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Abstract: A bipolar rating scale is a linearly ordered set with symmetry between elements 

considered as negative and positive categories. First, we present a survey of bipolar rating 

scales used in psychology, sociology, medicine, recommender systems, opinion mining, and 

sentiment analysis. We discuss different particular cases of bipolar scales and, in 

particular, typical structures of bipolar scales with verbal labels that can be used for 

construction of bipolar rating scales. Next, we introduce the concept of bipolar scoring 

function preserving linear ordering and the symmetry of bipolar scales, study its 

properties, and propose methods for construction of bipolar scoring functions. We show 

that Pearson’s correlation coefficient often used for analysis of relationship between 

profiles of ratings in recommender systems can be misleading if the rating scales are 

bipolar. Basing on the general methods of construction of association measures, we 

propose new correlation measures on bipolar scales free from the drawbacks of Pearson’s 

correlation coefficient. Our correlation measures can be used in recommender systems, 

sentiment analysis and opinion mining for analysis of possible relationship between 

opinions of users and their ratings of items. 
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1 Introduction 

In psychology, sociology, medicine, and other fields, rating scales in numerical or 

verbal form are often used for measuring human preferences, traits, abilities, and 

attitudes in order to attribute values of items1 [37, 20, 22, 23, 19, 12]. Different 

definitions of rating scale have been proposed. Presently, it is more common to 

consider rating scale to be a linearly ordered set of categories. The number of 

categories used in rating scales usually varies from 3 to 11 [20, 22, 17]. A set of 

rating scales can be aggregated in a scale of higher level [20]. 

Rating scales often have bipolar structure: two poles and opposite categories 

symmetrically located at the opposite sides of the scale [37, 20, 23, 27, 24, 3, 35, 

11]. In such bipolar scales, the negative side of the scale is the inverse mirror of its 

positive side [11]. An object is evaluated in bipolar scale as being either positive, 

negative, or neutral. 

In many applications of rating scales, a human is considered as a gauge for 

measuring and rating the strength of the attitudes or attribute values; the results of 

such “measurements” are usually represented by numbers. The theory of 

measurement [25, 30] studies the classes of operations allowed on the sets of such 

numbers, defining ordinal, interval, and ratio measurement scales. Although rating 

scales typically have symmetric bipolar form defined by a pair of polar terms [23], 

this symmetry usually is not considered explicitly in measurement scales. Due to 

the increasing interest in application of bipolar rating scales in recommender 

systems and sentiment analysis [28, 1, 29, 21, 34, 9, 26], the problem of 

consideration of scoring functions defined on bipolar scales explicitly taking into 

account the symmetry of these scales, which we study in this paper, is of 

particular interest.  

As an alternative to the measurement-based approach to analysis of human 

attitudes, the model-based approach considers models of words, human verbal 

evaluations of attributes, sentiment scores, and ratings. For example, in fuzzy 

logic and soft computing [40, 18], the words representing the strength of the 

attributes, such as small or very good, are modeled by fuzzy sets and are often 

defined by parametric membership functions: triangular, trapezoidal, etc.  In fuzzy 

logic based models of decision making, classification, or control, linguistic terms 

represented by fuzzy sets are usually considered as components of fuzzy inference 

systems; these fuzzy sets can be adjusted by a machine-learning procedure for the 

system to provide the optimal, or reasonable, solutions [18]. Herrera and Herrera-

Viedma [16] consider an ordered structure of linguistic terms with the negation 

operator defined on the set of indexes. The semantics of a linguistic term defined 

in [16] is given by fuzzy sets defined on the segment [0, 1], distributed on it 

symmetrically or non-symmetrically. Xu [39] considers so-called additive 

                                                           
1 In this paper, we usually list references in chronological order. 
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linguistic evaluation scales, where scores are given by fractional indexes of 

linguistic labels and bipolarity of the scale is represented by the negation also 

defined on the set of indexes. In recommender systems and collaborative filtering, 

utility function is typically represented by ratings [1]. The rating scales usually 

have bipolar form, however, generally speaking, utility can be an arbitrary 

function. Extrapolations from known to unknown ratings in recommender systems 

are usually done by (a) specifying heuristics that define the utility function and 

empirically validating their performance, and (b) estimating the utility function 

that optimizes certain performance criterion, such as the mean square error [1]. 

Breese et al. [8] consider two alternative probabilistic models for collaborative 

filtering: Bayesian classifier and Bayesian networks. Machine-learning algorithms 

are applied to learn parameters of the models. Liu and Seneff [21] consider the 

problem of assigning scores for the degree of polar sentiment to phrases related 

with the considered aspects of items. Based on these scores, they calculate an 

average rating for the aspect. They proposed linear additive model for calculating 

the scores of polar sentiments taking values in a positive scale. Taboada et al. [34] 

present lexicon-based approach to extracting sentiment from texts. They use 

dictionaries of words annotated with their semantic orientation: polarity and 

strength. The semantic orientation of words takes positive and negative values. It 

is supposed that some problems of its calculation could be resolved by fine-tuning 

sentiment orientation values and modifiers [34].  

Several online resources have been developed in recent years for sentiment 

analysis of texts. For example, SenticNet [9] provides polarity scores for 30,000 

concepts [26]. The scores range from −1 (bad) to +1 (good), with neutral scores 

being around zero. 

To analyze the similarity between lists of ratings in recommender systems, 

Pearson’s correlation coefficient is often used [29]. However, as we will show, 

this correlation coefficient can be misleading in analysis of ratings from bipolar 

scales. Shardanand and Maes [32] proposed to use “constrained” Pearson’s 

coefficient r to take into account bipolarity of the rating scale. 

