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Abstract: The paper investigates the mathematical, dynamic nonlinear model, of a single 
Pneumatic Artificial Muscle (PAM). A Fluid muscle from FESTO, is connected vertically as 
an oscillating non-linear system with 1 degree of freedom. When the muscle is filled with a 
working medium - compressed air, there is a change in the pressure over time and muscle 
parameters (change in length, diameter, fiber braiding angle, mass position, etc.).  
The simulation of the position of mass is the goal of the research described in this article.  
A mathematical model of the system, considers the change in the spring stiffness and the 
damping factor. At the same time, the model considers the effect of time pressure changes, 
on system oscillation. The article provides a few examples, which help specify the positioning 
model (also identifying values of individual coefficients of quantities occurring in the model). 

Keywords: pneumatic artificial muscle (PAM); nonlinear dynamic model; oscillator; 
positioning; mathematical model 

1 Introduction 
For robots and manipulators, it is necessary to note several attributes, that should 
be ensured, for proper functioning: manipulation, automation, programmability, 
universality, feedback, and others. The importance of the individual properties 
results from their use. Properties are influenced by the elements, such as design, 
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actuators, sensors, and control [1]. In addition to conventional types of robotic 
actuators (e.g., electric or hydraulic), many researchers have also focused on 
unconventional types, e.g., pneumatic artificial muscle (see. [2-6]). It is a device 
that consists of two layers and endings, whose task is to generate tensile force after 
filling the muscle with the working media. Around 1930, the first researcher of the 
Pneumatic Artificial Muscle (Garasiev) focused mainly on constructing the muscle. 
His muscle, however, encountered the problem of inadequate material technology, 
whereby the fibers were unable to produce sufficient elasticity. At present, the most 
typical representative of this type of actuator - McKibben's artificial muscle, is 
characterized by softness, flexibility, easy maintenance, and possible use in 
demanding operating conditions, which can be a significant benefit also for 
industrial applications. Due to the friction between fibers themselves or between the 
fibers and tube, its behavior is nonlinear and hysteretic. This deficiency was 
addressed by FESTO [7], which combined the inner and outer layers in one, thereby 
prolonging the lifetime of the muscle compared to other muscles and improving its 
performance. Although the manufacturer has eliminated some undesirable 
properties, it is still necessary to consider the occurring hysteresis and nonlinearity 
of the characteristics that make the identification process more difficult. 

Identification allows analyzing relationships and processes within the system and 
creates a model representing this system. Proper positioning of PAM-powered 
systems is also subject to the process of modeling pneumatic artificial muscles, 
which is the subject of the research described not only in this article but also by 
other researchers in the field. Studies by experts in PAM include, e.g., studies of the 
mechanical properties of PAM described in [8]. These are experimental models 
describing the mechanics of the behavior of PAM, where the experiment is 
performed at three different muscle sizes and different loads. Another study 
describes progress in PAM research [9]. The authors summarized an overview of 
artificial muscles, artificial muscle division, application of artificial muscles, but at 
the same time described a study of the control of the artificial muscle algorithm 
(similar as in the introduction of reference [10]). 

