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Abstract: This paper presents the semantic framework for the description and automatic 
composition of the data analytical processes. The framework specifies how to describe 
goals, input data, outputs and various data operators for data pre-processing and 
modelling that can be applied to achieve the goals. The main contribution of this paper is 
the formal language for the specification of the preconditions, postconditions, inputs and 
outputs of the data operators. The formal description of the operators with the logical 
expressions allows automatic composition of operators into the complex workflows 
achieving the specified goals of the data analysis. The evaluation of the semantic 
framework was performed on the two real-world use cases from the medical domain, where 
the automatically generated workflow was compared with the implementation manually 
programmed by the data scientist. 
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1 Introduction 

Analysis of data and application of machine learning and artificial intelligence 
methods become very important approach successfully applied to the research or 
business problems in the various domains. However, the application of these 
methods is not always straightforward and requires extensive knowledge exchange 
between data scientists and domain experts. Additionally, the implementation of 
these applications is rather complex, with many constraints coming from the 
definition of the goal, properties of input data and constraints of the algorithms 
applied to generate the results. The result is that implementation of the data 
analytical approach can be time and resource-consuming. In this paper, we 
propose the semantic framework for automatization of the data-analytical 
processes based on the application of ontologies and logical inference.  
The proposed framework allows to automatically compose data-analytical 
workflow based on the semantic description of the goals. 
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The paper is organized as follows. The first chapter describes the current state-of-
the-art and our motivation. In the following Chapter 3, we introduce our semantic 
model for data-analytical processes, followed by the main contribution of this 
paper: semantic description of the data analytical processes for the automatic 
composition of workflows and additional types of data operators covering various 
data and model visualization techniques. Last Chapter 4 then presents the 
evaluation of the proposed approach on the real application cases from the 
medical domain. 

2 Semantic Description of Data Analytical Processes 

A few semantics have been proposed to describe data-analytical process models 
formalized as ontologies [1-2]. One of the main proposals is the OntoDM 
ontology [3], which consists of 3 modules. The first module deals with the 
specification of input and output data and is based on the ISO standard for 
describing data types (atomic and composite). The main module characterizes the 
concepts that describe the data, the data analysis tasks (such as classification, 
clustering, etc.), the data mining algorithms, and the analysis outputs in the form 
of general data mining models. The third module uses concepts from the first two 
modules to formalize the different phases of the overall process according to the 
CRISP-DM methodology [4]. 

The other proposed ontologies extend the definition of some concepts introduced 
in OntoDM. DMOP ontology [5] deals mainly with the detailed description of the 
data mining algorithms, including their internal principle, e.g., a description of the 
numerical optimization method used, the error function, or the regularization of 
learning. DMOP covers 3 phases of CRISP-DM. DMWF ontology [6] defines data 
operators, which are applicable in data pre-processing, modelling, and evaluations. 
Operators are described similarly to services by definition of their inputs, outputs, 
assumptions, and effects. These input and output conditions are defined as logical 
expressions in the SWRL language as far as possible use of automatic derivation 
in the composition of workflows at data analysis. 

One of the most general proposals that extend OntoDM is ontology Exposé [7], 
which extends the CRISP-DM phase of the data analysis process to the level of 
experiments to ensure, e.g., reusability of procedures in data analysis and 
reproducibility of results. In addition to conceptualization, it also provides a 
language for describing experiments based on XML [8], which allows you to 
publish and share a description of experiments on the web in a machine-readable 
format. 

Panov et al. describe OntoDT, ontology to represent knowledge about data types. 
This ontology defines basic entities such as datatypes and their properties, 
specifications, characterizing operations, and datatype taxonomy [9]. 
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In [10] Tianxing et al. presents a meta-mining ontology, which is used for building 
a domain-oriented ontology. The main goal of creating INPUT ontology is to 
understand data and business goals better and use it as an input interface for user 
queries. 