In this paper, we give a survey of bipolar rating scales. We consider typical 

structures of bipolar scales with verbal labels that can be used for construction of 

bipolar rating scales. We introduce the concept of the bipolar scoring function 

preserving the linear ordering and the symmetry of bipolar scales, study its 

properties, and propose methods for construction of bipolar scoring functions. We 

show that Pearson’s correlation coefficient often used for analysis of relationships 

between profiles of ratings in recommender systems can be misleading if the 

rating scales are bipolar. Basing on general methods of construction of association 

measures, we propose new correlation measures on bipolar scales free from the 

drawbacks of Pearson’s correlation coefficient.  

The paper is organized as follows. In Section 2, we survey different types of 

bipolar scales discussed in the literature. In Section 3, we present some typical 
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structures of finite fully-labeled bipolar verbal rating scales. In Sections 4 and 5, 

we consider formal definitions of bipolar rating scales, bipolar scoring functions, 

and their properties. In Section 6, we propose novel methods of construction of 

bipolar scoring functions. In Section 7, we introduce new correlation measures on 

bipolar rating profiles. Finally, in Section 8 we give some discussion and 

conclusions. 

2  Types of Bipolar Scales 

Generally speaking, a bipolar scale is a linearly ordered set with minimal and 

maximal elements considered as two poles of the scale. These poles can be 

interpreted as negative and positive poles, correspondingly. Usually, bipolar scales 

have a neutral category located in the center of the scale, and all other categories 

between the neutral category and the negative and positive poles can be 

considered as negative and positive categories, correspondingly. In addition to the 

linear ordering of the bipolar scales, the scale is symmetric: the negative 

categories are mapped to the corresponding opposite positive categories, and vice 

versa. The elements of bipolar scales can have numerical scores and linguistic 

labels. 

The symmetry of the bipolar scales can be reflected in the symmetry of the labels 

or the scores. Typical examples of bipolar scales containing three or five possible 

responses on questions are considered in [20]. One of these scales with bipolar 

structure has five categories: strongly approve, approve, undecided, disapprove, 

strongly disapprove, with the corresponding scores 5, 4, 3, 2, 1, or scores in 

reverse order. This scale has a neutral category undecided and symmetry between 

positive and negative categories. Currently, it is more popular to order the scale 

categories from negative to positive, for example, as follows: strongly disagree, 

disagree, neither agree nor disagree, agree, strongly agree, or in correspondence 

with the ordering of the scores: 1, 2, 3, 4, 5. 

Bipolar scales of the following types have been considered in the literature; 

references given here contain corresponding examples: 

(a) scales with a finite number n of categories  [20],  

(b) scales with infinite number of categories, e.g., in the range from 0 to 1, from 

−1 to 1, from −10 to 10 [16, 14, 13]; 

(c) 2-point scale (n = 2) [31] or multipoint scale (n > 2); 

(d) scales with a neutral category [20] or without neutral category [10];  

(e) scales with verbal labels only at poles [23] or fully labeled when all response 

categories are explicitly labeled [20, 38]; 

(f) scales with symbolic labels of poles [24]; 
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(g) scales with numeric scores explicitly given [20] or not, e.g., given 

graphically with intervals [23]; 

(h) scales with positive numeric scores, e.g., 1, …, 5, or from 0 to 1 [20, 16] or 

with both negative and positive scores, e.g., from −1 to 1 [14, 9]; 

(i) scales without polarity of verbal labels; e.g., one of the Likert rating 

scales [20] contains responses: grade school, junior high school, high school, 

college, graduate and professional school with the scores 1, 2, 3, 4, 5 typical 

for bipolar scales; 

(j) scales with polarity of verbal categories, but without symmetry with respect 

to the neutral category, i.e., when some positive verbal category or concept 

has no corresponding opposite negative verbal category [9, 26]; 

(k) scales explicitly using negation operation [40, 16, 39] or not [20]; 

(l) scales with non-numeric scores, e.g., with fuzzy sets [40, 16];  

(m) scales with verbal categories ordered from negative categories on the left to 

positive categories on the right, or in reverse order [20]; 

(n) scales with numeric scores increased from left to right: 1, …, 5 or in reverse 

order: 5, …, 1 [20]; 

(o) scales with scoring function being linear [20] or nonlinear [34, 39] with 

respect to the indexes of the categories; 

(p) scales with several verbal labels or concepts assigned to one gradation of the 

scale, due to synonymy or labels having equal score value [9, 29]; 

(q) positive and negative categories separated in two scales [11, 36];  

(r) scales in which an attitude or attribute can have a positive and a negative 

polarity degree at the same time, e.g., degree of membership and degree of 

non-membership  [2, 11]; 

(s) scales with aggregation of scores from the same scale  [37, 14, 4]; 

(t) scales with aggregation of scores from different scales [20, 21]; 

(u) scales with calculation of the group opinion as an aggregation of the scores 

of individuals [37]; 

(v) scales with calculation of individual scores in higher-level scale as 

aggregation of individual scores in particular scales [20]; 

(w) scales measuring [20] or modeling [16, 1] attitudes, preferences, ratings, or 

utilities. 

Below, we consider finite bipolar scales with neutral element as linearly ordered 

sets with symmetry given by the negation operation. In the following section, we 

will discuss typical structures of finite bipolar scales fully labeled with verbal 

labels. Further, we will formally consider two types of mutually related finite 

bipolar scales with neutral element as sets of integer indexes of categories of 

bipolar scales. We introduce bipolar scoring functions defined on these sets as 

models of user preferences.  
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3  Bipolar Verbal Rating Scales 

A verbal rating scale is bipolar if it is symmetric with respect to the opposite 

categories, located on the opposite sides of the scale. Such symmetry can be 

expressed by a negation operation N defined on the scale. Consider an example of 

a 5-point bipolar scale with verbal labels ordered from left to right:  never < 

seldom < sometimes < often < always and with negation N(never) = always, 

N(seldom) = often, N(sometimes) = sometimes, N(often) = seldom, N(always) = 

never. This negation operation has several formal properties. It is involutive, i.e., 

double negation of any category gives the same category, e.g., N(N(seldom)) = 

seldom. It is decreasing, i.e., if a category c2 has greater rating than a category c1: 

c1 < c2, then the negation of c1 has greater rating than the negation of c2: N(c1) > 

N(c2). For example, never < often implies N(never) = always > N(often) = seldom. 