Some approaches are currently known for modeling pneumatic artificial muscles. 
E.g., in [11] is an overview of the commonly used techniques to modeling 
pneumatic artificial muscles. The most used approach to modeling is experimental. 
It was used, e.g., in [8, 12-16]. In [17] is experimentally characterize the behavior 
of McKibben's muscles. The model can predict muscle displacement and force 
parameters under static conditions. Comparing the measured data with the model 
showed the model's ability to predict static characteristics. Similarly, [18] 
describing a 2-muscle FESTO test device. Authors also describe methods used to 
determine muscle characteristics under static conditions (isobaric, isometric, and 
isotonic). The measured data from the experimental device were used for the 
analytical determination of equations of characteristics, which were subsequently 
used for the simulation of characteristics. An experimental modeling approach is 
not always practical. In that case, is chosen the analytical method of finding the 
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solution (especially searching for the analytical model based on the measured 
values). In [19] is an analytical static model based on Newton mechanics, 
comparing the model results with the measured data. One of the latest publications 
in analytical modeling of systems powered by PAMs is [20]. It describes a nonlinear 
numerical approximation of non-linear static characteristics of the McKibben PAM 
(namely the dependence of force on deformation and pressure), the output of which 
are four mutually compared functions. Models and publications that describe the 
system's dynamics are more time-consuming in terms of research and preparation. 
The reason is perhaps the occurrence of non-linear characteristics and the higher 
number of elements in the system. This fact complains about the process of 
identifying the model under dynamic conditions. However, [21] describes a 
dynamic model for a system with 2 degrees of freedom, where the nonlinearity of 
the force-dependent on muscle pressure and deformation is investigated. The force 
parameter was obtained analytically, followed by experimental testing. [22] 
describes the creation of dynamic models whose role is to accurately predict the 
dynamic behavior of muscles. The dynamic model is simulated using the Matlab, 
and the pressure, contraction, and muscle temperature are tested experimentally. 
The most recent article describing a 1 degree of freedom system, to derive a motion 
equation from studying resonant conditions is [23]. This paper derives a nonlinear 
motion control equation concerning muscle strength as a function of pressure (both 
static and time-variable). 

The monitoring of hysteresis and nonlinearity of the characteristics of pneumatic 
artificial muscles plays an essential role in achieving the highest possible level of 
system identification and, consequently, control. E.g., in [24] is described motion 
control of manipulator that have 2 degrees of freedom. The manipulator is parallel 
and uses 3 PAMs. Because the authors realize the relationship between muscle 
pressure and contraction rate, they included a hysteresis characteristic in their 
research. Therefore, they tried to design a control system with integrated hysteresis 
compensation. Ref. [25] describes the dependence of friction by speed, the 
dependence of coefficient friction by pressure, and hysteresis itself. Also, [26] 
describes a static force model for a hysteresis loop in a force-contraction curve, and 
it has also been experimentally verified. Modeling and hysteresis compensation is 
also research in [27], where a generalized Bouc-Wen model is applied for dynamic 
modeling of hysteresis. Finally, in the literature [28], the authors present new 
equations for modeling the length of contraction using the sigmoid shape of the 
characteristics. 

There is an enormous amount of applied research where pneumatic artificial 
muscles are integrated into the purpose-built device. Their application is diverse 
(from industry in the medical field of prostheses to applications in everyday life). 
E.g., authors in [29] describe the application of flexible fluidic actuators to grippers 
or arms. Another applied research is the project, which in [30] presents the design 
and construction of an electro-pneumatic parallel manipulator with 3 degrees of 
freedom allows to pick up objects in recycled waste facilities. The last applied 
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research is active bridge vibration control, which is stretched by pneumatic artificial 
muscles [31]. The task of the researchers was first to derive a discrete analytical 
model, which was subsequently verified by non-feedback experiments. Then, based 
on the model, a feedback control model was designed. 

The research described in the article aims to use a nonlinear dynamic model in 
simulations of position control of the pneumatic artificial muscle. The model can 
respond to spring stiffness and damping factor changes depending on the muscle 
contraction (eliminating muscle mass oscillations). A fluidic muscle DMSP-20-400 
N with the length of 400 mm and diameter of 20 mm was therefore chosen for the 
experiments. The individual parts of the article contain the process of derivation of 
the mathematical model of the system, which considers the change in muscle 
stiffness and contraction-dependent damping, is described. Finally, the research 
results are presented on examples of the muscle reaching a specific state at selected 
coefficients that influence the resulting oscillation. 

