
Acta Polytechnica Hungarica Vol. 19, No. 9, 2022

 – 103 –

A New Method to Increase Feedback for

Programming Tasks During Automatic

Evaluation
Test Case Annotations in ProgCont System

Piroska Biró1,2, Tamás Kádek3, Márk Kósa1, János Pánovics1

1University of Debrecen, Faculty of Informatics, Dept. of Information Technology

Kassai út 26, 4028 Debrecen, Hungary

{biro.piroska, kosa.mark, panovics.janos}@inf.unideb.hu

2Sapientia Hungarian University of Transylvania

Faculty of Economics, Socio-Human Sciences and Engineering

Piaţa Libertăţii nr. 1, 530104 Miercurea Ciuc, Romania

3University of Debrecen, Faculty of Informatics, Dept. of Computer Science

Kassai út 26, 4028 Debrecen, Hungary; kadek.tamas@inf.unideb.hu

Abstract: The unexpected challenges posed by the pandemic also have transformed

university education. Information technology is still the most advantageous field, as IT

tools in education are more widespread. We have been using the ProgCont system for

automatic evaluation of programming tasks since 2011 at the Faculty of Informatics of the

University of Debrecen. The system’s responsibilities have expanded over the years, and

due to the pandemic, it will have to play a more significant role in self-preparation.

Initially, we used the system to evaluate competitive tasks and later examinations. In this

period, the feedback was limited to accepting or rejecting the submitted solutions.

A submitted solution is accepted if the application produces the appropriate output for the

problem’s input. Usually, we test the submissions with several inputs (test cases) for each

problem. To provide additional information about the reason for rejection, we would like to

supplement test cases with comments (annotations) that identify the test cases’ unique

properties. Our goal is to help identify the subproblems that need improvement in case of a

partially correct solution. In our article, we would like to present the potential of this

development. We chose a problem that received an impressive number of solutions.

We created new test cases for the problem with annotations, and by re-evaluating the

submissions, we compared how much extra information students and instructors obtained

using the annotations. The presented example proves that this new development direction is

necessary for students’ self-preparation and increases differentiated education

possibilities.

Keywords: ProgCont system; programming education; automatic solution evaluation; test

case annotations

P. Biró et al. A New Method to Increase Feedback for Programming Tasks During Automatic Evaluation

 – 104 –

1 Introduction

The emergence of the pandemic will radically reshape university education. In this

form of training, it is possible to rely more strongly on students’ independent work

compared to secondary school and primary school education. At the university

level, distance education is easier to introduce, and higher education institutions

have also switched to this form of education. At the University of Debrecen,

education could be restored to its traditional form only for two months in the year

after the pandemic had started in March 15, 2020.

The Faculty of Informatics had several IT solutions to support education, the role

of which suddenly and significantly increased during the pandemic. The ProgCont

system that implements automatic evaluation of programming exercises is a good

example.

We have been developing the system for almost a decade, during which time its

usage has expanded significantly [3], [8], [9], [15]. In the context of distance

education, we want to strengthen its role in self-preparation.

We considered using other existing systems: Mooshak [10], [14], PC2 –

Programming Contest Control [2], UVa Online Judge [16], [17], Bíró and Mester

ELTE [5]. They were all outstanding imaginative applications [1], [6], [7], [11],

[12], [18], yet they did not fit perfectly with local needs.

The ProgCont system was intended initially for automatic and objective

evaluation of examinations and programming competition problems. By uploading

the source code created as a solution, contestants received immediate feedback on

whether or not their program was producing the appropriate output, making the

solution of the problem acceptable or not. In case of a negative response, the

competitor must alone identify the error in their program. We can also take

advantage of the automatic evaluation system during our educational activities

[13]; accordingly, the first examination problem sets and then practice problem

sets have appeared in ProgCont.

