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Abstract: The aim of this paper is to present an approximate method for determining the 

position and orientation of the axis of finite rotation with regard to human knee joint. The 

method includes data acquisition of anatomical angles and landmarks, which are 

considered as known inputs. Three position components of the origin of reference frame 

(Ot), secured to the sensor in the absolute coordinate system, and three Euler-angles 

between the reference frame and the absolute coordinate system are needed for the 

calculation. By the use of basic vector and quaternion theory, the determination of the axis 

of finite rotation can be carried out. 

Keywords: axis of finite rotation; Euler-parameters; optical positioning; rotation 

1 Introduction 

Relative motion is described as a motion observed from or referred to some material 

system constituting a frame of reference between points or bodies. The practical 

use of this kind of description appears in many examples starting from a trivial, 

everyday event when a motorboat in a river is moving amidst the river current, up 

to challenging and relevant engineering questions such as the movement (and 

control) of non-holonomic wheeled robots [1, 2]. 

In biomechanics, relative motion is used for determining/measuring anatomical 

kinematic parameters such as rotation or ad/abduction. A widely accepted and 

applied contemporary method is the insertion of markers (pins, screws) into bones 
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[3, 4, 5], when the actual change of the motion can be revealed by observing the 

changes of the marker coordinates between successive locations. The 

determination of the axis of finite rotation can be understood as a basis for making 

a definite connection between the observed kinematical quantities (rotation, 

ad/abduction, etc) and the body segments. 

Several methods are used for such determination, like the Plücker lines [6], dual 

vector method [7] or the instantaneous helical axis (IHA) approach [8], which is 

also recommended by the International Society of Biomechanics. These 

elaborated methods naturally have advantages and disadvantages. The Plücker 

lines method is sensitive to the noisy data, and encounters problem if the rotating 

angles are small or zero. The IHA approach is mostly used in case of neck [9], 

spine [10] or shoulder analysis [11], and a mention must be made that many 

studies, where joint kinematics is discussed, assume that the investigated motions 

are planar. Common disadvantage of the IHA method, likewise the Plücker lines 

method, that it is also quite sensitive to low angular velocities and landmark 

measurement errors [8, 9]. 

This approach employs the advantageous attributes of the Euler-parameters, and in 

addition, it is not restricted to planar motion, while it stays perfectly stable in case 

of low angular velocities. The method requires the following data: the Euler-

angles and the position coordinates of the reference frame, secured to the moving 

part. These quantities are observed in the absolute coordinate-system. 

Thus in summary, the proposed method is suitable to determine the motion of a 

relative coordinate system (fixed to the moving tibia) in a steady coordinate 

system fixed to the femur. The motion of the tibia, together with the relative 

coordinate system, is a combination of the local movements (rotation, 

ad/abduction, translation) of the knee joint. The motion, with special regard to the 

determination of the axis of finite rotation, is approximated by solely rotations of 

appointed axes, where both the position and the orientation of this moving 

(relative) coordinate system is to be determined. 

The study first introduces how the data acquisition of the landmarks/rotation takes 

place with the Polaris optical tracking system, and then it is followed by the 

explanation of the proposed approximate method for determining the position and 

orientation of the finite rotation axis under human movements. In this study no 

numerical or experimental results are presented, it is solely restricted to the 

method. 
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2 Method 

2.1 Test Equipment, Landmarks and the Demanded 

Quantities 

The research group continuously carries out experimental tests on cadaver knees 

in order to create a working and acceptable prosthesis rating (qualification) 

method [12, 13]. Therefore, a special test equipment has been assembled, which is 

suited to clamp cadaver knee joints (Figure 1). This test equipment is adequate for 

kinematical measurements and also to provide necessary inputs (Euler-angles, 

position coordinates of the reference frame secured to the moving part) for the 

presented calculation method. 