2 Nonlinear Dynamic Model of the Pneumatic 
Artificial Muscle 

Suppose the pneumatic artificial muscle is connected so that one end is firmly 
attached and a load with a certain weight m is placed at the other end. In that case, 
if the muscle is filled with a working medium, a contraction will occur, and the load 
will be pulled upwards. The muscle thus has one degree of freedom. The pneumatic 
artificial muscle can accordingly be modeled as an oscillator. The vibration model 
is shown in Figure 1 (m is mass of the load, x is displacement, g is the acceleration 
of gravity, c is coefficient of damping, k is stiffness, and Fspring is contractile force 
developed by PAM). 

 
Figure 1 

Oscillator formed by a pneumatic artificial muscle and one degree of freedom 

In the spring-mass system, where damping is also present, vibrations occur due to 
a non-linear force, and at the same time, a gravitational force is present in a 
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vertically downward direction. Its vibration can be described by the following 
second-order differential equation: 

𝑚𝑚�̈�𝑥 = 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑚𝑚𝑚𝑚 − 𝑐𝑐�̇�𝑥 (1) 

2.1. Contractile Force Fspring 
The dimension of the contractile force produced in PAM depends on the parameters 
of the muscle, namely: the material from which the inner and outer muscle layers 
are made; geometric parameters of the fibers of these layers; and the pressure of the 
working medium in the muscle – the applied pressure of the air. 

The contractile force is closely related to an important muscle property - 
contraction. Muscle contraction is the relative displacement with initial length l0 of 
PAM and length l when the muscle is contracted. The equation for calculating 
muscle contraction is shown in Figure 2, which also indicates muscle parameters. 
While the muscle contraction is changing the length of the muscle, the angle of the 
muscle braid also changes from α0 to α and the diameter of the muscle from do to d. 

 
Figure 2 

Contraction of pneumatic artificial muscle and its parameters 

According to [21], Fspring contractile force can be described by an equation 
containing six unknown constants (a1, a2, a3, a4, a5, and a6) as follows: 

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝, 𝜅𝜅) = (𝑎𝑎1 ⋅ 𝑝𝑝 + 𝑎𝑎2) ⋅ exp𝑎𝑎3⋅𝜅𝜅 + 𝑎𝑎4 ⋅ 𝜅𝜅 ⋅ 𝑝𝑝 + 𝑎𝑎5 ⋅ 𝑝𝑝 + 𝑎𝑎6 (2) 

Where p is the gauge (applied), pressure and 𝜅𝜅 is a contraction. 

It has to be noted that the damping coefficient depends on displacement for this 
reason, (1) can be rewritten into the following form: 

𝑚𝑚�̈�𝑥 = 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝜅𝜅(𝑥𝑥)� − 𝑚𝑚𝑚𝑚 − 𝑐𝑐(𝜅𝜅(𝑥𝑥))�̇�𝑥 (3) 
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The damping coefficient represents a nonlinear function of the displacement x. 
Therefore, to get values of c(κ(x)), it is needed to know the hysteresis based on 
force-contraction curves. Hysteresis occurs due to friction which occurs when a 
muscle contracts between individual muscle layers, layer fibers, or when muscle 
ends and layers touch. 

2.2. Hysteresis of Force-Contraction Curves on Constant 
Pressures 

In Figure 3, the scheme of the testbed for pressure, force, and position measuring is 
shown that consists of the following sensors and regulators: Motorola MPX5999D 
pressure sensor, LINIMIK MSA 320 incremental encoder, Kaliber 7923 load cell, 
and Festo VPPM-6L-L-1-G1/8-0L6H-V1N-S1C1 proportional pressure regulator 
(PPR). Acquisition and monitoring of measured data are developed in LabVIEW. 