Instructors using ProgCont formulated more and more different problems. Up to

now,

‒ 45 competition problem sets,

‒ 241 examination problem sets,

‒ 11 practice problem sets

are available in the system with a total of 1 657 tasks. ProgCont supports C, C++,

C#, Java, and Pascal programming languages by default (from 2011), and later it

has become possible to use Python (from 2016) and Racket (from 2020).

Students often criticise that, although the evaluation is objective and automatic, it

does not help correct a faulty program because it does not show the tests where the

program does not perform well. The principle is that the test cases’ content, apart

Acta Polytechnica Hungarica Vol. 19, No. 9, 2022

 – 105 –

from an example usually given in the problem’s description, is unknown. This

practice makes it impossible for the submitted programs to focus on specific test

cases instead of an algorithmic solution to the problem. It is possible to identify

the test cases the application produces incorrect output for, but not the test cases’

contents themselves. However, there would be no obstacle to exploring some test

cases’ characteristics without uncovering exact test content. To improve the

feedback provided by ProgCont, we will introduce the possibility of using test

case annotations from 2021 onwards.

The annotation of a test case is a short textual description that defines the

subproblem examined with that particular test case. If we want to use annotations

that identify the subproblems well, it could be necessary to modify the test cases.

In the following, we show the possibilities of annotations for a selected problem.

2 The Sample

We selected the problem that received the most submissions in the system so far,

which means 1 387 submissions exactly. The problem has initially been a member

of a problem set for the High-Level Programming Languages 1 examination, and

later it was published as a practice problem after the test.

TASK1

Write a program that reads times in 24-hour format from the standard

input until end-of-file (EOF), one per line. The program should write to

the standard output the 12-hour times corresponding to the given times.

If the hours are less than 10, display the hours with one digit. The minutes

should always appear with two digits. For example:

No. Input Output

1 0.02 12.02 am

2 11.58 11.58 am

3 12.32 12.32 pm

4 13.29 1.29 pm

5 22.17 10.17 pm

The selected assignment first appeared on March 11, 2014, on the day of the

examination, and then it has been continuously available for the last seven years.

In our article, we examine these seven years until March 11, 2021. During the

examined period, we received 65 submissions resulting in compile error. Those

are omitted from subsequent analyses because our system cannot run tests on

those, so the actual number of submissions in the sample examined is 1 322.

1 https://progcont.hu/progcont/100029/?pid=200502

P. Biró et al. A New Method to Increase Feedback for Programming Tasks During Automatic Evaluation

 – 106 –

The possible responses of the ProgCont system after the automatic evaluation are

the following:

Compile error (E-Cmp): The submission is syntactically wrong. We are unable

to execute the submitted program, so we cannot evaluate test cases on it.

Runtime error (E-Run): The execution of the program has failed, e.g., it is

terminated with an error message.

Time limit exceeded (E-Tme): The execution of the program has been

terminated forcibly after exceeding the given time limit.

Wrong answer (E-Res): The submission returns with incorrect output for the

test case.

Presentation error (E-Pre): The submission returns with incorrect output for

the test case, but the expected result differs in whitespace characters only.

Accepted (Pass): The submission returns with the correct output for the test

case.

When a submission contains no compile (or syntactical) errors, then the system

continues the examination with the help of at least one but usually more test cases.

The evaluation result can be different for each test case; the final response

depends on the errors’ priority. The priority order of the response codes from

highest to lowest are: E-Run, E-Tme, E-Res, E-Pre, and Pass.

3 Results

3.1 Findings from Original Test Cases

Initially, there were two test cases for the task. One of them was a short sample

that also appears in the description of the task. The second test case contained all

possible inputs, consisting of a total of 1 440 lines, each representing one task.