 

Figure 1 

Experimental equipment with Polaris optical tracking system 

The equipment at issue has the unique feature that the cadaver knee joint  

(or prosthesis) can carry out unconstrained flexion and extension without altering 

the non-pathological rotation or the ad/abduction of the joint. Polaris optical 

tracking system [14] was used for data acquisition during the flexion-extension 

motion. Human cadaveric knee specimens were used and two trackers were 

secured rigidly both to the femur and to the tibia. Via this experimental setup, the 

change of Euler angles (Azimuth (Ψ), Elevation (Θ) and Roll (Φ) further discussed in 

2.2.3) and several anatomical landmarks can be directly recorded. Landmarks were 

applied according to the description of the VAKHUM project [15] as follows 

(Figure 2): 
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Figure 2 

Anatomical landmarks defined by the VAKHUM project [15] 

- Coordinates of centre of the femoral head (fh), 

- Coordinates of medial and lateral epicondyles (me, le), 

- Coordinates of apex of the head of the fibula (hf), 

- Coordinates of prominence of the tibial tuberosity (tt), 

- Coordinates of distal apex of the lateral and medial malleolus (lm, mm), 

- The origin (Ot) of the anatomical coordinate system, which is the midpoint 

of the junction-line between the medial (me) and lateral (le) epicondyles, 

- The yt axis of the coordinate system, which is the line between the origin 

and the centre of the femoral head (fh), pointing upward with positive 

direction, 

- The xt axis of the coordinate system is perpendicular to the quasi-coronal 

plane, defined by the three anatomical points (hf, me, le). It has positive 

direction to the anterior plane, 

- The zt axis of the coordinate system is mutually perpendicular to the xt and 

the yt axis with positive direction to the right. 

The above mentioned parameters can be directly measured, thus they are 

considered as known quantities. It is worthy to note that the intra- and inter-

observer variability of these landmarks is also accessible in the relevant liteature 

[16]. Based on these quantities, more specifically the on the orientation of the 

relative (xt, yt, zt) coordinate system and point Ot, this paper sets the accent only on 

determination of the axis of finite rotation under human motion. 
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2.2 The Approximation Method 

The determination of the finite axis of rotation, as it has been discussed in the 

Introduction, has several different approaches. In this section, a new and simple 

method is introduced, where the applicable theory, and background mathematics 

is also discussed. The method uses formulations from diffrent mathematical fields, 

while it is assambled into a series of steps that provide an approximate solution for 

the demanded quantities. 

2.2.1 Euler Parameters – Quaternions 

The application of Euler-parameters, as generalized coordinates, is not the most 

usual approach since it involves the concept of quaternion, however it is a widely 

used theory in calculations which involve three-dimensional rotation [17, 18]. A 

simple physical interpretation of the Euler-parameters can be seen in Figure 3. 

The Euler-parameters are able to determine the orientation of the xyz reference 

frame secured to the moving rigid body in the steady, XYZ reference frame. If the 

origins of the two reference frames are coincident then the transformation is a 

simple rotation around the axis of revolution according to the Euler theorem [19]. 

 

Figure 3 

Transformation as a rotation around an axis 

In Figure 3, the direction of the axis of revolution is denoted by u unit vector, while 

the rotation is denoted by Δφ. Let us define the vector q as follows: 

2
sin


 uq

                     (1) 
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The components of vector q are q1, q2, q3. By introducing 

2
cos


oq

                     (2) 

quantity, the Euler-parameters, quaternion, are obtained as: 

 321 ,,, qqqqop .                    (3) 

The quaternion includes four real elements, where the first element (q0) is a scalar 

value, while the other elements (q1, q2, q3) are the elements of a spatial vector. The 

elements of quaternion p are the Euler parameters, which are equal to: 

1
2

3

2

2

2

1

2

0  qqqq
                    (4) 

2.2.2 General Coordinates of a Rigid Body 

Six general coordinates are required to determine the position of a rigid body in 

any given coordinate-system. The position of the origin of the coordinate-system 

is secured to the body in motion (Figure 4). The position of the origin is described 

by three translational coordinates. 