Note that this negation operation differs from the linguistic not [21, 34]. 

If the scale has an odd number of gradations, then there is a center, midpoint, or 

neutral category C in the scale such that N(C) = C. Generally, such point is called 

the fixed point of the negation. For the scale considered above, we have C = 

sometimes. 

Consider a typical structure of 7-point verbal bipolar scale [3]:  

L = (eap, vap, ap, np, p, vp, ep). (1) 

L is ordered from left to right: eap < vap < … < vp < ep, where p and ap (anti-p) 

denote opposite adjectives or attributes, correspondingly, and other letters denote: 

e = extra, v = very, n = neutral. The negation defines a mapping between the 

opposite categories, for example: N(eap) = ep,  N(vap) = vp, …, N(ep) = eap, 

with N(np) = np for the neutral category np. Here is an example of a bipolar 

verbal scale with the structure (1):  

L = (awful, very bad, bad, neither good nor bad, good, very good, excellent),  

with p = good, ap = bad.  One can consider the structure (1) as a cupboard with 

shelves with the labels eap, vap, … , ep ordered from the bottom upward. In a 

particular application, each “shelf” of (1) can be filled by corresponding verbal 

labels. These shelves can have scores 1, 2, 3, 4, 5, 6, 7 or −3, −2, −1, 0, 1, 2, 3, 

with neutral category np having the score 4 or 0, respectively. In the following 

sections, we will consider these scores as indexes of the categories of the bipolar 

scale with n > 3 indexes, and the score function will be given as a numeric 

function defined on the set of these indexes. For identity scoring function, its 

values will coincide with the indexes, in our case, with 1, …, 7 or with −3, …, 3. 

Generally, it will be a nonlinear function preserving the symmetry of the bipolar 

scale. 

The shelves of (1) can contain several verbal labels, which are considered 

synonymous or having equal scores. For example, the shelf eap can contain the 
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verbal labels awful and terrible. A 5-point bipolar scale can be obtained from the 

structure (1) by eliminating symmetric categories or by symmetric merging of 

neighboring categories. In such way, one can reduce the structure (1), for 

example, to the following one: 

L= (vap, ap, np, p, vp), (2) 

with indexes 1, 2, 3, 4, 5 or −2, −1, 0, 1, 2. In the reduced cupboard (2), the shelf 

vp can contain the verbal labels very good, excellent, perfect, etc. Deletion of the 

neutral category np will give bipolar verbal scale without center. 

Another typical structure of the bipolar scale is as follows [3]:  

L= (hap, map, lap, np, lp, mp, hp),  (3) 

where h, m, and l denote high, middle and low intensities, respectively, of the 

opposite attributes ap and p. The categories of the scale (3) are ordered from left 

to right:  hap < map < …< mp < hp. The negation defines a mapping between the 

opposite categories: N(hap)= hp, N(map) = mp, …, N(hp) = hap. Bipolar scales 

with the number of categories less than 7 can be obtained from (3) by deleting 

pairs of opposite categories. 

Generally, the scale structures (1) and (3) can be extended until 15-points bipolar 

verbal scale by adding gradations with modifiers el (extra low), vl (very low), vh 

(very high), eh (extra high) for adjective p and its opposite ap as follows: 

L= (ehap, vhap, hap, map, lap, vlap, elap, np, elp, vlp, lp, mp, hp, vhp, ehp).  (4) 

Bipolar scales with the number of categories less than 15 can be obtained from (4) 

by deleting pairs of opposite categories. Below is an example of such 9-point 

bipolar scale: 

L = (dislike extremely, dislike very much, dislike moderately, dislike slightly, 

neither like nor dislike, like slightly, like moderately, like very much, like 

extremely),  

with the center C = neither like nor dislike and with the reduced structure of (4): 

L= (ehap, vhap, map, lap, np, lp, mp, vhp, ehp).  

An example of a bipolar verbal 13-point scale can be found in [15]. 

The considered structures are common for the scales used in sociology, 

psychology, and medicine. However, in opinion mining and in recommender 

systems the bipolar scales with symmetry of opposite categories can have 

categories expressed in a variety of forms.  Below is Ringo’s scale for rating 

music [32] in music recommendation system, which is explicitly different from 

the structures (1) and (3) but implicitly has symmetric form, as in (1), with the 

center at the category 4: 
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L = (1. Pass the earplugs. 2. Barely tolerable. 3. Eh. Not really my thing. 4. 

Doesn’t turn me on, doesn’t bother me. 5. Good Stuff. 6. Solid. They are up there. 

7. BOOM! One of my FAVORITE few! Can’t live without it). 

The considered typical structures of bipolar scales can be used for construction of 

verbal bipolar scales with symmetry of opposite categories. The verbal labels of 

these categories can differ from one application to another, but the symmetric 

structure should be preserved in order to consider the verbal rating scales as 

bipolar scales. 

In the next section, we will give a formal definition of a finite bipolar scale as an 

ordered set of indexes of categories of a bipolar scale considered above. In the 

sequel, we will consider bipolar scoring functions that assign numerical values to 

each point of the bipolar scale, which will be used as a numerical model of this 

scale. The main properties of bipolar utility functions will also be connected with 

the negation operation related with the symmetry in the scores assigned to 

opposite categories of the bipolar scale. 

4  Finite Bipolar Scales 

Formally, a bipolar scale L with n ordered categories c1 < …< cn can be 

represented by an ordered set of indexes of these categories J = {1, …, n}, n > 1, 

with  the negation operation N: J → J  defined by 

N(j) = n + 1 − j  for all  j  J.  (5) 

The negation function (5) is a strictly decreasing: 

N(i) > N(j)  if  i < j, (6) 

and involutive: 

N(N(j)) = j,   for all j  J. (7) 

We will assume that the bipolar scale has an odd number of elements, i.e., 

n = 2m + 1 for some positive integer m. In this case, the set J will have a fixed 

point of the negation N, i.e., an element C such that  

N(C) = C.  (8) 

The property (8) is fulfilled for a unique element  

C = m + 1,  (9) 

called the center, neutral, or midpoint of the bipolar scale. From (5) and (6), it 

follows that a bipolar scale with an even number of elements n has no center. 

