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Abstract: Parameter identification methods available in the literature are based on 

complex and time-consuming experiments, such as dynamic-mechanical-thermal-analysis 

(DMTA), stress relaxation tests, etc. To the authors’ best knowledge there is no method in 

the literature which would be able to identify large-strain viscoelastic parameters of 

generalized Maxwell-model from simple constant strain rate tensile tests. In this paper, the 

authors present a new method which is based on two tensile tests performed at different 

strain rates. Firstly, a series of experiments (tensile tests, stress relaxation tests) is carried 

out on standard isoprene rubber specimens and then analytical calculations as well as 

finite element simulations on the basis of identified material parameters are performed. 

These computations prove the applicability of the method. Although the proposed method is 

presented for uniaxial tension, it is fully applicable to other load types, such as biaxial 

tension, simple shear, and planar shear. Additionally, it can be generalized for other 

spring-dashpot models. 

Keywords: viscoelasticity; parameter identification; tensile test; rubber; finite element 

analysis 

1 Introduction 

In general usage, the term elastomer means a group of polymers characterized by 

large deformability, time-dependent (viscoelastic) behaviour and considerable 

changes in material behaviour by temperature. Further properties of elastomers 

include a stress-strain curve demonstrating strongly strain-rate dependent non-

linear characteristics and incompressibility, making it really difficult for engineers 

to determine the dimensions of structural components made of them. In spite of 

innumerable problems, many structural components made of elastomers are 

applied in the automobile industry, as the special capabilities of this class of 
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materials can be exploited extremely well. Elastomers are obviously predominant 

in vehicle tires, seals of mechanical equipment, door sealings or windscreen 

wipers. 

The complex mechanical behaviour of elastomers can be traced back to three 

clearly discernible effects which appear together in real rubber applications. These 

include non-linear behaviour in the case of large strains; finite viscoelastic 

behaviour; and softening, coupled with the rearrangement of molecule chains in 

the material (Mullins effect). 

Over the last 50 years, numerous hyperelastic models have been developed to 

model the behaviour of rubber-like materials. Some of these material laws 

describe the non-linear characteristic of stress–strain curve using invariants of the 

Cauchy-Green’s tensor, while other approaches apply more complex models 

based on molecular structure. Both approaches apply constants depending on 

material type and test conditions [1, 2]. 

In addition to taking non-linear behaviour into consideration, it is also possible to 

consider the dependence on the excitation frequency or strain rate. In many cases, 

the so-called Standard-Solid model – or its extended version, the generalized 

Maxwell-model – is used for modeling the time-dependent behaviour of rubber-

like materials. 

The latter describes stress relaxation not only qualitatively but also quantitatively 

and is available as a built in material model in most commercial finite element 

(FE) software packages (MSC. Marc, Abaqus, Ansys, etc). In most cases the 

viscoelastic material behaviour is characterized by dynamic-mechanical-thermal 

analysis (DMTA), or stress relaxation tests using the time-temperature 

superposition principle. However, it must be mentioned that torsional rheometry is 

also widely used for the characterization of plastics. In [3], DMTA tests are 

performed in order to identify the viscoelastic material parameters of a generalized 

Maxwell model. To characterize the strain dependency of the material, DMTA 

tests carried out at different strain levels can be used as presented in [4]. [5, 6] 

show examples for the application of generalized Maxwell-model in FE contact 

simulations. Viscoelastic properties of the rheological model were determined by 

DMTA measurements in both cases. The parameters of the rheological model can 

also be determined by stress relaxation tests, as presented in [7 and 8]. Finally, [9] 

shows how the viscoelastic properties of different spring-dashpot models can be 

determined by experiments with torsional rheometer. 

In addition to the above, rubber behaviour is characterized by considerable 

softening as a consequence of repeated loading. During the loading cycles, 

disordered polymer chains in the material become partly ordered, thus reducing 

the force required for their deformation. Chain arrangement occurs 

characteristically under the first few load cycles; further important changes cannot 

be detected afterwards. 
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Linear viscoelasticity is properly described in the literature. However, the question 

arises of how to take into consideration the large strain, non-linear and time-

dependent behaviour of the material simultaneously. Whilst this field of material 

science is extremely important for engineers dealing with the design of rubber 

components, it is very difficult to find application-oriented studies where the 

theory is described in an easy to understand manner. 

In this paper, the authors present a new, tensile test-based parameter identification 

method for large-strain generalized Maxwell-model. Parameters are identified on 

the basis of two tensile tests of different strain rates and tested by FE and 

analytical calculations. The advantage of the proposed method is discussed in 

comparison with the results of a stress relaxation-based parameter identification 

technique. 

2 Experimental Background 

In order to test the methods examined, uniaxial tensile tests and stress relaxation 

tests were performed on a standard (ISO 527-3:1996) specimen cut out of an 

isoprene rubber (IR) plate. Tests were performed at the laboratory of the 

Department of Polymer Engineering at Budapest University of Technology and 

Economics (BME), on a Zwick Z005 type tensile tester. Table 1 shows the main 

parameters of the material tested. 

