→[–1,1] defined for all x, y in V by 

A(x,y)=S(x,y) – S(x,N(y)), (3) 

is a strong correlation function on V. 
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The formula (3) has a simple interpretation: the correlation between x and y is 

positive if x is more similar to y than to its negation, and the correlation is 

negative in the opposite case. 

Replacing in (3) the similarity function S by the complementary dissimilarity 

function: D(x,y) = 1 – S(x,y) obtain the following formula for constructing a 

strong correlation function from a co-symmetric and consistent dissimilarity 

function: 

A(x,y) = D(x,N(y)) – D(x,y). (4) 

This formula can be more convenient than (3) for constructing strong correlation 

functions when we use distance-based dissimilarity functions [8]. 

Example 3 [2, 5, 8]. Consider the dissimilarity function on the set V of non-

constant n-tuples (see Example 2) that generates by (4) the Pearson’s product-

moment correlation coefficient (2): 

𝐷(𝑥, 𝑦) =
1

4
∑ (

𝑥𝑖−𝑥̅

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

−
𝑦𝑖−𝑦̅

√∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

)

2

𝑛
𝑖=1 .

  

One can check that it is co-symmetric and consistent. 

Example 4. If the cosine function from Example 1 is defined on the set of all 

nonzero real-valued n-tuples with the negation operation N(x) = –x = (–x1,…, –xn), 

then it will satisfy the properties of the strong correlation function and can be 

generated by (4) using the following dissimilarity function [8]: 

𝐷(𝑥, 𝑦) =
1

4
∑ (

𝑥𝑖

√∑ 𝑥𝑖
2𝑛

𝑖=1

−
𝑦𝑖

√∑ 𝑦𝑖
2𝑛

𝑖=1

)

2

𝑛
𝑖=1 . 

This dissimilarity function is co-symmetric and consistent. 

As it follows from Examples 1 and 4, the cosine function will be the similarity 

function if it is defined on the set of nonzero, nonnegative real-valued n-tuples, 

and it will be the strong correlation function if it is defined on the set of nonzero 

real-valued n-tuples [8]. The cosine is often used as a similarity measure between 

the texts represented by vectors of attributes where xi equals to the frequency of 

appearing of the ith attribute in the text [18]. In this case, all vector components 

take nonnegative values. As a correlation function, the cosine used, for example, 

in measuring associations between time series presented by sequences of local 

trends that can have positive and negative values [2, 6]. Generally, the cosine 

correlation can be used instead of Pearson’s correlation on the set of real-valued n-

tuples when the calculation of means used in Pearson’s correlation has not much 

sense, for example, when the signs of the elements of n-tuples are important, or 

these elements contain the values of attributes measured in different scales. 
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4 Pseudo-Differences in Constructing Strong 

Correlation Functions 

Let TC:[0,1]×[0,1]→[0,1] be a t-conorm [15], i.e. commutative, associative, 

monotonic function satisfying boundary condition: TC(a,0) = 0, for all a in [0,1]. 

Usually, t-conorm is denoted by the letter S, but in this paper, the symbol S is used 

for similarity functions and similarity measures, for this reason, we denote t-

conorm as TC. 

We will say that a t-conorm TC has no nilpotent elements if for all a, b in [0,1] it 

is fulfilled: TC(a,b) = 1 if and only if a = 1 or b = 1. 

Consider the examples of basic t-conorms defined for all a, b in [0,1] as follows 

[15]: 

TCM(a,b) = max(a,b),              (maximum) 

TCP(a,b) = a+b-ab,                 (probabilistic sum) 

TCL(a,b) = min(a+b, 1).          (Lukasiewicz t-conorm) 

t-conorms TCM and TCP have no nilpotent elements but TCL has. 