The conceptualization of these semantic models is based on the description 
interfaces of existing software tools used for data analysis, such as R environment 
or sci-kit-learn library. Other relevant technologies can also include formats for 
exchanging data-analytical models when deploying them, such as XML standard 
PMML, PFA format based on JSON notation or currently the most supported 
ONNX format focused mainly on the exchange of models of deep learning. 

Data Science Ontology (DSO) is a data science knowledge base focusing on 
computer programming. DSO is a way of organizing and classifying the concepts 
and entities within the field of data science. It helps define the relationships 
between different aspects of data science work and provides a framework for 
understanding and communicating about the field. One important aspect of data 
science ontology is the classification of data types and sources. This includes 
things like structured data, unstructured data, and semi-structured data, as well as 
data sources such as databases, APIs, and text files. Another important aspect is 
the classification of data analysis and modelling techniques. This can include 
things like statistical methods, machine learning algorithms [11], data 
visualization techniques, and natural language processing. The concepts for this 
ontology are gleaned from statistics, machine learning [29], and software 
engineering for data science. In addition to concepts, ontology also provides 
semantic annotations for data science. The annotations map the types and 
functions of the libraries to the universal concepts of ontology [12]. Data science 
ontology also includes the different roles and responsibilities within a data science 
team. This can include roles such as data engineer, data analyst, data scientist, and 
machine learning engineer, as well as the specific tasks and responsibilities 
associated with each role. Data science ontology can also include the models, 
frameworks and methodologies that are used in the field. These can include things 
like CRISP-DM for data mining, SEMMA for data mining and statistics, and the 
OSEMN framework for data science. 

Data visualization and models should not be forgotten in the preprocessing and 
modelling framework; there is a VISO ontology [13] for describing such concepts, 
which formally models concepts and facts specific to visualizations. Visualization 
ontology is an important area of study, as it provides a structured and consistent 
way of understanding and discussing the field of data visualization. By 
understanding the different types of visualizations, design elements, and ways of 
representing data, we can create more effective and engaging visualizations that 
can help to communicate complex data in a more understandable way.  
The advantages of this ontology, also achieved thanks to well-established 
semantics standards such as RDFs [14] and OWL [14-16], are technical 
interoperability, support for a common understanding between interdisciplinary 
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parties in the visualization process, and the ability to derive new knowledge from 
existing facts. Viso is characterized by being composed of 7 modules: Graphic - 
formalizes concepts related to graphical relations and representations; Data - 
defines data variables and structures; Facts - formalizes constraints, rankings and 
defaults; Activity - deals with the human aspect within the visualization; System - 
this module covers HW and SW; User - characterizes user extensions and Domain 
- describes the domain specifications. 

3 Semantic Framework for Automatization of Data-
Analytical Processes 

In our previous work [17-18], we have defined the semantic framework for the 
description of the data analytical processes, which is divided into the following 
modules: 

• Domain Concepts - concepts for the description of entities and known 
relationships in the domain under investigation used for data analysis 
methods. 

• Data Items and Performance Indicators - concepts for the description of 
key performance indicators formalising business and research 
requirements and goals of data analysis and concepts to describe input 
and output data attributes and data sets. 

• Algorithms and Data Mining Models - concepts for describing methods 
and data mining algorithms and their settings, and concepts for 
describing data mining models (main outputs of data analysis). 

The first module is mainly designed from the point of view of a domain expert, 
using domain concepts to formalise the description of a given domain. The second 
module contains concepts that are shared between the domain expert and the data 
analyst and is used to formally describe the goals of the analysis and the data.  
The last module was mainly proposed for the semantic documentation of the 
existing data-analytical processes to achieve interoperability and reproducibility of 
the processes. The main contribution of this paper is in the extension of the 
framework, with the concepts which will allow the automatic composition of the 
workflows and automation of the data-analytical processes. The following 
subchapters will describe the proposed modules in detail. 