Bipolar scales without center can be obtained from scales with center by deleting 

the center. 
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For example, the 5-point bipolar scale (never, seldom, sometimes, often, always) 

can be given by an ordered set of indexes J = {1, 2, 3, 4, 5} and with the negation 

N(j) = 6 − j, such that N(1) = 5, N(2) = 4, N(3) = 3, N(4) = 2, N(5) = 1. This scale 

has a center C = 3. 

From (5), n = 2m + 1, and (9), we obtain bipolarity properties: 

N(j) + j = 1 + n,  

and  

N(j) + j = 2C, for all  j  J.                (10) 

Due to bipolarity, the elements N(j) and j of the scale are symmetrically located 

with respect to the center and the “poles” 1 and n of the scale J: 

| j −  C | = | N(j) – C |,      | j – 1 | = | N(j) – n |,   for all  j  J.  

We call the ordered set K = {−m, …, −1, 0, 1, … , m} the centered form of the 

bipolar scale J = {1, …, 2m + 1}, m > 0. The negation operation N: K → K  on K 

is defined by: 

N(k) = −k,        for all k  K.  (11) 

Unless it can cause confusion, we will use the same letter N for the negation on J 

and on K, using the arguments j or k, respectively. It is clear that N on K is a 

strictly decreasing and involutive function, i.e., N(N(k)) = k, for all k  K. This 

scale has the center C = 0 with N(C) = C = 0, and the bipolarity (10) also fulfills 

for the scale K with negation (11): 

N(k) + k = 2C,    for all k  K.  (12) 

We call the scale K = {−m, …, m}, m > 0, with the negation defined by (11) a 

centered bipolar scale. 

For example, the 5-point bipolar scale J = {1, 2, 3, 4, 5} is represented in centered 

form as K = {−2, −1, 0, 1, 2} with the negation N on K defined by N(−2) = 2, 

N(−1) = 1, N(0) = 0, N(1) = −1, N(2) = −2 and with the center C = 0.  

The bipolar scales J = {1, …, 2m + 1}, m > 0, and K = {−m, …, m} can be 

transformed one into the other as follows: 

k = j − m − 1,  j = k + m +1,   for all j  J and k  K.  (13) 

5 Bipolar Scoring Functions 

Here we study the properties of scoring (utility) functions defined on bipolar 

scales. The scoring functions give possibility to model users with different utility 

of categories of the same scale. For example, one user prefers to use the 
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gradations of the scale near the poles but another user prefers to use the gradations 

near the center. For such users, the utility of the same gradations can be different. 

In addition, in the development of decision-making or recommender systems 

using bipolar scales, the utility of categories of the scales can be represented by 

non-linear functions modeling utility of categories in different manner, depending 

on the application or the task. For such functions, the difference between the 

neighboring gradations depends on their positions on the scale. For example, for 

the bipolar scale (never, seldom, sometimes, often, always), the difference between 

the utility of the categories sometimes and often can be modeled by the number 10, 

but the difference between the utilities of the categories often and always  can be 

modeled by the number 50. Such nonlinear utility functions can be used, for 

example, for modeling a user’s ratings in model-based approach to collaborative 

filtering in recommender systems [1]. 

In model-based approach to construction of bipolar utility functions, how the user 

measures these utilities is not important; what matters is how to model these 

utilities for different users and different tasks. In this approach, instead of the 

“adequate” measurement of a user’s preferences or ratings, we concentrate on the 

effectiveness of the recommendations or decisions generated by the recommender 

or decision-making system using these bipolar utility functions. Generally, these 

utility functions can be parameterized and further tuned or adjusted by some 

machine-learning procedure for the system to obtain optimal or useful 

recommendations and decisions. For this, these utility functions should satisfy 

properties similar to the properties of the bipolar scales that we considered above. 

In this section, we will consider these properties of bipolar utility functions, and in 

the following section we will consider different methods of construction of such 

functions. 

Let I denote a bipolar scale J or K with n = 2m + 1 categories, m > 0. For J = {1, 

…, 2m + 1}, we have C = m + 1, N(j) = n + 1 − j for all j  J, and for the scale 

K = {−m, …, −1, 0, 1, … , m}, we have C = 0, N(k) = − k, for all k  K. For both 

scales, we have N(C) = C. We call the values P1= min(I) and P2 = max(I) the 

negative and the positive poles, correspondingly. For the scale J, we have P1 = 1, 

P2 = n, and for the scale K, we have P1 = −m, P2 = m. For both scales, we have 

N(P1) = P2 and N(P2) = P1. 

Definition 1. Let I be a bipolar scale with negation N. A strictly increasing real 

function U: I  R is called a scoring or utility function on I. This function is 

called a bipolar scoring function (BSF) on I if it satisfies the condition 

U(N(i)) + U(i) = U(P1) + U(P2),      for all  i  I.         (bipolarity) (14) 

For the scales with the center C from N(C) = C, we have U(P1) + U(P2) = 2U(C) 

and the bipolarity property can be given by:  

U(N(i)) + U(i) = 2U(C),         for all  i  I.                   (bipolarity) (15) 

A BSF is called a centered bipolar scoring function (CBSF) if U(C) = 0. 
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From (14) and (15), we have: 

|U(j) − U(C)| = |U(N(j)) − U(C)|,  |U(j) − U(P1)| = |U(N(j)) − U(P2)|,  for all  j  J,  

i.e., for a bipolar scoring function U, the utility values of the opposite categories 

U(j) and U(N(j)) are at the equal distances from the utility value of the neutral 

category U(C) and at the equal distances from the utility values of the poles. 