 
Figure 3 

Experimental stand for measuring pressure, force, and position 

Fluidic muscle type DMSP-20-400N is built into the rig. One of the ends of the 
muscle is fixed while the other is movable. The free end is connected to an 
incremental encoder (with a resolution of 0.01 mm) by a spindle. The list of 
technical parameters of fluidic muscle used in research is in the following table: 

Table 1 
List of technical parameters of DMSP 20-400N Festo fluidic muscle 

Parameter Value 
Inside diameter 20 mm 
Nominal length 400 mm 

Maximal lifting force 1 500 N 
Maximal operating pressure 600 kPa 

Maximal permissible contraction 25 % of nominal length 
Maximal permissible pretensioning 4 % of nominal length 

Ideal temperature of the environment from -5 °C to 60 °C 
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Firstly, the force-contraction function for various compressions is measured.  
The applied pressure is kept at a constant value while the screw spindle changes the 
length of PAM. Measuring at every point is repeated five times and statistically 
averaged. The hysteresis loop in the force-contraction curve is obtained when the 
procedure in the opposite direction is repeated. Approaching of experimentally 
measured hysteresis curves by Equation (2) is demonstrated in Figure 4. The figure 
shows that the function of static force and contraction depends on pressure.  
The maximum static force is reached by increasing the length of PAM. The zero-
force is achieved at the minimum length of the muscle, i.e. at its maximum 
contraction. The muscle length is expressed in the figure in three basic positions. 
Nominal length - at zero muscle contraction. Minimal length - at maximum muscle 
contraction. Total length - presented as a negative contraction on the graph. Muscles 
from FESTO are made of durable but also flexible materials, which allow the 
muscle to have parameters such as Maximal permissible pretensioning and 
Maximal permissible contraction (it is possible to observe pre-tensioning in the 
muscle, based on which the contraction appears to be negative in the graph). 

 
Figure 4 

Hysteresis of force-contraction curves on constant pressures (measured and calculated by equation (2)) 

Figure 4 graphically presents the presence of hysteresis in the investigated system 
(PAM); therefore, it is necessary to optimize the branches of hysteresis based on 
Equation 2 (optimization of individual constants of Equation 2). Tables 2 and 3 
contain results of optimization concerning the upper and lower branches of 
hysteresis. For upper branch R2 = 0.9995 (R = 0.9997) as well as for the lower one 
R2 = 0.9991 (R = 0.9995) accuracy are obtained. 

Table 2 
Parameters a1, a2, a3, a4, a5, and a6 of (2) for an upper branch of the hysteresis curve 

Parameters a1 a2 a3 a4 a5 a6 
Values -4.35573 281.22370 -0.32866 -9.27035 302.20107 -263.69185 
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Table 3 
Parameters a1, a2, a3, a4, a5, and a6 of (2) for a lower branch of the hysteresis curve 

Parameters a1 a2 a3 a4 a5 a6 
Values 3.65565 232.27984 -0.37855 -8.95540 290.68164 -277.50222 

2.3. Damping Coefficient 
The difference between one hysteresis surface (U0 defines the area below the upper 
branch) and the other hysteresis surface (U1 defines the area below the lower 
branch) is called the hysteresis surface ∆U (∆U = U0-U1). If the hysteresis surface 
∆U and the surface under the upper branch U0 are added, this ratio gives Lehr's 
damping coefficient. However, Lehr's damping coefficient can also be expressed as 
the ratio of the damping coefficient and the critical damping coefficient. 

Based on the above, Lehr's damping coefficient can be written as 

𝜁𝜁 = ΔU
𝑈𝑈0

=  c
𝑐𝑐𝑐𝑐𝑐𝑐

 (4) 

Subsequently, the critical damping coefficient ccr can be given as 

𝑐𝑐cr = 2 ⋅ √𝑘𝑘 ⋅ 𝑚𝑚 (5) 

Where the stiffness k for constant pressure can be derived from (2) as: 