Definition 6 [12]. Let TC be a t-conorm. A pseudo-difference operation ⊖TC 

associated to TC is defined for all a, b in [0,1] as follows: 

𝑎 ⊖𝑇𝐶 𝑏 = {

𝑎𝑇𝐶𝑏           𝑖𝑓 𝑎 > 𝑏

−(𝑏𝑇𝐶𝑎)   𝑖𝑓 𝑎 < 𝑏
0                 𝑖𝑓 𝑎 = 𝑏

, 

where 𝑎𝑇𝐶𝑏 is the TC-difference defined by: 

𝑎𝑇𝐶𝑏 = inf {𝑐 ∈ [0,1]|𝑇𝐶(𝑏, 𝑐) ≥ 𝑎}. 

Consider the pseudo-difference operations associated to basic t-conorms [12]: 

𝑎 ⊖𝑀 𝑏 = {

𝑎           𝑖𝑓 𝑎 > 𝑏
−𝑏        𝑖𝑓 𝑎 < 𝑏

0            𝑖𝑓 𝑎 = 𝑏
, 

𝑎 ⊖𝑃 𝑏 = {

𝑎−𝑏

1−min (𝑎,𝑏)
,           𝑖𝑓 𝑎 ≠ 𝑏

0,                           𝑖𝑓 𝑎 = 𝑏
, 

𝑎 ⊖𝐿 𝑏 = 𝑎 − 𝑏. 

Theorem 2 [3,4]. Let N be a reflection on Ω and V be a nonempty subset of 

Ω∖FP(Ω) closed under N. Let S:V×V→[0,1] be a co-symmetric and consistent 

similarity function then the function 

A(x,y) = S(x,y) ⊖TC S(x,N(y)). 

is a strong correlation function on V. 



I. Z. Batyrshin Constructing Correlation Coefficients from Similarity and Dissimilarity Functions 

 – 198 – 

Theorem 1 is a particular case of Theorem 2 when it is used the pseudo-difference 

operation ⊖TC = ⊖L  associated to Lukasiewicz t-conorm. 

In some domains, it is difficult to construct consistent similarity functions. In such 

cases, the property of consistency S can be replaced by the property of weak 

consistency (weak similarity of reflections) of S defined for all x,y in V by: 

S(x,N(x)) < 1. 

Theorem 3 [3,4]. Let N be a refkection on Ω and V be a nonempty subset of 

Ω\FP(Ω) closed under N. Let S:V×V→[0,1] be a co-symmetric similarity function 

satisfying weak consistency, then the function 

A(x,y) = S(x,y) ⊖TC S(x,N(y)),  (5) 

is a correlation function on V if t-conorm TC has no nilpotent elements. 

From Theorem 3, it follows that if similarity function S is co-symmetric but only 

weakly consistent, then there is no reason to use in (5) pseudo-difference 

operation a⊖TCb= a – b but one can use pseudo-difference operations associated 

to maximum TCM and product TCP t-norms. Some examples one can find in [3, 4]. 

5 Generalized Correlation Functions 

Here we introduce the correlation functions that can be not strong. In the 

definition of such correlation functions, we do not require that the underlying set 

Ω equipped with some negation operation. We will consider the methods of 

construction of such correlation functions and, further, we will show when these 

methods will define strong correlation functions. Finally, we establish the one-to-

one correspondence between “bipolar” similarity functions and strong correlation 

functions. 

Definition 7. A function A:Ω×Ω→[–1,1] on a nonempty set Ω is a correlation 

function if it is symmetric, reflexive and has negative value for some x, y in Ω: 

A(x,y) < 0. A correlation function A is called (–1)-normal (in (x,y)) if A(x,y) = –1 

for some x, y in Ω. 

A non-strong correlation function will be called a weak o semi-correlation 

function. 

Proposition 3. Suppose S and D are similarity and dissimilarity functions on Ω 

such that for some x, y in Ω it is fulfilled: S(x,y) < D(x,y), then the function 

defined for all x,y in Ω by: 

A(x,y) = S(x,y) – D(x,y), (6) 

is a correlation function. 
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Proof. The similarity of A follows from the similarity S and D. The reflexivity of 

A follows from the reflexivity of S and irreflexivity of D.  When for some x, y in Ω 

it is fulfilled S(x,y) < D(x,y), the value of A in (6) is negative. ■ 

If S is 0-normal and D is 1-normal in the same pair of elements (x,y) then A is (-1)-

normal. If similarity and dissimilarity functions in (6) are complementary, then the 

function (6) will be a correlation function if for some x, y in Ω it fulfills S(x,y) < 

0.5. 