Times appeared unordered in the test file. We have analysed similar problems in

many ways before. Some important aspects are the comparison by source

language and comparing different user groups’ performance, which is impossible

for this problem [3], [4], [8], [9]. Figure 1 shows what we can determine from the

evaluation results of the submissions and the test cases. 30% of the submitted

solutions completed the problem. The proportion of successfully passed tests is

higher (37%). The reason for this difference is the fact that 13% of the

submissions worked correctly only in one of the two test cases. Since the second

test case contained all possible inputs, it is not difficult to guess that these

programs failed on this second test case.

Acta Polytechnica Hungarica Vol. 19, No. 9, 2022

 – 107 –

Figure 1

Distribution of evaluation results and partial solutions

From the point of view of our study, the partially correct solutions (or partial

solutions for short) are the most interesting because in these cases, we could say

more about the circumstances in which they are successful than those in which

they are not. In this case, we can only talk about 167 partial solutions, which is

only 13% of the solutions, according to Figure 1.

3.2 First Experiment

In the first experiment, we create new test cases for this problem and annotate

them according to their different characteristics. In addition to the original two test

cases, we prepared further 9 test cases. Evaluating the submissions with the new

test cases, the number of correct solutions decreased, and the number of partial

solutions increased (56%), which we summarised in Figure 2.

In the case of partial solutions (56%), we see a chance for the student to improve

their existing program successfully. Without annotations, they have to perform the

debugging process alone and create example inputs that bring out the program’s

error. With annotations, this process can be significantly simplified by comparing

passed and failed test cases.

Table 1

Error distribution of 9 test cases

Test Lines Hours Minutes Pass E-Res E-Pre E-Tme E-Run

3 none — — 1 065 66 3 150 38

4 more 1–11 10–59 785 251 61 182 43

5 more 1–11 0–9 499 559 39 182 43

6 more 12 10–59 670 383 44 182 43

7 more 12 0–9 427 649 21 182 43

8 more 13–23 10–59 808 230 59 182 43

9 more 13–23 0–9 494 561 40 182 45

10 more 0 10–59 751 307 44 178 42

11 more 0 0–9 513 579 26 161 43

P. Biró et al. A New Method to Increase Feedback for Programming Tasks During Automatic Evaluation

 – 108 –

Figure 2

Distribution of partial solutions

Figure 3

Error distribution of 9 test cases

Acta Polytechnica Hungarica Vol. 19, No. 9, 2022

 – 109 –

The different features can be described in two categories; first, usually task-

independent annotations:

empty input = true: the test case consists of an empty input file

input type = text: in the test case, text input must be processed

line length = max 10: the length of the input lines is up to 10 characters

lines = none: the test case does not contain any tasks

lines = more: the test case contains more than one task

The second and third annotations characterise all test cases of this problem due to

the input specification. For some problems, empty input = true and

lines = none may often differ. Test cases that include zero tasks may be

nonempty files because they may record the number of tasks or contain some kind

of end-of-input symbol.

Task-specific annotations:

hour = 0: the test case contains only tasks in which each time has an hour

value of 0; i.e., the correct output is 12.MM am

hour = 1-11: the test case contains only tasks in which each time has an hour

value of 1–11; i.e., the correct output is 1-11.MM am

hour = 12: the test case contains only tasks in which each time has an hour

value of 12; i.e., the correct output is 12.MM pm

hour = 13-23: the test case contains only tasks in which each time has an

hour value of 13–23, i.e., the correct output is 1-11.MM pm

minute = 10-59: the test case contains only tasks in which the minute has

two digits

minute = 0-9: the test case contains only tasks in which the minute has one

digit; therefore, the correct output starts with an initial 0

We can examine the results in two ways: per test case and per annotation.

Figure 3 and Table 1 show the number of errors per test case.

Initially, the ProgCont system only told us whether the output was correct or not,

but later the submitter was enabled to check the correctness of their solution on a

case-by-case basis. Table 1 and Figure 3 show that the number of successful

solutions is small for test cases 5, 7, 9, and 11; a common feature of these test

cases is that we have annotated them with minute = 0-9.