3.1 Domain Concepts 

Concepts for domain formalisation are specified using the SKOS metamodel [19], 
which allows the specification of title, narrative description and definition of 
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concepts localised in several natural languages. Concepts can be arranged 
hierarchically in the form of a thesaurus/taxonomy by the relations 
skos#broader/skos#narrower. It is also possible to define polyhierarchical 
schemes. In addition to the hierarchical arrangement, terms can also be linked 
associatively by the relation skos#related. 

A defined common dictionary of domain terms can also be used as a classification 
scheme for organising different types of documents that enter into data analysis as 
domain documentation, created by data analysts to document the analysis process 
itself, the data and the results achieved. The document types themselves can be 
specified as a classification taxonomy in SKOS. 

In addition to the narrative description, in some domains, it is also appropriate to 
explain existing concepts using various diagrams, schemes and other types of 
graphical notations (e.g., using BPMN diagrams for modelling business processes 
or process diagrams for visualising production processes in the field of Industry 
4.0, etc.). In this case, the individual graphical elements (e.g., an activity block in 
a BPMN diagram) are described as separate SKOS concepts that are linked to a 
given element to allow bi-directional navigation between the graphical notation 
and a set of semantic concepts. However, the proposed formalism does not define 
how these links are represented either in a semantic representation or inserted 
directly into the graphical notation format. 

3.2 Data Elements and Performance Indicators 

Figure 1 illustrates the basic concepts that represent the input and output data. 
Data elements are specified on two levels: logical and physical. Logical data 
elements are utilized to describe every input data attribute that the domain expert 
recognizes as relevant for resolving the given task of data analysis or for 
describing all output data produced during the analysis process, including 
prediction of the data-analytical models or values of domain and technical 
performance indicators. 

The logical representation defines the metadata for each data attribute, which 
includes its name and definition in natural language, logical data type (for 
example, whether it is nominal, ordinal, numeric data, scalar, vector quantity, 
spatially-arranged data, time series, etc.), the commonly used physical unit of 
measurement, and the role of the data element in the data analysis process (such as 
whether it is input, output, or input-output data). 

Logical data attributes can be connected by interdependencies, which are 
represented by the Dependency class. The Dependency class defines a relationship 
between one dependent data element and one or more independent elements.  
The dependency can be described in text or specified mathematically using a 
known physical or economic model. Dependencies can be further specified by 
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basic type, for example, expressing whether the value of a dependent element is 
derived from an independent element through transformation or is an aggregation 
of multiple independent elements, etc. 

 
Figure 1 

Data elements and performance indicators 

The physical location of the data during analysis is represented by the physical 
data elements, and one logical attribute can have multiple physical realizations. 
Physical data elements are assigned physical data formats and types. The physical 
type is based on the ISO standard for describing data formats in software systems 
and can be atomic (real/integer, Boolean value, string) or composite (record with 
data fields, list, or unordered set). The specific location of the data is defined using 
IRI, which represents a unique identifier in a software environment for data 
analysis or a URL for placement on the web. Multiple physical data elements can 
be combined into a single data element set referenced through IRI. 

The results of the data analysis are quantitatively described by the measurable 
performance indicators, which are defined as the special type of data elements. 
Similarly, to the description of input data, the performance indicators are divided 
into two subclasses: domain indicators and technical indicators. Domain indicators 
are commonly introduced by the domain expert for the evaluation of the results 
from the business perspective. They include indicators which specify, for 
example, financial costs/savings, energy or resource consumption, environmental 
impact, etc. The technical indicators include statistics expressing the performance 
of the data-mining model, such as accuracy, specificity, sensitivity, etc., estimated 
on the test or validation data set or using the cross-validation. In addition to 
performance metrics, technical indicators also cover the various metrics 
expressing the complexity or interpretability of data-mining models (e.g., the 
number of numerical parameters, the number of classifications or association 
rules, the number of clusters, etc.). Technical indicators are formally mapped by 
the data analyst to domain indicators by specifying the dependencies represented 
by the Dependency class, which allows to retrospectively determine how the 
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technical quality of data-mining models quantitatively affects the required quality 
of business goals. 