The formula (6) has a reasonable interpretation: the correlation between x and y is 

positive if the similarity between them is greater than the dissimilarity, and the 

correlation is negative in the opposite case. 

Definition 8. If the similarity S and dissimilarity D functions in (6) are 

complementary, then the correlation function A defined by (6) is called 

complementary to S and D, and (S,D,A) for such functions is called a 

complementary (or correlation) triplet. 

From Definitions 3 and 8 and from Proposition 3 it follows that the similarity, 

dissimilarity and correlation functions from the complementary triplet (S,D,A), 

can be obtained one from another for all x, y in Ω as follows: 

S(x,y) = 1 – D(x,y),         D(x,y) = 1 – S(x,y),  (7) 

A(x,y) = 2S(x,y) – 1,       S(x,y) = 0.5(A(x,y)+1),  (8) 

A(x,y) = 1 – 2D(x,y),      D(x,y) = 0.5(1 – A(x,y)). (9) 

Example 5. The Spearman’s rank correlation coefficient is equivalent to the 

Pearson’s product-moment correlation coefficient applied to rankings of n objects 

[9, 14]. When each of rankings x = (x1,…,xn) and y = (y1,…,yn) contains n different 

integer ranks, 1 ≤ xi, yi ≤ n, i.e. there are no ties, the Spearman’s rank correlation 

coefficient is calculated as follows: 

𝑟𝑠 = 1 −
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2−1)
,
 (10) 

where di = xi - yi. Consider the function: 

𝐷(𝑥, 𝑦) =
3 ∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛(𝑛2−1)
 . 

It is irreflexive, symmetric and takes values in the interval [0,1], hence it is the 

dissimilarity function and Spearman’s rank correlation coefficient defined by 
 

rS(x,y) = 1 – 2D(x,y), is a correlation function, compare with (9). 

Example 6. The Kendall rank correlation coefficient is defined for measurements 

without ties x= (x1,…,xn) and y= (y1,…,yn) of two variables for n objects as follows 

[11,14,17]: 

𝜏 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

𝑛(𝑛−1)/2
, 
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that can be represented as the difference between similarity S and dissimilarity D 

functions (6): 

(x,y) = S(x,y) – D(x,y), 

defined as follows: 

𝑆(𝑥, 𝑦) =
∑ ∑ 𝑠𝑖𝑗

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1

𝑛(𝑛−1)/2
𝐷(𝑥, 𝑦) =

∑ ∑ 𝑑𝑖𝑗
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1

𝑛(𝑛−1)/2


where concordant and disconcordant pairs (i,j), i<j, defined by: 

𝑠𝑖𝑗 = {
1, 𝑖𝑓 (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) > 0

0,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒


𝑑𝑖𝑗 = {
1, 𝑖𝑓 (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) < 0

0,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒


The Kendall rank correlation coefficient uses the signs of differences between 

measurement values: (xi – xj) and (yi– yj), hence takes into account only the 

ordering (or ranking) of these values. Note that S is reflexive, D is irreflexive, and 

both functions are symmetric, take values in [0,1]; hence they are similarity and 

dissimilarity functions, respectively. Due to the measurements are without ties, 

i.e., all have different values, from sij + dij = 1 for all 1≤i<j≤n, it follows 

S(x,y)+D(x,y)= 1, i.e., S and D are complementary functions, and together with 

Kendall rank correlation coefficient  compose complementary triplet (S,D,), 

hence for S, D, and A=   all relations (7)-(9) are fulfilled. 

6 Relationship between Strong Correlation Functions 

and Similarity Functions 

The following theorem answers the question: when the correlation function from a 

complementary triplet will be strong. 