𝑘𝑘 = 𝑘𝑘(𝜅𝜅) = dF(𝑙𝑙)
dl

= dF(𝜅𝜅)
𝑙𝑙0⋅dκ

= 1
𝑙𝑙0
⋅ dF(𝜅𝜅)

dκ
= 1

𝑙𝑙0
⋅
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠,𝜅𝜅)

dκ
=  

= 1
𝑙𝑙0
∙ 𝑑𝑑�(𝑎𝑎1⋅𝑠𝑠+𝑎𝑎2)⋅exp𝑎𝑎3⋅𝜅𝜅+𝑎𝑎4⋅𝜅𝜅⋅𝑠𝑠+𝑎𝑎5⋅𝑠𝑠+𝑎𝑎6�

dκ
= (𝑎𝑎1⋅𝑠𝑠+𝑎𝑎2)⋅𝑎𝑎3⋅exp𝑎𝑎3⋅𝜅𝜅+𝑎𝑎4⋅𝑠𝑠

𝑙𝑙0
 (6) 

The damping coefficient c can be given as 

𝑐𝑐 = 𝜁𝜁 ⋅ 𝑐𝑐cr = 𝜁𝜁 ⋅ 2 ⋅ √𝑘𝑘 ⋅ 𝑚𝑚 = 𝜁𝜁 ⋅ 2 ⋅ �
𝑚𝑚
𝑙𝑙0
⋅ [(𝑎𝑎1 ⋅ 𝑝𝑝 + 𝑎𝑎2) ⋅ 𝑎𝑎3 ⋅ exp𝑎𝑎3⋅𝜅𝜅 + 𝑎𝑎4 ⋅ 𝑝𝑝] (7) 

2.4. Dynamic Properties of PAM 
Based on Figure 1 and (1), moving a load with a mass of 42 kg for a displacement 
of 72.0 mm at a pressure of 500 kPa, acceleration, velocity, displacement, and Fspring 
force as a function of time for the 1-DOF oscillatory system (described in Figure 1) 
can be seen in Figures 5-8. The functions were determined and created in Simulink. 
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Figure 5 

The acceleration-time function of the one-degree-of-freedom oscillatory system (pressure of 500 kPa, 
load of 42 kg, and displacement of 72.0 mm) 

 
Figure 6 

The velocity-time function of the one-degree-of-freedom oscillatory system (pressure of 500 kPa, load 
of 42 kg, and displacement of 72.0 mm) 

 
Figure 7 

The displacement-time function of the one-degree-of-freedom oscillatory system (pressure of 500 kPa, 
load of 42 kg, and displacement of 72.0 mm) 
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Figure 8 

Fspring force-time function of the one-degree-of-freedom oscillatory system (pressure of 500 kPa, load 
of 42 kg, and displacement of 72.0 mm) 

3 Nonlinear Dynamic Model of the Pneumatic 
Artificial Muscle Excited by Time-Varying 
Pressure 

In the previous chapter of the article, Equation 3 was considered with respect to 
constant pressure. However, in case of taking into consideration the effect of 
variable pressure, the motion Equation (3) of the oscillating system in an upright 
position can be written down in the modified form: 

𝑚𝑚�̈�𝑥 − 𝐹𝐹spring[𝜅𝜅(𝑥𝑥), p(𝑡𝑡)] + 𝑐𝑐[𝜅𝜅(𝑥𝑥), p(𝑡𝑡)]�̇�𝑥 + mg = 0     or… 

𝑚𝑚�̈�𝑥 − 𝐹𝐹spring[𝜅𝜅(𝑥𝑥), p((𝑥𝑥(𝑡𝑡))] + 𝑐𝑐[𝜅𝜅(𝑥𝑥), p(𝑥𝑥(𝑡𝑡))]�̇�𝑥 + mg = 0 (8) 

The second-order nonlinear differential Equation (8) can be solved solely in a 
numerical way. Applied algorithms to the initial value problem in MS Excel can be 
seen in Table 4 below. 