 

Figure 4 

Determination of point P on the surface of the rigid body 

The orientation of the axes of reference frame xyz to the XYZ axes is described by 

three additional, general rotational coordinates. If the general coordinates of the 

body are known during the motion, then the coordinates of point P (Figure 4) on 

the body can be described in the XYZ reference frame as follows: 

'sArsrr P                     (5) 
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Where, 

 TPPPP ZYX 000 ,,r : Vector, pointing from the origin of the absolute system to 

a defined point P on the moving body. The vector is defined in the absolute 

system. 

 TZYX '00'00'00 ,,r : Vector, pointing from the origin of the absolute system to a 

the origin of the relative (moving) coordinate system. The vector is defined in the 

absolute system. 

 TPPP ZYX '0'0'0 ,,s : Vector, pointing from the origin of the relative (moving) 

system to a defined point P on the moving body. The vector is defined in the 

absolute system. 

The rotational transformation (6) from the moving to the fixed coordinate-system 

can be carried out by a transformational matrix, denoted by A: 

'sAs                       (6) 

Where  TPPP zyx '0'0'0 ,,s  is the same vector, defined in the relative (moving) 

coordinate-system, and A is the transformational matrix expressed by the Euler-

parameters [19]: 
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2.2.3 Transformation of the Points by Euler Angles 

Polaris optical tracking system was used for the measurements. The following 

kinematical variables were collected by the system: XO, YO, ZO, Ψ, Θ, Φ (Fig. 5). 

The coordinates of Ot (XO, YO, ZO) are the position coordinates of the origin of 

reference frame, secured to the moving body, in the absolute coordinate-system. 

The Euler-angles are defined as a sequence of angles (Azimuth, Elevation and Roll) 

that determine the orientation of the moving body with respect to the XYZ steady 

reference frame. Azimuth (Ψ) is a rotation of the X and Y coordinates around Z-

axis. Elevation (Θ) is a rotation of the Z and the rotated X coordinates around the 

rotated Y-axis. Roll (Φ) is a rotation of the rotated Y and Z coordinates around the 

rotated X-axis (Figure 5). 
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Figure 5 

Definition of kinematical variables (X, Y, Z, Ψ, Θ, Φ) recorded by Polaris optical tracking system 

The moving (relative) body-fixed system (xyz) can be rotated and displaced to the 

fixed (absolute) reference frame (XZY) by a simple transformation (T
-1

) as follows: 

ra xTx  1
                     (7) 
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The elements of the transformation matrix (T
-1

) can be determined with the Euler 

angles. 
1

1

1
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2.2.4 Determination of Position-Orientation of Finite Rotation Axis 

In this section it is shown how the transformation takes place between two, 

consecutive points, which is followed by the determination of the axis of finite 

rotation. 

In Figure 6, two consecutive positions of the origin (Ot) of the anatomical 

coordinate system are shown. The point Ot is fixed to the tibia (moving xyz 
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reference frame) and it is defined in the absolute coordinate (XoYoZo reference 

frame) system fixed to the femur. Let us denote these positions as 1
st
 and 2

nd
 

positions. Δs(1,2) vector describes the displacement between two consecutive points 

(Ot1 and Ot2), and it is simple determined by the spatial Pythagoras theorem. 

erot(1,2) denotes the unit vector of the rotation axis (note that erot(1,2) = u), while eΔs(1,2) 

describes the unit displacement vector between two consecutive points (eΔs (1,2) = 

Δs(1,2) / | Δs(1,2)|). 

 

Figure 6 

Consecutive positions-orientations of the moving (x,y,z) reference frame in the absolute (XoYoZo) frame 

The reference frame of the sensor is secured to the moving tibia. It must be noted 

that the demonstrated positions, in reality, are located relatively close to each 

other, therefore the distance between the origins is not more than a few mm. 

The relation between the first and second moving positions (T1-2) of the tibia can 

be derived by the following matrix-equation: 

1

1221



  TTT ,                                   (9) 

where T2 is the transformational matrix of the second position (identified in the 

Polaris space), while the T1
-1

 is the inverse matrix of the first position. 