Theorem 4. Let N be a reflection on Ω and V be a nonempty subset of )(\  FP  

closed under N. The formulas (8) establish the one-to-one correspondence 

between the strong correlation functions and the similarity functions satisfying for 

all x, y in V the following property: 

S(x,y) + S(x,N(y)) = 1.    (11) 

Proof. Suppose (1) is fulfilled, then 

A(x,y) + A(x,N(y)) = 0,   (12) 

applying (8) we obtain from (12): 2S(x,y) – 1 + 2S(x,N(y)) – 1= 0, and 2S(x,y) + 

2S(x,N(y))= 2, i.e. (11) is fulfilled. Similarly, from (11), (8) we can obtain (1) ■ 
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A similarity function satisfying (11) for all x, y in V will be referred to as a bipolar 

similarity function, see [7], because the right side of (11) one can consider as a 

sum: 1 = 0 + 1, of “poles” 0 and 1 of the interval of similarity values [0,1]. 

Similarly, we can present the property (12) of the inverse relationship of 

correlation function (1) as bipolarity condition, where the right side equal to the 

sum: 0 = –1 + 1, of the “poles” of the interval of correlation function values [-1,1]. 

For this reason, a strong correlation function one can consider also as a bipolar 

correlation function, and Theorem 4 one can interpret as follows: there exists a 

one-to-one correspondence between bipolar correlation functions and bipolar 

similarity functions. 

From Theorem 4 it follows also that the formulas (9) establish a one-to-one 

correspondence between strong correlation functions and bipolar dissimilarity 

functions satisfying for all x, y in V the bipolarity condition: 

D(x,y) + D(x,N(y)) = 1.    (13) 

It is easy to see from (7) that for complementary similarity and dissimilarity 

functions the bipolarity relations (11) and (13) are equivalent to: 

D(x,y) = S(x,N(y)),      S(x,y) = D(x,N(y)). (14) 

Proposition 4. Let N be a reflection on Ω and V be a nonempty subset of 

)(\  FP  closed under negation N. Let S be a bipolar similarity function on V 

then it is consistent and co-symmetric. 

Proof. From (11) replacing y by x and from the reflexivity of S obtain the 

consistency of S: S(x,N(x)) = 1 – S(x,x) = 1 – 1= 0. 

Replacing in (11) x by N(x) and y by N(y) obtain: S(N(x),N(y))+S(N(x),N(N(y)))= 

1. Further, applying involutivity of N: N(N(y)) = y, and symmetry of S obtain: 

S(N(x),N(y)) = 1 – S(N(x),N(N(y)))= 1– S(N(x),y)= 1– S(y,N(x)). From (11) we 

have S(y,x) + S(y,N(x)) = 1, that together with symmetry of S gives: 1– S(y,N(x))= 

S(y,x)=S(x,y), and finally we obtain: S(N(x),N(y)) = S(x,y), i.e. co-symmetry of S ■ 

From Proposition 4 and Theorem 1 it follows that the bipolar similarity function 

can be used for constructing a strong correlation function by (3): A(x,y)=S(x,y) – 

S(x,N(y)), and from (14) it follows that this strong correlation function is 

complementary to S, i.e. (6) is fulfilled: A(x,y)= S(x,y) – D(x,y), hence the 

simplified formulas (8): A(x,y)= 2S(x,y) – 1, and (9): A(x,y)= 1 – 2D(x,y), can be 

used. From (8) and (9) it follows that the strong correlation function is the 

rescaling of bipolar similarity and dissimilarity functions. 