The definition of the centered bipolar scoring function implies 

U(N(i)) = −U(i),         for all i  I. (16) 

For a CBSF defined on a centered bipolar scale K = (−m, …, m), m > 0, we have: 

U(0) = 0, U(k) > 0 if k > 0, U(k) < 0 if k < 0, and    

U(−k) = −U(k),       for all k  K. (17) 

CBSFs give natural models of utility of categories of bipolar verbal rating scales 

when these categories have negative and positive sentiments. For example, for the 

5-point centered bipolar scale K = {−2, −1, 0, 1, 2}, one can define a CBSF 

U(K) = {−10, −4, 0, 4, 10} preserving the sign and the symmetry of the bipolar 

scale K. 

Proposition 1. If U is a BSF on I, then the function W: I R defined by  

W(i) = pU(i) + q   for all i  I,   (18) 

where p, q  R, p > 0, is also a BSF on I. 

Proof.  It is clear that W is strictly increasing. Bipolarity of W follows from (18) 

and bipolarity (15) of U: W(N(i)) + W(i) = pU(N(i)) + q + pU(i) + q = p(U(N(i)) + 

U(i)) + 2q = p(2U(C)) + 2q = 2(pU(C) + q) = 2W(C). ⧠ 

In (18), the parameters p and q define scaling and shifting of the utility function U, 

correspondingly. 

Proposition 1 implies that from any BSF U one can obtain a CBSF UC as follows: 

UC(i) = U(i) − U(C)   for all i  I.   (19) 

From (5) and (9), it follows that the identity function U(j) = j, for all  j  J, is a 

BSF. We call this function the standard bipolar scoring function (SBSF). For 

example, SBSF on 7-point bipolar scale J = {1, 2, 3, 4, 5, 6, 7} has the values 

U(J) = J = {1, 2, 3, 4, 5, 6, 7}. From this function, applying the transformation 

(18) with parameter values p = 1 and q = −1, one can obtain another popular 

bipolar scoring function U(J) = {0, 1, 2, 3, 4, 5, 6}.  

These examples show that the majority of the popular rating scales, including 

Likert scales [20] and the scales used in recommender systems [32], use SBSFs. In 

this paper, we are mainly interested in nonlinear BSFs. For example, on 7-point 

bipolar scale J = {1, 2, 3, 4, 5, 6, 7} with the center C = 4, a nonlinear bipolar 

scoring function can be defined as U(J)= {0, 15, 40, 50, 60, 85, 100} with U(C)= 
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50. From this BSF, applying the linear transformation (19), one can obtain a 

CBSF UC(J) = {−50, −35, −10, 0, 10, 35, 50}. 

Note that using transformations (13) of the indexes of the bipolar scales J = {1, 

…, 2m + 1} and K = {−m, …, m}, one can transform BSF UJ: J  R defined on J 

into a BSF UK: K  R defined on K, and vice versa, as follows: 

UJ(j) = UK(j − m − 1),   UK(k) = UJ(k + m + 1),    for all j  J and k  K. (20) 

These functions have the same set of values: UJ(J) = UK(K). For example, the 

CBSF UK(K) = {−10, −4, 0, 4, 10} defined on K = {−2, −1, 0, 1, 2} is transformed 

into CBSF UJ(J)= {−10, −4, 0, 4, 10} defined on J = {1, 2, 3, 4, 5}. Such simple 

transformation can be used in the method of construction of CBSF on J considered 

in the following section by defining a CBSF as some odd function on K and then 

changing the set of its arguments (indexes) K by J. 

6  Methods for Construction of Bipolar Scoring 

Functions 

As we have shown in the previous section, a BSF on a bipolar scale is a linear 

transformation of an odd function with zero argument value in the center of the 

scale. The majority of the traditional rating scales can be considered as particular 

cases of BSFs when the scoring function is linear. In this section, we consider 

various heuristic methods of construction of bipolar utility (scoring) functions 

which are, generally, nonlinear. 

6.1 Bipolar Utility Functions Based on the Distribution of a 

User’s Ratings 

We suggest a heuristic method for constructing bipolar utility functions using the 

distribution of bipolar scores obtained from a user’s ratings. Our method is based 

on the observation that the greater the difference between the frequencies of two 

neighboring categories, the greater the difference in the utilities of these 

categories. 

For simplicity, consider the categories in a centered bipolar scale K = {−m, …, −1, 

0, 1, … , m}. Suppose the user has provided ratings of N items with frequencies 

P= (P−m, …, P−1, P0, P1,…, Pm), with P−m + … + Pm = N, where Pk, k  {−m, …, 

m}, is the frequency of the category from the scale K. Our algorithm consists of 

the following steps.  

1. Symmetrize the frequencies:  
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2

kk
k

PP
PS 

 ,   for all k = −m,…, m.  

2. Calculate the cumulative distribution function:  

U−m = 0,     Uk+1 = Uk + c|PSk+1 − PSk| + d,         k = −m,…, m − 1,  (21) 

where c is a scaling constant and d = 0 if PSk+1 ≠ PSk for all k = −m, …, m − 1, 

otherwise d > 0; the constant d is introduced for all categories to have different 

scores and thus the utility function to be strictly increasing. 

3. Normalize the utility function to obtain the values of utility function in the 

range [0, M], or [−M, M], M > 0 and, if necessary, move it from the scale 

K = {−m, …, m} to the scale J = {1, …, 2m + 1} by replacing indexes by (20). 

It can be shown that the proposed method constructs a BSF satisfying the 

bipolarity property.  

Figure 1 shows an artificial example of construction of bipolar utility functions 

based on the distribution P = (5, 35, 48, 60, 30, 20, 2) of categories of 7-point 

bipolar scale in N = 200 ratings of a user. The left plot shows the original and 

symmetrized distributions and right plot shows the bipolar utility function 

constructed from the symmetrized distribution. We used d = 0 in (21) because in 

the symmetrized distribution all neighboring categories have different frequencies. 