The third order sub-matrix of the T1-2 and the rotational matrix of A are 

kinematically equivalent in the aspect of the two positions of the tibia. Due to this 

coequality, the Euler-parameters can be calculated. The elements of matrix A are 

the Euler-parameters that determine the revolution. In details: they determine the 

unit vector of the axis of revolution and the angle of rotation, with correct 

algebraic sign, of the rigid body. In our current case, this is the revolution of the 

tibia around a fixed axis. 
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The requested angle of rotation with regard to the Euler-parameters: 

oq1cos2  ,                   (10) 

While the components of the unit vector, parallel to the unit vector of the axis of 

revolution: 




















2
sin


iq

u      3,2,1i                  (11) 

The following question has to be answered: what is the position and orientation of 

the finite rotation axis between two positions in the moving reference frame? 

The calculation of the position and orientation of the finite axis of rotation can be 

accomplished in two steps (Figure 6): 

- If the origins of the moving reference frame (Ot1 and Ot2) are coincident, 

then the rotation can be determined by the Euler-parameters, more 

specifically, by the angular displacement Δφ and the unit vector erot(1,2) of the 

rotation axis. 

- The position of the finite axis of rotation is described by the displacement 

vector Δs(1,2) between the two consecutive origins (Ot1 and Ot2) and the 

angular displacement Δφ. 

With regard to the modeling questions, it must be noted that several studies showed 

that the tibia, with respect to the femur, follows a complex one degree of freedom 

spatial path during passive flexion [20, 21, 22]. Another study from Sancisi et al. 

[23] presented that the calculation of anatomical angles (rotation, ad/abduction, 

etc) can be carried out, with reasonable accuracy, if simple spherical contrains are 

applied. Nevertheless, these simplifications must be carefully applied in the modeling, 

since the so-called roll-back [24] motion has also great impact on the movement and 

cannot be completely disregarded. 

Based on the above mentioned studies, if the knee joint is considered as a spherical 

joint (rotation without any translation), then erot(1,2) and Δs(1,2) vectors will be 

perpendicular to each other. 

Based on these vectors and the proposed approximation, the position and orientation of 

the finite rotation axis can be determined (Figure 6 and Figure 7). 
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Figure 7 

Determination of axis of finite rotation 

The axis of finite rotation is parallel to unit vector erot(1,2) and located on point P  

(Figure 7). Point P is also located on the line c, perpendicular to a plane formed by 

vectors erot(1,2) and Δs(1,2). The direction of the normal vector of the plane can be 

determined by vector product: 

 2,1)2,1( rotst eee  
.                  (12) 

To determine the position of the finite axis of rotation, let us denote 
1tOP , the 

absolute distance between the axis of finite rotation and a certain point P, as t: 

1tOP = t,                   (13) 

where t can be calculated as: 






)2,1(s
t .                   (14) 

Finally the coordinates of point P (Px, Py, Pz) on the line c can be obtained from the 

following equations: 
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Conclusions 

In this paper an approximate method is presented for the determination of the 

position and orientation of finite rotation axis during human movements. The 

proposed method is not restricted to planar movement and in addition, it is 

independent of the angular velocity of the examined motion. The calculation can 

be carried out with the help of simple vector algebraic tools and with basics 

knowledge about quaternions. 
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Determination of the position and orientation of finite rotation axis can serve as a 

tool for several applications such as the calculation of instantaneous center of 

rotation regarding knee joint, functional spinal unit [25] or an alternative way to 

investigate the sliding-rolling phenomenon between connecting surfaces of femur 

and tibia [26]. This method can be applied in any kinematical investigations of 

human joints, regardless of the position and orientation of the coordinate-systems 

secured to the body segments. As for further aims, the method will be applied on 

the data which has been obtained from the cadaver knees, and the actual numerical 

results will be compared to other authors’ results in order to show the accuracy 

and simplicity of the proposed method. 
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