Example 7 (see Example 6). Let Ω be the set of real-valued n-tuples x = 

(x1,…,xn). Define the reflection on Ω as follows: N(x) = (M – x1,…, M – xn), where 

M is some constant, for example, M = 0 or M = max{x1,…,xn}. For similarity 

function S from Example 6 denote sij the addends that will be used for calculating 

S(x,N(y)): 
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𝑠𝑖𝑗 = {
1, 𝑖𝑓  (𝑥𝑖 − 𝑥𝑗) (𝑁(𝑦

𝑖
)  − 𝑁 (𝑦

𝑗
)) > 0

0,                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  

= {
1, 𝑖𝑓  (𝑥𝑖 − 𝑥𝑗) ((𝑀 − 𝑦𝑖)   − (𝑀 − 𝑦𝑗)) > 0

0,                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  

= {
1, 𝑖𝑓 (𝑥𝑖 − 𝑥𝑗)(𝑦𝑗 − 𝑦𝑖) > 0

0,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

= {
1, 𝑖𝑓 (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) < 0

0,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

= 𝑑𝑖𝑗 . 

Hence, D(x,y) = S(x,N(y)), similarity function S is bipolar and the Kendall rank 

correlation coefficient is the strong correlation function. 

Example 8. It can be shown also that the dissimilarity functions considered in 

Examples 3, 4 and 5 are bipolar and give by A(x,y) = 1 – 2D(x,y), the following 

strong correlation functions, respectively: the Pearson’s product-moment 

correlation coefficient, the cosine correlation coefficient, and the Spearman’s rank 

correlation coefficient. In the last case, the reflection operation on the set of 

rankings reverses the rankings by N(xi)=n+1–xi. 

7 Related Works and Conclusion 

Some of the relationships between similarity, dissimilarity, and correlation 

coefficients considered in Sections 5 and 6 have been mentioned in several works. 

The formulas like (6), (9) appear in [14] in the calculation of Kendall rank 

correlation coefficient, where instead of similarity and dissimilarity functions, the 

positive and negative scores are used. The formula (10) of Spearman rank 

correlation also given in this book. Kendall [14] proposed the “general correlation 

coefficient” using the values aij and bij defined for Spearman, Kendall and Pearson 

correlation as functions of differences xi  – xj and yi  – yj for all i,j = 1,…,n. How to 

define aij and bij in general case, it is not clear. It is only required that aij = -aji and 

bij = -bji. Also, the generalization of formulas like (6) and (9) on the universal 

domain not considered. The half of formulas from (7)-(9) used for constructing 

similarity and dissimilarity measures from correlation coefficients were 

considered in [1, 16]. The problem of the construction of correlation coefficients 

from similarity and dissimilarity measures not considered in these works. The 

properties like symmetry, inverse relationship and co-symmetry of a “good” 

relative measure of the association were also considered in [11] but the negation 

has been considered only for real numbers and the general methods of 

construction of such measures on the universal domain with involution were not 
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proposed. Some formulas like (6), and from (7)-(9) for the probabilities of 

concordance and discordance are considered in [11]. Theorems 1-3 are considered 

in [3, 4, 8]. 

The methods of construction of correlation functions on universal domain Ω as 

difference between similarity and dissimilarity functions proposed in this paper in 

Section 5 and one-to-one correspondence between strong correlation functions and 

bipolar similarity functions formulated in Section 6 together with the methods of 

construction of strong correlation functions (association measures) proposed in [2, 

3, 4, 8] have more straightforward interpretation of the correlations in terms of 

similarities and dissimilarities. These methods give a general and regular 

methodology for constructing correlation functions on different domains where 

one can introduce a reflection (negation) operation. 

The very surprising result has been obtained here in Theorem 4. It establishes 

deep relationships between correlation coefficients and similarity (dissimilarity) 

measures. The one-to-one correspondence between strong correlations and bipolar 

similarity functions together with (8) shows that there is no much difference 

between these two concepts. This result paves the way for the construction of new 

strong correlation functions on almost any domain where negation (reflection) 

operation and similarity or dissimilarity functions satisfying suitable properties 

can be defined. The methods of construction of similarity and dissimilarity 

functions suitable for the generation of correlation functions (association 

measures) can be based on the results obtained in [2, 8]. For example, one can 

construct dissimilarity functions using Minkowski distance and p-transformation 

of data, using the methods of co-symmetrization of similarity functions, etc. 
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