 
Figure 2 

Example of the physical and logical data elements 

Figure 2 presents an example which demonstrates the relations between logical 
and physical data elements. The physical dataset is represented with the WDBC 
instance, which points to the data stored in the comma-separated value file on the 
disk. The file consists of multiple columns, which are represented as instances of 
the Physical Data Element class. The example column is represented with the 
SYMMETRY_MEAN instance, which corresponds to the logical data element 
represented by the SymmetryAvrg instance. Another example of the logical 
element is Symmetry instance from which the SymmetryAvrg element is derived 
by arithmetic averaging. The dependency between the two logical elements is 
formally represented by the Average instance of type Dependency. In this case, 
the Average instance can specify directly by a structured formula for the 
computation of the arithmetic average over the source element. 

3.3 Algorithms and Data-Analytical Models 

The use of the algorithm in the analysis is determined by the definition of the data 
mining task as specified by the data analyst (Figure 3). The task is defined by a set 
of constraints (Constraint class) that use logical expressions to outline the desired 
properties of the resulting data mining model. These constraints cover the 
characteristics of the input data (such as data type attributes and the presence of 
missing or extreme values), the type of desired model (such as classification, 
regression, clustering, association rules, anomaly detection, etc.), and the quality 
and interpretability of the model by limiting technical performance indicators. 
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These constraints are further divided into hard constraints, which must be fully 
met in the solution of the task, and soft constraints, which should be taken into 
consideration in the solution but may not necessarily be met unconditionally. 

 
Figure 3 

Data mining tasks, algorithms, and models 

The main concept which covers all operations over the data is the Operator class. 
The machine learning algorithms are represented with the Algorithm concept, 
which is the special type of the operator with the data input and output in the form 
of the data mining model. The Model itself is the Operator, which can be applied 
to the input data for scoring. The output of the Model operator are data elements 
with predicted values and with the optional additional metadata such as 
confidence scores, identifiers of the classification rules, or weights of the 
contributing input values. In addition to the output model, an algorithm can have a 
set of (hyper) parameters that need to be set before it can be executed. Each 
parameter has a defined data type and a predetermined value. A special type of 
algorithm is the MetaLearningSchema class [20], which internally optimises 
parameter settings for a given training set and basic learning algorithm or selects 
the best algorithm from a group of algorithms for a given training data. 

Figure 4 presents an example of the formalisation of the predictive machine 
learning algorithm and model. The RandomForest algorithm is the instance of the 
Algorithm concept, which is constrained for the classification task.  
The classification task specifies the constraint for the output predicted value (it 
must be of ordinal or nominal type). The algorithm is the data operator, which can 
be applied to input data represented as the physical dataset and which outputs the 
data mining model represented as the RFModel instance. An algorithm can have 
multiple parameters (settings which must be specified by the data scientist or 
automatically optimised), which are represented as the instances of type 
AlgorithmParameter. The figure shows a parameter for the number of trees 
included in the random forest model. Parameters can be semi-automatically 
optimised using the meta-learning schema. In the presented example, the number 
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of trees parameter is optimised by GridSearch meta-algorithm, which iteratively 
learns and evaluates model using the given algorithm (e.g., RandomForest) and 
selects the optimal value of the selected parameter. 