Using the annotations, we can group the test cases; this grouping indicates the

above relationship in a much more direct way, as we can see in Table 2, Figure 4,

and Figure 5.

P. Biró et al. A New Method to Increase Feedback for Programming Tasks During Automatic Evaluation

 – 110 –

The first five lines of Table 2 show a grouping by global annotations, and the rest

show problem-specific annotations. We used one test case that contained no tasks;

it appears as an empty input. For the selected problem, empty input = true

and lines = none belong to this test case. For each syntactically correct

solution, we evaluated this test case once. Most of the submitted programs (81%)

worked correctly on the empty input (Figure 4). All other test files contain more

than one task, so they all are annotated with lines = more. The annotation

lines = one can highlight test cases that contain only a single task.

Table 2

Error distribution of 9 test cases by annotations

Annotation Value Count Pass E-Res E-Pre E-Tme E-Run

empty input true 1 322 1 065 66 3 150 38

input type text 11 898 6 012 3 585 337 1 581 383

line length max 10 10 576 4 947 3 519 334 1 431 345

lines more 10 576 4 947 3 519 334 1 431 345

lines none 1 322 1 065 66 3 150 38

hour 0 2 644 1 264 886 70 339 85

hour 1–11 2 644 1 284 810 100 364 86

hour 12 2 644 1 097 1 032 65 364 86

hour 13–23 2 644 1 302 791 99 364 88

minute 10–59 5 288 3 014 1 171 208 724 171

minute 0–9 5 288 1 933 2 348 126 707 174

Figure 4

Error distribution of 9 test cases by global annotations

Acta Polytechnica Hungarica Vol. 19, No. 9, 2022

 – 111 –

Figure 5

Error distribution of 9 test cases by problem-specific annotations

All nine new (annotated) test cases had to contain text input for this problem, so

for all 1 322 syntactically correct submissions, 9 test cases had the annotation

input type = text (we ran the submitted programs a total of 11 898 times).

The last six lines of Table 2 show problem-specific annotations. It is clear from

the table and the corresponding diagram (Figure 5) that the test cases with the

annotation minute = 0-9 are the least successful among the submitted

solutions (37%); as for the hour, hour = 12 is what causes difficulty (41%).

Presentation error (E-Pre) and runtime error (E-Run) are not typical at all

among the submissions (4-5%). 14% of the submissions cause time limit exceeded

error (E-Tme) in at least one of the test cases. 13% of those fail on all test cases

for the same reason. The 1% E-Tme is due to the fact that several people read the

input up to 0.0. If there is one such line in the input, the program stops with an

erroneous result; otherwise, we get an infinite loop, which leads to an E-Tme

error message. In another 13%, incorrect reads result in an infinite loop for each

input (Figure 5).

Table 3

Submission verdict distribution by annotations

Annotation Value Pass E-Res E-Pre E-Tme E-Run None

empty input true 1 065 66 3 150 38 0

input type text 305 60 0 147 35 775

line length max 10 305 149 14 161 41 652

lines more 305 149 14 161 41 652

lines none 1 065 66 3 150 38 0

hour 0 483 274 21 161 41 342

P. Biró et al. A New Method to Increase Feedback for Programming Tasks During Automatic Evaluation

 – 112 –

hour 1–11 473 225 35 182 43 364

hour 12 407 363 21 182 43 306

hour 13–23 476 208 33 182 43 380

minute 10–59 542 172 30 178 42 358

minute 0–9 317 484 14 161 41 305

Figure 6 and Figure 7 show the ratio of accepted and rejected submissions based

on the given annotation. Of course, the classification of some submissions can be

uncertain because they can have different evaluation results on test cases with the

same annotation. E.g., some tests classified with a particular annotation can pass,

while others cannot. For example:

‒ There exists only one test case with the empty input = true and

lines = none annotations, so each solution can be classified

certainly. We used all the other global annotations on all of the remaining

eight new test cases, and based on these, hardly half of the submitted

solutions can be classified (Figure 6).