 

Figure 1. 

Construction of bipolar utility function based on the symmetrized distribution of bipolar scale 

categories obtained in N = 200 ratings of a user, with d = 0 
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Figure 2 

Construction of bipolar utility function based on symmetrized distribution of bipolar scale categories 

obtained in N = 200 ratings of a user, d = 5 

Similarly, in Figure 2 the distribution is P = (50, 40, 0, 10, 20, 20, 60). In this 

case, we used d = 5 because the symmetrized distribution contains neighboring 

categories with equal frequencies. In both cases, we used c = 1. All bipolar utility 

functions were normalized to have values in the interval [0,100].  

6.2 Generator-Based Utility Functions  

Now we suggest a method for constructing CBSF U on the bipolar scale K = {−m, 

…, −1, 0, 1, … , m}, m > 0. A bipolar utility function on J can be constructed 

using (18) and (20). Let G be a positive real value and g: {0, …, m} → [0, G] a 

strictly increasing function such that g(0) = 0, g(m) = G. We call this function a 

generator of the function W: K  [− G, G] defined by: 

W(k) = g(k) for all k  {0, …, m}, (22) 

W(k) = −g(−k) for all k  {− m, …, −1}. (23) 

Obviously, the function W constructed by this method is a CBSF. In the model-

based approach to modeling user preferences, we can define the generator g by a 

parametric function and use it to define parametric bipolar utility functions on K 

or on J. 

Here are two examples of parametric generators of bipolar utility functions 

inspired by the parametric Sugeno negation used in fuzzy logic [33], for p > −1: 

pkm

pGk
kg






)1(
)(1 , k = 0, …, m, (24) 
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pkpmm

Gk
kg


)(2 , k = 0, …, m. (25) 

Figure 3 shows the shapes of CBSF W on a 7-point centered bipolar scale K = (−3, 

−2, −1, 0, 1, 2, 3) obtained from the generators (24) and (25) for different values 

of the parameter p. For p = 0, both generators are linear: g1(k) = g2(k) = Gk/m.  

The generator g1(k)  with positive p and the generator g2(k) with negative p can be 

used for modeling bipolar utility functions when the scores are located nearer to 

the boundaries of the scale; see Figure 3. For such utility functions, the nearer the 

categories of the scale to the corresponding positive or negative pole, the smaller 

the difference between the utilities of the neighboring categories. For example, if 

on the 7-point scale  

L = (awful, very bad, bad, not good not bad, good, very good, excellent)  

we define a bipolar utility function with these properties, then the difference 

between the utilities of the categories very good and excellent will be small. 

Conversely, the generator g1(k) with negative p and the generator g2(k) with 

positive p can be used for modeling bipolar utility functions when the scores are 

located near the center of the scale, i.e., the nearer the categories of the scale to the 

corresponding pole, the larger the difference between the utility values of the 

neighboring categories. For example, if on the same scale L we define a function 

with these properties, then the utility value of the category excellent will be much 

greater than that of the category very good. 

 

Figure 3 

Examples of CBSF on 7-point centered bipolar scale generated by generators g1(k) (left) and g2(k) 

(right) for different values of parameter p 
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In the model-based approach to analysis of user opinions, the parameters of the 

utility functions can be tuned for the model to generate the best solutions. 

6.3 Selection of Generator Values  

A general method of construction of the generator of bipolar utility function given 

by (22) and (23) can be summarized as follows:  

g(0)=0; g(m) = G; 

for k = 1 to m – 1: 

     Determine u  (g(k – 1), G); 

     g(k) = u; 

end 

The function Determine depends on the specific method, for example: random 

selection, selection based on optimization of some criteria, etc. 

7  Correlation Measures on the Set of Bipolar Profiles 

Pearson’s product-moment correlation coefficient  














n

i

i

n

i

i

n

i

ii

yyxx

yyxx

yxcorr

1

2

1

2

1

)()(

))((

),(  (26) 

is often used in recommender systems for measuring similarity between profiles 

[29]. In this section, we show that this correlation coefficient can be misleading if 

the opinions are measured in bipolar scales. Consider the following utility profiles 

with the ratings of 10 items in 7-point bipolar scale J ={1, 2, 3, 4, 5, 6, 7} with the 

standard utility function U(j) = j for all j in J: 

x = (7, 5, 5, 7, 7, 7, 5, 7, 5, 5),  

y = (5, 7, 7, 5, 5, 5, 7, 5, 7, 7), 

z = (3, 1, 1, 3, 3, 3, 1, 3, 1, 1). 

The profiles x and y have only “positive” (greater than neutral C = 4) ratings, so a 

reasonable association measure A should show positive association between them: 

A(x,y) > 0; however, the correlation coefficient gives corr(x,y) = −1. The profiles 

x and z have almost opposite (“positive” vs. “negative”) ratings, so a reasonable 

association measure should give negative association between them: A(x,z) < 0; 

however, the correlation coefficient gives corr(x,z) = 1. 
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Therefore, we need to introduce correlation (association) measures that, similarly 

to the correlation coefficient, could show positive and negative associations 

between profiles of ratings in bipolar scales, but without the drawbacks of 

Pearson’s correlation coefficient, such as shown in the above example. Below we 

present such measures, based on general results discussed in [5–7]. 

Let I be a bipolar scale (I = J or I = K) with the negation N and with the center C. 

We call the vector x = (x1, …, xM), xs  I, s = 1, …, M, of elements from the 

bipolar scale I a rating profile. We also call the vector CX = (C, …, C) of the 

length M the central profile of the set X of all rating profiles of the length M. We 

define the negation of the profile x as NX(x) = (N(x1),…, N(xM)). Obviously, NX  is 

an involution on X, i.e., NX(NX(x)) = x for all profiles from X, and CX  is a unique 

fixed point of N: NX(CX) = CX. For a bipolar utility function U defined on the 

bipolar scale I, we call the vector UX(x) = (U(x1),…, U(xM)) a utility profile of the 

rating profile x. 