 
Figure 4 

Example of the algorithms and data-analytical models 

3.4 Process Model for Data Analytical Workflows 

The proposed process model can be used to automatically generate workflows for 
data analysis tasks and also to formally describe existing data analysis scripts, 
ensuring their replicability and reusability. It is designed similarly to a process 
model for choreography and orchestration of web services, with the state 
represented by instances assigned to the shared variables. The process consists of 
nodes (Figure 5) that represent individual operations (Operator class) for data 
preprocessing, modelling, and evaluation, or control blocks such as branches, 
cycles, parallel execution, and synchronization (ControlNode class). The nodes 
are connected in a workflow by edges represented by the GuardedTransition class, 
which represents conditional transitions between nodes. Operators are described 
functionally, with inputs, outputs, assumptions, and effects defined as logical 
expressions. The flow of the process is determined by backward chaining of the 
effects and assumptions, taking the desired target effects from the task 
specification of the data mining. Some restrictions may be imposed by the 
algorithms used in the workflow, such as the ability to only work with certain 
types of attributes or to handle missing values. 
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An important part of our semantic framework is the formalism used for the 
description of the logical expressions in the specification of the operators inputs, 
outputs, preconditions and postconditions. The formalism is divided into variants 
with gradually increased expressiveness, which allows for choosing a trade-off 
between complexity and expressiveness and simplify the implementation of the 
automatic planning. The full specification was based on the Web Service 
Modelling Language (WSML) formalism [21], which combines constructs from 
descriptive logic and logic programming. WSML expressions consist of logical 
variables, functional symbols, logical operators (and, or, classical negation and 
negation as a failure) and quantifiers (existential and universal). Our current 
proposal substantially reduced the expressiveness of the WSML expressions in 
order to even further simplify formalism and implementation of the automatic 
method for the process composition. 

 
Figure 5 

Process model for data analytical workflows 

The current specification corresponds to the WSML light variant with the 
following constraints: 

• All logical variables in the expressions are universally quantified. 
• If α, β and γ are terms (identifiers, data values or variable symbols): α 

subConceptOf γ, α memberOf γ and α[β hasValue γ] are atomic 
formulas where sub-concept of  predicate specifies that the type α is the 
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sub-type of the γ, member of predicate constrains the type of the term α 
and has value predicate defines that the term α has value γ for the 
property β. 

• Atomic formulas can be further combined with the logical operators and, 
or and negation as a failure (denoted as not). 

Examples 

The following example describes inputs, outputs, preconditions and 
postconditions for the operator, which replaces missing values of all numerical 
attributes in the input dataset. 

Inputs: 

    ?x memberOf PhysicalDataset 

Preconditions: 

    ?x[hasDataElement hasValue ?y] and ?y memberOf NumericalAttribute 

Outputs: 

    ?x memberOf PhysicalDataset 

Postconditions: 

    not hasMissingValues(?y) 

The operator defines the physical dataset as an input with the precondition that all 
data elements (columns in the input physical dataset) have a numerical type (note 
that all variables are implicitly universally quantified). The output of the operator 
is the same dataset with the postcondition that all attributes are without missing 
values (tested with the hasMissingValues predicate). All variables within the 
definition are shared between the inputs/precondition and outputs/postconditions, 
so for example, it is not necessary to bind variable ?y in the postconditions since it 
was already constrained in the preconditions. 

The following example defines the operator for the logistic regression machine 
learning algorithm. 

Inputs: 

    ?x memberOf PhysicalDataset 

Preconditions: 

    ?x[hasDataElement hasValue ?y] and 

    ?y memberOf NumericalAttribute and 

    not hasMissingValues(?y) 

Outputs: 

    ?z memberOf LogisticRegressionModel 
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The input to the operator is the physical dataset with numerical attributes without 
the missing values, and the output is the logistic regression machine learning 
model represented with the type LogisticRegressionModel (which is subsequently 
sub-concept of ClassificationModel, etc.). 

Finally, the process of creating an executable workflow in a specific software 
environment involves anchoring the operators with the Grounding class. 
Grounding is a customizable text template that generates code for the operator's 
function in the environment when filled with variables. Operators can have 
multiple anchors, each designed for a different programming language (e.g. R or 
Python) or version of the software library used. The task specification can also 
include constraints on the anchoring, ensuring that only operators compatible with 
the given environment are used in the workflow. 

3.5 Visualization Concepts 

These concepts describe visualization in data mining processes. The key concepts 
are Algorithm, which is a type of operator that depends on input variables, and 
VisualizationMethod, which is an operator that takes data or a model as an input 
and outputs a visualization in the form of a graph. 