‒ In the case of minute = 0-9, we can see that 53% of the submissions

clearly cannot handle the one-digit minute on input, so they are incorrect;

this is the most common problem found in the submissions (Figure 7).

Global annotations are less informative than problem-specific annotations.

Figure 6

Error distribution of solutions by global annotations

Acta Polytechnica Hungarica Vol. 19, No. 9, 2022

 – 113 –

Figure 7

Error distribution of tests by problem-specific annotations

3.3 Second Experiment

In the first experiment, we tried to collect the cases we considered problematic

and made test cases annotated accordingly. We grouped the times in the input into

four categories by hours. In the second experiment, we discarded this preliminary

suggestion and tentatively generated separate test cases for each of the 24 hours,

yielding a total of 49 test cases (empty input and 24 hours with one- and two-digit

minute values). We can see from the results, summarised in Table 4, that the hours

previously classified with the same annotation behave very similarly. E.g., the

difference between hour = 1 and hour = 2 is minimal.

In addition to the new test cases, the minute = 0-9 and minute = 10-15

annotations have 24–24 test cases. Figure 8 shows the weak correlation (0.59) of

the test cases belonging to these two categories.

Table 4

Error distribution of 49 test cases by annotations

Annotation Value Count Pass E-Res E-Pre E-Tme E-Run

empty input true 1 322 1 066 65 3 150 38

input type text 64 778 32 831 18 623 2 346 8 861 2 117

line length max 10 63 456 31 765 18 558 2 343 8 711 2 079

lines more 63 456 31 765 1 8558 2 343 8 711 2 079

lines none 1 322 1 066 65 3 150 38

hour 0 2 644 1 276 876 70 339 83

hour 1 2 644 1 329 761 104 364 86

hour 2 2 644 1 336 752 104 364 88

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝

P. Biró et al. A New Method to Increase Feedback for Programming Tasks During Automatic Evaluation

 – 114 –

hour 11 2 644 1 366 739 89 364 86

hour 12 2 644 1 105 1 024 65 364 86

hour 13 2 644 1 334 762 98 364 86

hour 14 2 644 1 344 744 104 364 88

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝

hour 23 2 644 1 356 743 95 364 86

minute 10–59 31 728 19 567 5 328 1 439 4 364 1 030

minute 0–9 31 728 12 198 13 230 904 4 347 1 049

Figure 8

Passed test cases with annotation on minutes

As the number of successfully passed tests in test cases where the minute consists

of a single digit increases, the number of successfully passed test cases where the

minute contains two digits does not increase. The second experiment did not yield

a new result; it merely confirmed that the original annotations were defined well.

In this case, it is not advisable to stick to the version with more test cases, because

it results in a longer evaluation time without additional information.

Conclusions

Our article presented a new method that helps students and educators alike in

solving programming problems. The selected example demonstrates the

functionality of the method. Merely by creating several test cases, the ratio of

partial solutions increased from 13% to 56%. The created nine new test cases

check well-separable subproblems. The annotations associated with them help

identify the subproblems that partial solutions cannot solve correctly. In self-

preparation, it gives students feedback that makes it easier for them to delineate

and correct the error without asking the instructor for help. Educators can also

keep track of which subproblems are the biggest challenge for students, helping

them implement differentiated education.

Acta Polytechnica Hungarica Vol. 19, No. 9, 2022

 – 115 –

Acknowledgement

This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-

00002. The project was supported by the European Union, co-financed by the

European Social Fund.