Table 4 
Applied algorithms in MS Excel for solving a differential equation 

𝒕𝒕 �̈�𝒙(�̇�𝒙,𝒙𝒙) �̇�𝒙 𝒙𝒙 
𝑡𝑡𝑜𝑜 �̈�𝑥𝑜𝑜(�̇�𝑥𝑜𝑜, 𝑥𝑥𝑜𝑜) �̇�𝑥𝑜𝑜 𝑥𝑥𝑜𝑜 
𝑡𝑡1 �̈�𝑥1(�̇�𝑥1, 𝑥𝑥1) �̇�𝑥1 = �̇�𝑥𝑜𝑜 + �̈�𝑥𝑜𝑜(𝑡𝑡1 − 𝑡𝑡𝑜𝑜) 𝑥𝑥1 = 𝑥𝑥𝑜𝑜 + �̇�𝑥1(𝑡𝑡1 − 𝑡𝑡𝑜𝑜) 
𝑡𝑡2 �̈�𝑥2(�̇�𝑥2, 𝑥𝑥2) �̇�𝑥2 = �̇�𝑥1 + �̈�𝑥1(𝑡𝑡2 − 𝑡𝑡1) 𝑥𝑥2 = 𝑥𝑥1 + �̇�𝑥2(𝑡𝑡2 − 𝑡𝑡1) 
𝑡𝑡3 …. …. …. 
𝑡𝑡4 …. …. …. 
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For example, there is a task to lift a mass m = 50 kg and keep its position on a level 
of 50 mm by applying a pneumatic artificial muscle. Then, at a pressure of 160 kPa, 
the motion in the vertical direction starts. According to Figure 9, the pressure in 
PAM has changed uniformly from 160 kPa to 400 kPa. Therefore, needed times in 
the investigated versions are 0 s, 0.1 s, 0.2 s, 0.3 s, and 0.4 s, respectively. 

 

Figure 9 
p(t) diagrams of PAM in case of different intensity of pressure ratio 

In Figure 10, x(t), diagrams of PAM can be seen. In each case, the mass reaches the 
level of 50 mm (accurate value: 49.54 mm). To achieve an expected precise position 
within 0.01 mm, pressure control is needed. Seeing Figure 10, it has to be noticed 
that there is a relationship between the intensity of pressure ratio and amplitudes of 
oscillating mass. 

In figure 11, Fspring(t) diagrams of PAM in the case of different intensity of pressure 
ratio can be seen. After damping of oscillation, the spring force in PAM equals the 
weight of the mass (accurate value: 490.5 N). It is important to notice that by 
increasing the interval of increase of pressure – similarly to change of amplitudes - 
the change of spring force in PAM decreases significantly. 

 

Figure 10 
x(t) diagrams of PAM in case of different intensity of pressure ratio 
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Figure 11 
Fspring(t) diagrams of PAM in case of different intensity of pressure ratio 

4 Simulation of the PAM Dynamics Using the 
Nonlinear Dynamic Model 

Mathematic model (8) of PAM is suitable for positioning by pressure control: initial 
pressure po is adjustable arbitrarily (proposed interval: 0-600 kPa). The change of 
pressure is controlled by the difference of actual and demanded the position of mass: 

𝑝𝑝𝑠𝑠+1 = 𝑝𝑝𝑠𝑠 + 𝑏𝑏(𝑥𝑥𝑑𝑑𝑑𝑑𝑚𝑚 − 𝑥𝑥) (9) 

In Equation (9), pn and pn+1 are pressures in PAM after nth, respectively n+1-th time 
step, b is the intensity factor of pressure ratio, xdem is the demanded position. Finally, 
x is the actual position of the mass point after nth time step. 

3.1. First Task 
From position x= 0 mm to lift 10 kg mass by PAM to the demanded level of 40 mm. 
The initial pressure is po= 105 Pa; the value intensity factor of pressure ratio is 
b=0.01. In Figure 12-13, the pressure in PAM and the mass position in the function 
of time can be seen in a time interval of 0 to 6 seconds. 
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Figure 12 

Pressure in PAM in the function of time, position changes from 0 mm to 40 mm 

 
Figure 13 

Position of mass in the function of time, position changes from 0 mm to 40 mm 

3.2. Second Task 
The mass point starts from position x= 40 mm. Its demanded level of 30 mm (Figure 
14-15). Initial pressure po=1.678 x 100 kPa is needed to keep it at the initial position. 
The value of the intensity factor of pressure ratio is b=0.012. 