Figure 6 illustrates the concepts of data visualization. As an example, we have 
selected the visualization of the PDP method for explaining machine learning 
models. In the beginning, it is important to define the type of visualization that is 
required. In principle, any visualization requires data as input. Either the data can 
be visualized as part of the data understanding or preprocessing phase, or the 
output of the visualization can be in the form of graphical representations of the 
models used for data mining. The concept of Algorithm is treated as a class 
operator, which is represented as a generic operation that transforms an input of a 
specific type into the desired output. The output of algorithms is then represented 
by the Model class. This concept is used together with data as input for the PDP 
(Partial Dependence Plot) [22], a graphical tool that helps understand the 
relationship between the input and the predicted variable. The outputs of the PDP 
operator are used to compute PDPStats, defined as TechnicalIndicator, which is a 
technical indicator specified based on domain indicators. The values obtained 
from PDPStats are inputs to the PDPVisualMethod. The final desired output is a 
PDP graph, which is a subclass of the VisualizationMethod operator and is 
specified in this case as a Graph. 
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Figure 6 

Example of the visualization concepts 

4 Experiments 

The proposed semantic model is intended for the formal description of the data 
analytical processes, ensuring their reproducibility and interoperability and for the 
automation of the analytical processes. To evaluate the proposed approach, we 
have applied the semantic model to two real-world case studies from the medical 
domain [23]. In the evaluation, we have at first manually annotated all scripts used 
for the pre-processing, modelling and evaluation of the machine learning models 
with the concepts from the proposed semantic model; and, second, compared code 
manually created by the data scientists with the code automatically generated from 
the knowledge graph. 

For the comparison of the code, we have defined mainly metrics based on the code 
coverage [24], namely the number of lines of the code (including control 
statements for branching and cycling), the number of exact operator matches and 
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the number of operators with the partially matched parameters. We have defined 
the semantic constraints for the final data mining model to exactly match the 
results of the expert’s code without the additional automatic optimization using 
the meta-learning schema. In addition to evaluating the coverage of the code, the 
accuracy of the learned models was also tested, and there were no significant 
differences in the quality of the learned models between the generated and the 
original code. 

5 Evaluation 

The first task was a binary classification for the diagnosis of breast cancer.  
The features are computed from a digitized image of a fine needle aspirate (FNA) 
of a breast mass. They describe characteristics of the cell nuclei present in the 
image, such as radius, texture, perimeter, area, etc. All features were real-valued 
numerical attributes without the missing values. Some attributes were derived 
from the source attribute but aggregation functions (e.g., overall average 
symmetry computed from the symmetry of each annotated cell, etc.). Together the 
dataset [25] contains 32 attributes. The code manually created by the data 
scientists [26] was in the R language and covered pre-processing, modelling, and 
evaluation for the six data mining algorithms for the classification ranging from 
decision trees, random forest, k-nearest neighbours, naïve Bayes classifier (with 
the normal distribution of the attribute probabilities) and support vector machines 
with the linear and polynomial kernels. The models were evaluated using the 
standard metric for the overall accuracy and precision/recall for the positive class. 

For the evaluation, we have defined the semantic constraints for the final data 
mining model to exactly match the results of the expert’s code without the 
additional automatic optimization using the meta-learning schema.  
The comparison of the code coverage between the experts’ code and automatically 
generated code is summarized in Table 1. 