Suppose a user evaluates 6 items in the bipolar rating scale J = {1, 2, 3, 4, 5} by 

the vector of ratings x = (3, 5, 2, 4, 1, 3). Suppose U(J) = {−10, −3, 0, 3, 10} is the 

centered bipolar utility function defined on J. Then, the utility profile of the rating 

profile x is given by U(x) = (0, 10, −3, 3, −10, 0), the negation of the profile x is 

given by NX(x) = (3, 1, 4, 2, 5, 3), and on the set X of all rating profiles of the 

length 6, the central profile is given by CX = (3, 3, 3, 3, 3, 3).  

Consider two rating profiles x and y with the same length. We will define the 

correlation measure AU(x,y) as a function of utility profiles U(x) and U(y). In 

applications, when the users profiles have different lengths, the vectors x and y 

will contain only ratings of items presented in the profiles of both users.  

Definition 2. Let X be the set of all profiles of the length M with ratings from the 

bipolar scale I with the negation N and the center C. Let U be a bipolar utility 

function defined on I. A correlation (association) measure on the set V = X \ {CX} 

is a function AU: V × V → [−1, 1] that satisfies for all x, y  V the following 

properties:  

AU(x, y) = AU(y, x) (symmetry)   (27) 

AU(x, x) = 1, (reflexivity)   (28) 

AU(x, N(y)) = − AU(x, y). (inverse relationship)   (29) 

We call a correlation measure AU C-separable if it satisfies the following 

properties: 

AU(x, y) > 0  if for all s = 1, …, M it holds xs, ys > C or xs, ys < C,    (30) 

AU(x, y) < 0  if for all s = 1, …, M it holds ys < C < xs  or xs < C < ys.    (31) 

The properties (27)–(29) were used in [7] in the definition of the correlation 

(association) measures on the set X with involution N. These properties generalize 

the properties of Pearson’s correlation coefficient applied to M-tuples when the 
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negation of M-tuples of real values is defined by N(x) = −x = (−x1, …, −xM). Here 

we extend the definition of association measures given in [7] on the set of bipolar 

utility profiles. The properties (30) and (31) are introduced here to avoid the 

problems with the correlation coefficient defined on bipolar profiles discussed at 

the beginning of this section. See also C-separability property of association 

measures on [0,1] considered in [6]. 

From (28) and (29), we have 

AU(x, N(x)) = − 1.  (32) 

Definition 2 can be extended from the set V to the set of all profiles X replacing 

the property (28) by  

AU(x, x) = 1  if x ≠ CX  (33) 

In this case, for all x in X we have 

AU(x,CX) = AU(CX,x) = 0. (34) 

Consider a method for construction of correlation (association) measures on the 

set of bipolar utility profiles based on the general methods discussed in [5].  

Proposition 2. Let I be a bipolar scale (I = J or I = K) with the center C, X be a 

set of profiles x = (x1,…, xM) of the length M, xs  I, s = 1, …, M, with the central 

profile CX = (C, …, C), and U be a bipolar utility function on I. Then the following 

function is a C-separable correlation measure on X \ {CX}: 
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and t ≥ 1.   

One can easily check that the properties (27)–(31) are satisfied for the function 

(35). 

If the bipolar scoring function U in (36) is centered, i.e., U(C) = 0, then (36) is 

simplified as follows:   
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Proposition 2 implies the following corollary. 
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Corollary 1. In the conditions of Proposition 2, if t = 2 in (35), (36), then the 

following function is a C-separable correlation measure on X \ {CX}: 
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If the bipolar scoring function U in (38) is centered, then: 
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where U(x) = (U(x1), …, U(xM)),  U(y) = (U(y1), …, U(yM)). 

Since the formulas (37) and (39) require fewer operations than (36) and (38) in 

calculation of the correlation value AU(x,y) between a large number of pairs (x, y) 

of profiles, it is recommended to replace a bipolar utility function U defined on the 

bipolar scale I by a centered bipolar utility function U − U(C) and then calculate 

the correlation between the corresponding profiles by (35), (37) or by (39).  

Let us calculate correlation AU(x, y) between the profiles of ratings x = (7, 5, 5, 7, 

7, 7, 5, 7, 5, 5), y = (5, 7, 7, 5, 5, 5, 7, 5, 7, 7), z = (3, 1, 1, 3, 3, 3, 1, 3, 1, 1) from 

the bipolar scale J ={1, 2, 3, 4, 5, 6, 7} considered at the beginning of this section. 

For the standard utility function U(J) = J, we obtain U(x) = x, U(y) = y, U(z) = z. 

We can calculate correlation between three profiles by (38). However, as we have 

noted above, it is more efficient to replace the bipolar utility function U by the 

centered utility function UC(J)= U(J) − U(C)= J − 4 = K = {−3, −2, −1, 0, 1, 2, 

3} and to use this centered utility function in (39). We obtain: AU(x, y) = 0.6, 

AU(y, z) = −1, AU(x, z) = −0.6. These values correspond to our propositions 

A(x, y) > 0 and A(x, z) < 0 considered at the beginning of this section, and the new 

correlation measure (38) does not have the drawbacks of Pearson’s correlation 

coefficient. Note that we have z = N(y), and for this reason, according to the 

property (29) of the correlation measure, we obtain: AU(x, z) = AU(x, N(y)) = 

−AU(x, y) = −0.6; according to the property (32), we obtain AU(y, z) = 

AU(y, N(y)) = −1. 

The correlation measure (38) obtained here as a particular case of (35) generalizes 

the constrained correlation coefficient considered in [32] (see formula (5)) using 

in (38) the standard 7-point utility function U = J with the center C = 4 and 

U(C) = 4. Consider (38) in the form (39), when the utility function U is replaced 

by its centered form U − U(C). As one can see, the formula (39) is a nonlinear 

function sensitive to the presence of respectively high utility values for the same 

items in both profiles x and y. 