 
Figure 14 

Pressure in PAM in the function of time, position changes from 40 mm to 30 mm 
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Figure 15 

Position of mass in the function of time, position changes from 40 mm to 30 mm 

3.3. Third Task 
Finally, 25 kg mass starts from position x=0 mm. Its demanded level of 50 mm 
(Figure 16-17). Initial pressure po=2 x 100 kPa. The value of the intensity factor of 
pressure ratio is b=0.005. 

 
Figure 16 

Pressure in PAM in the function of time, position changes from 0 mm to 50 mm 

 
Figure 17 

Position of mass in the function of time, position changes from 0 mm to 50 mm 
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3.4. Subsequent Tasks 
To investigate the accuracy of this method, let us study further examples: the 
pressure to keep 10 kg mass at the level of 50 mm exactly is 1.91768913274509 x 
100 kPa. The initial pressure is a little bit lower: po=1.91768913274 x 100 kPa 
(Figure 18). For this reason, the mass point starts downward and, after damping 
oscillation - as a result of pressure control - stops precisely at the demanded level 
of 50 mm. The initial and final positions are the same. The temporary disorder is 
caused by intentionally modified initial pressure. 

 
Figure 18 

Pressure in PAM in the function of time, initial and final positions are 50 mm 

 
Figure 19 

Position of mass in the function of time, initial and final positions are 50 mm 

The role of b intensity factor of pressure ratio is quite important. Its determination 
happens empirically in the example above b=0.01. If it is modified to 0.005, 
diagrams are also limited as a result (Figure 20-21). The pressure increase is slower, 
and the final position is slightly under the one demanded.  
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Figure 20 

Pressure in PAM in the function of time, the intensity factor of pressure ratio b=0.01 

 
Figure 21 

Position of mass in the function of time, the intensity factor of pressure ratio b=0.01 

Forms of curves are significantly different when the intensity factor of pressure ratio 
is b=0.02. In this case, the stimulating effect of pressure changes is stronger than 
the internal damping action of PAM. Because the pressure change is controlled by 
the position change of the mass point, it is excited on the natural frequency. Despite 
damping, the result is similar to phenomena of resonance, but in this case, the 
amplitude is getting bigger and bigger, exceeding the usual linear connection 
(Figure 22-23). 
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Figure 22 

Pressure in PAM in the function of time, the intensity factor of pressure ratio b=0.02 

 
Figure 23 

Position of mass in the function of time, the intensity factor of pressure ratio b=0.02 

There is a border between the two cases mentioned above when the intensity factor 
of pressure ratio is b=0.01585. Therefore, the task is to lift a mass m=10 kg from 
level 49 mm and keep its position on the level of 50 mm. In this case, the amplitudes 
of excited-damped oscillation in the function of time are the same. The initial 
pressure po=1.91768732075 x 100 kPa is needed to keep the mass point at the level 
of 50 mm (Figure 24-25). 
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Figure 24 
Pressure in PAM in the function of time, the intensity factor of pressure ratio b=0.01585 

 
Figure 25 

Position of mass in the function of time, the intensity factor of pressure ratio b=0.01585 

Conclusions 

The presented mathematical model of the vertically mounted nonlinear oscillating 
system (Figure 1), consisting of mass and excited by in time-variable pressure 
elastic pneumatic artificial muscle, can take into consideration the change of spring 
stiffness and damping factor, in the function of contraction, as well as the effect on 
the oscillation of in time-variable pressure. The value of the pressure and the 
intensity of its change, significantly affects the dynamic behavior of the weakly 
damped oscillating system. This mathematical model is suitable for precise and 
quick positioning, without oscillating different mass points using pressure control. 
During the pressure control, the following quantities are considered: Position 
difference of mass points between actual and those demanded, velocity, acceleration 
and jerk of the mass. 
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