References

[1] S. D. Benford, K. E. Burke, and E. Foxley, “A system to teach

programming in a quality controlled environment,” The Software Quality

Journal, Vol. 2, pp. 177-197, 1993

[2] W. Bin, “Programming Contest Control System(PC2) Application in

Teaching,” Journal of Changzhou Vocational College of Information

Technology, 2005

[3] P. Biró and T. Kádek, “Automatic evaluation of programming tasks at the

University of Debrecen,” in INTED2020 Proceedings, 2-4 March, 2020

2020, pp. 3522-3527, DOI:10.21125/inted.2020.0994

[4] I. Falus, Introduction to the methodology of pedagogical research

(Bevezetés a pedagógiai kutatás módszereibe) Budapest: Műszaki Kiadó,

2004

[5] G. Horváth, G. Horváth, L. Zsakó, “The Bíró and the Mester – the role of

online assessment in programming education. (A Bíró és a Mester – az

online értékelés szerepe a programozás oktatásában),” in: Károly K,

Homonnay Z (eds) Mérési és értékelési módszerek az oktatásban és a

pedagógusképzésben, ELTE Eötvös Kiadó, 2017

[6] D. Jackson and M. Usher, “Grading student programs using ASSYST,” in

Proceedings of the twenty-eighth SIGCSE technical symposium on

Computer science education, 1997, pp. 335-339

[7] D.W. Juedes, “Experiences in Web-based grading”, 33rd Annual Frontiers

in Education, IEEE, 2003, Vol. 3, pp. S3F: 27-32

[8] T. Kádek and P. Biró, “The ProgCont API: innovative evaluation of

solutions to programming assignments. (A ProgCont API: programozási

feladatok megoldásainak újszerű kiértékelése),” in ENELKO SzámOkt

2019, 2019, pp. 191-195

[9] T. Kádek and P. Biró, “Effects of distance education on the ProgCont

system. (A távolléti oktatás hatásai a ProgCont rendszerre.),” in ENELKO

SzámOkt 2020, 2020, pp. 104-109

[10] J. P. Leal and F. Silva, “Mooshak: a Web-based multi-site programming

contest system,” Software: Practice and Experience, Vol. 33, No. 6, pp.

567-581, 2003

P. Biró et al. A New Method to Increase Feedback for Programming Tasks During Automatic Evaluation

 – 116 –

[11] A. K. Mandal, C. Mandal, and C. Reade, “A System for Automatic

Evaluation of Programs for Correctness and Performance,” in Web

Information Systems and Technologies, 2007, pp. 367-380

[12] S. Manzoor, “Analyzing programming contest statistics,” Perspectives on

Computer Science Competitions for (High School) Students, Vol. 48, 2006

[13] P. Biró and T. Kádek, “The Mathability of Computer Problem Solving with

ProgCont,” Acta Polytechnica Hungarica, Vol. 19, No. 1, pp. 77-91, 2022,

DOI:10.12700/APH.19.1.2022.19.6

[14] M. Rubio-Sánchez, P. Kinnunen, C. Pareja-Flores, and Á. Velázquez-

Iturbide, “Student perception and usage of an automated programming

assessment tool,” Computers in Human Behavior, Vol. 31, pp. 453-460,

2014

[15] R. Tóth, M. Kósa, T. Kádek, and J. Pánovics, “The development of

evaluation systems at the Faculty of Informatics, University of Debrecen,”

in INTED2019 Proceedings, 2019, pp. 5552-5559

[16] E. Verdú, L. M. Regueras, M. J. Verdú, J. P. Leal, J. P. de Castro, and R.

Queirós, “A distributed system for learning programming on-line,”

Computers & Education, Vol. 58, No. 1, pp. 1-10, 2012

[17] S. Wasik, M. Antczak, J. Badura, A. Laskowski, and T. Sternal, “A Survey

on Online Judge Systems and Their Applications,” ACM Comput. Surv.,

Vol. 51, No. 1, Jan. 2018

[18] I. M. Wirawan, A. R. Taufani, I. D. Wahyono, and I. Fadlika, “Online

judging system for programming contest using UM framework,” in 2017 4th

International Conference on Information Technology, Computer, and

Electrical Engineering (ICITACEE) 2017, pp. 230-234