I. Batyrshin et al. Bipolar Rating Scales: A Survey and Novel Correlation Measures 

 − 52 − 

Consider an example for 7-point scale: K = {−3, −2, −1, 0, 1, 2, 3}. Suppose one 

uses the standard utility function U(K) = K, and two users have the following 

profiles of rating of four items in the scale K: x = {1, 1, 1, 1}, y = {−1, −1, −1, 

−1}. Due to U(K) = K, the corresponding utility profiles will have the same values 

U(x) = x, U(y) = y. Since the profiles are opposite: N(x) = y, the correlation (39) 

between them has the value A(x,y) = −1. Suppose a new item has the rating 2 from 

both users. Then, we obtain the new profiles: x* = {1, 1, 1, 1, 2}, y* = {−1, −1, 

−1, −1, 2} with the correlation value A(x*, y*) = 0. As one can see, addition of the 

same value 2 to both ratings drastically changes the correlation value from −1 to 0.  

This situation can be avoided if we use nonlinear bipolar utility function. Let 

U(1)= 1 and U(2) = 1.5. Then, we obtain the following utility profiles: U(x*)= {1, 

1, 1, 1, 1.5}, U(y*)= {−1, −1, −1, −1, 1.5} with correlation between them AU(x*, 

y*) = −0.28. As one can see, the change of the correlation value from −1 to −0.28 

is not as drastic for considered nonlinear bipolar utility function as for the standard 

linear utility function. 

Consider another example of profiles with ratings from 7-point rating scale K. 

Suppose again that we use the standard utility function U(K) = K and  two users 

have equal rating profiles of five items: x = {1, 1, 1, 1, 2}, y =  {1, 1, 1, 1, 2}. We 

have A(x, y) = 1. Suppose for the sixth item both users have the opposite ratings 3 

and −3. For the standard utility function, the correlation between new utility 

profiles x* = {1, 1, 1, 1, 2, 3} and y* =  {1, 1, 1, 1, 2, −3} is drastically changed, 

from the value A(x, y) = 1 to the value A(x*, y*) = −0.059. Let us change the 

standard utility function by U(K) = {−2, −1.5, −1, 0, 1, 1.5, 2}. For this nonlinear 

bipolar utility function, the correlation between utility profiles changes from A(x, 

y) = 1 to AU(x*, y*) = 0.22, which is not as drastic as for the standard utility 

function. 

In the two considered examples, we used the method of construction of bipolar 

utility functions considered in Section 6.3, which defines the positive part of the 

centered utility function and symmetrically maps it to the negative part of the 

scale with 0 in the center of the scale.  Similarly, we defined sequentially U(1) = 

1, U(2) = 1.5, and U(3) = 2. Another method can be based on a parametric 

generator such as (24) or (25). For example, using the generator (24) with the 

parameter p = 1, we can obtain the similar results: for nonlinear bipolar utility 

function U(K) = {−2, −1.6, −1, 0, 1, 1.6, 2}, the correlation between utility 

profiles x* and y* has the value AU(x*, y*) = 0.24.   

In both examples, we decreased the absolute utility values of the categories near 

the poles to avoid the drastic change of the correlation value when both users use 

near polar ratings for the same items. In general, a parametric utility function can 

be heuristically adjusted to obtain intuitively validated solutions or optimized by 

some machine-learning method for the recommender or decision-making system 

using bipolar rating scales to obtain solutions with better performance. 



Acta Polytechnica Hungarica Vol. 14, No. 3, 2017 

 − 53 − 

8 Discussion and Conclusions 

The rating scales applied in different application areas usually have bipolar 

structure, but this bipolarity between opposite categories of the scales often was 

not explicitly or formally exploited. Our paper introduces explicitly the property 

of bipolarity in the definition of the general structure of verbal bipolar scales, in 

the formal definition of the bipolar scale as the linearly ordered set of indexes with 

negation operation and in the definition of bipolar scoring function on bipolar 

scale preserving the symmetry of this scale. In the description of the general 

structure of bipolar scales in Section 3 we based on the paper [3]. The idea of the 

formal definition of bipolar scale on the set of indexes was partially based on the 

paper [16] where the linguistic categories of the scale are presented by fuzzy sets. 

In Section 4 we consider together two mutually related sets of indexes where J = 

{1,…, 2m+1} is more traditional and K= {−m, …, m} is more “natural” for 

representation of bipolar scales with opposite categories. Most of bipolar scales 

observed in Sections 1 and 2 can be represented as bipolar scales with general 

structure considered in Section 3 or formally as bipolar scales considered in 

Section 4. The concept of bipolar scoring or utility function defined on bipolar 

scale to the best of our knowledge is new. The bipolar scoring functions include 

the traditional scoring of n-point rating scales by numbers 1,…, n as particular 

case and such scoring functions are called standard bipolar scoring functions. But 

it seems more interesting instead of the standard scoring functions or instead of 

the linear utility functions to consider nonlinear utility functions. These utility 

functions can be given as parametric functions and adjusted by some machine 

learning procedure to obtain good or optimal results on the output of 

recommender or decision making system using these bipolar scales. The nonlinear 

bipolar scoring functions can be useful in modeling the ratings of users or in 

modeling utility or importance of categories in bipolar scales. The reasons to use 

nonlinear bipolar utility functions in correlation measure introduced in the paper 

are discussed in Section 7. The results on association measures considered in 

Section 7 are based on the papers [5-7]. Here, we use the terms association 

measure and correlation measure as interchangeable. We extend the property of C-

separability from association measure on [0,1] considered in [6] on the set of 

utility profiles. The general formula for association measure on bipolar utility 

profiles is based on Minkowski distance and on general results considered in [5] 

for time series. The formulas (37) and (39) for centered bipolar utility functions 

are specific for C-separable association measures on bipolar utility profiles. The 

formula (38) generalizes the constrained correlation coefficient considered in [32] 

without utility functions. In our future work we plan to apply the results of the 

paper in collaborative filtering and in analysis of human ratings.  
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