Metric Expert 
code 

Generated 
code 

Coverage 
% 

Number of code lines 328 - - 
Number of code lines with operators 126   
Number of algorithms 6 6 100 
Number of visualization methods 6 4 67 
Number of evaluation metrics 1 1 1 
Number of variables 98 80 82 
Number of operator arguments 26 21 81 
Number of functions 2 - - 
Number of branchings 8   
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The scripts for this case were developed as the Shiny application, where a large 
part of the code is related to the programming of the user interface, which is not 
relevant to the data analytical task. From the remaining code, 126 lines contain the 
operations over data and models. The automatically generated code covers all 6 
evaluated algorithms (decision tree, random forest, Naïve Bayes, k-nearest 
neighbour, neural network and SVM). Some parameters (i.e. number of decision 
trees in the random forest and the number of neighbours for kNN) were optimised 
in the original code with the simple cycle. This part of the optimisation was 
replaced in the semantic model with the equivalent grid-search operator.  
The models were evaluated with the same set of technical KPIs for binary 
classification (accuracy and contingency table) [27]. The coverage of the 
visualisation operators was 67%, where two visualisation methods were not 
covered by our current model. Non-covered visualisation methods show 
dependency between the selected technical KPI (e.g. precision) and one of the 
algorithm parameters (e.g. number of trees in the random forest algorithm).  
The coverage of variables also includes all variable aliases in the initial code (i.e. 
when the same data value is assigned to the two variables with different names). 
Overall, the semantic model has a much lover and consistent set of unique 
variables. All branchings in the original code were covered since they were related 
to the selection of the model. Additionally, the original code contains the 
definition of two helper functions. Both were used as data preprocessing 
operators, and both were replaced in the generated code with the equivalent 
functions from the standard R packages. 

The second use case was also from the medical domain for the diagnosis of Acute 
lymphoblastic leukaemia (ALL). The dataset [28] was preprocessed from the set 
of images with a convolutional neural network, and the extracted features were 
reduced with the ANOVA method and with the importance of weighting based on 
the random forest tree algorithm. The final set of features includes 584 numerical 
attributes without the missing values. The code manually created by the data 
scientists was implemented in Python and covers preprocessing, modelling and 
evaluations. 

Metric Expert 
code 

Generated 
code 

Coverage 
% 

Number of code lines 211 - - 
Number of code lines with operators 88   
Number of algorithms 4 4 100 
Number of visualization methods 4(2) 4 100 
Number of evaluation metrics 5 5 100 
Number of variables 75   
Number of operator arguments 20   
Number of functions 5 - - 
Number of branchings 3   
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In this case, the generated code covers all classification algorithms (random forest, 
support vector machine, naïve Bayes and k-nearest neighbours). Code also covers 
all five technical key performance indicators (accuracy, precision, recall, F1 score 
and confusion matrix). The visualisation methods cover mainly the visualisation 
of the confusion matrix with the heatmap. Additionally, scripts contain two 
visualisations of input image data before and after cropping, but these 
visualisations serve just for the visual checking for data scientists and are not 
relevant to the automatically generated code. An interesting case which was not 
covered by our current semantic framework is the usage of machine learning 
models for feature extraction. The framework just specifies that each predictive 
machine learning model can be used as a data operator for scoring (i.e. 
computation of the output prediction data element from the input data). However, 
in the presented use case, the internal state of the model (convolutional deep 
learning neural network) is used to extract input data features. Annotated 
extension, which was not covered in our current framework, is the case where the 
output of the predictive machine learning model is used for the feature importance 
weighting for feature selection. The latter case was a straightforward extension, 
but the former case requires better specification of the internal structure of the 
models (especially for deep learning models), which will be the goal of future 
work. 

Conclusions 

In this paper, we have presented the application of semantic technologies for 
automatization of the data-analytical processes. We have demonstrated that it is 
possible to semantically describe the goals of the data mining tasks and data 
analysis and automatically orchestrate the data mining workflows to find a 
solution to the goals. Additionally, the proposed semantic description can be used 
to formally document existing data analytical scripts for their reproducibility.  
In our experiments, we have demonstrated good coverage of the proposed 
semantic framework on the various real-case scenarios of data analysis in the 
medical domain. During the experiments, we have also identified some corner 
cases which were not initially covered in the framework, namely, visualization of 
dependencies between technical KPIs (performance metrics) and algorithm’s 
parameters, usage of the internal state of the predictive models as the feature 
extraction method and usage of the output of the predictive models for feature 
selection. 

Our experiments also showed that besides the overall quality of the final model 
(i.e., optimal business KPIs), an important part of the data scientist’s work is also 
data understanding and post-analysis of results for explainability of the model. 
This is also the motivation for our future research, where we are planning to 
extend our semantic model to cover also constraints for better data understanding 
and explainability of the machine learning algorithms. 
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