Table 1 

Main parameters of the tested Isoprene rubber 

Elastomer 

base 

Density 

[g/cm3] 

Shore A 

hardness 

Temperature 

range [oC] 

Min. tensile 

strength [MPa] 

Min. elongation at 

brake [%] 

IR 1.5 60 -30 - +60 4 180 

The specimen had a nominal length of l0 = 60 mm, width of a0 = 8 mm and 

thickness of b0 = 10 mm. The standard deviation of specimen dimensions did not 

exceed 5% of the nominal dimensions. 

In order to examine the Mullins effect, the fixed specimen was loaded at a speed 

of 100 mm/min at four consecutive times until 100% strain level. Engineering 

stress (σ
m
)-strain (ε

m
) curves were calculated from measured force (F) - elongation 

(Δl) data using Eqs. (1) and (2). Figure 1 shows the engineering stress-strain 

curves. 
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Figure 1 

Softening of rubber specimens in the course of four consecutive loadings 

The measurement results properly illustrate the so-called Mullins effect 

consequent upon the arrangement of polymer chains in filled rubbers. After the 

first loading, there is a significant change in the characteristic and the values of the 

curves, while the change after the third loading does not exceed 1%. 

In addition to cyclic constant strain rate tensile tests, measurements were 

performed to examine the impact of strain rate on the stress-strain curve. During 

the test, specimens were loaded at a constant speed up to 100% strain level. Figure 

2 shows the engineering stress-strain curves derived from the measured force-

elongation curves by Eq. (1) and (2) at speeds of 1000, 500, 100 and 10 mm/min, 

corresponding to the strain rate of 0.27, 0.138, 0.027 and 0.00277 1/s, 

respectively. 

There are differences in the values of the curves of identical features: tension at 

higher strain rate causes higher stress values at the same strain level. Despite the 

two orders of magnitude change in the strain rate, the stress difference at 

ε = 100 % strain is approximately 9%. 

 

Figure 2 

Engineering stress-strain curves of tensile tests at different strain rates 
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(a) 

 

(b) 

Figure 3 

(a) Engineering stress-time and (b) stress-strain curves of relaxation measurements at different strain 

levels up to t = 200 s 

In order to study the time-dependent behaviour of isoprene rubber, stress 

relaxation tests were performed on specimens, similar to the ones applied for 

tensile tests. During the tests, after setting the 60 mm fixing length, the specimens 

were loaded to 5, 10, 20, 40, 60, 80 and 100% strain levels at a speed of v = 1000 

mm/min (0.27 1/s strain rate), and stress relaxation was measured for t = 200 s. 

Figure 3a shows the measured relaxation curves. 

As can be seen, relaxation slowed down by t = 100 s at all strain levels. At t = 200 

s, the differences between the maximum and relaxed values of the curves specified 

at each strain level are 28.68%, 26.39%, 24.61%, 23.46%, 22.99%, 22.77% and 

22.64%, respectively. 

Figure 3b shows the engineering stress-strain curves corresponding to the 

relaxation tests. The upload phases of relaxation tests can be considered as tensile 

tests of v = 1000 mm/min (similar to Figure 2). Furthermore, the figure specifies 

the relaxed stress values at each strain level after t = 200 s (see the broken line). 
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This broken curve can be considered as the relaxed tensile characteristic of the 

material. 

As can be seen, the stress-strain curve of the 10 mm/min tensile test is very far 

from the relaxed state. 

2 Analytical and Numerical Implementation of Finite 

Viscoelasticity 

In engineering calculations, the behaviour of rubber is often considered to be 

independent of time, since calculations can be highly simplified this way. The 

theory of linear viscoelasticity can be applied if the material has considerable 

hysteresis at small strains. The theory of linear viscoelasticity is not appropriate 

for taking hyperelastic behaviour into consideration because, in this case, the 

stress-strain curve is not linear any longer. The theory of linear viscoelasticity was 

generalized by Simo in order to describe the mechanical behaviour of finite 

viscoelastic materials. 

The II. Piola-Kirchoff stress (in the total Lagrange approach) by taking both strain 

and time dependence into account, is defined according to Eq. (3) [2] 




 
n

1i
i

GLGL )t(T)(S)t,(S

 (3) 

where S(ε
GL

,t) is the II. Piola-Kirchoff stress depends on time and Green-Lagrange 

strain; S
∞
(ε

GL
) is the II. Piola-Kirchoff stress in the relaxed state; while Ti(t) is an 

external variable specifying the time-dependence of the material with reference to 

term i of an n-term viscoelastic spring-dashpot model (see below). As can be 

observed, the first part of Eq. (3) describes the strain while the second part 

describes the time dependence. Dependence of the material model on strain will 

be taken into consideration in later chapters by the so-called Signiorini 

hyperelastic material model [1, 2]. 

  2
120201110 )3)(I(c)3)(I(c)3)(I(cW 

 (4) 

where W(ε) is the specific strain energy density; c10, c01, and c20 are material 

constants; I1 and I2 are the first and second invariants of the Cauchy-Green strain 

tensor. 

One of the most frequently applied spring-dashpot models demonstrating 

viscoelastic behaviour is the so-called Standard-Solid model, consisting of a linear 

spring parallel to the Maxwell element. The latter consists of a linear spring and a 

viscous element connected in series. A generalized Maxwell-model can be created 

by several Maxwell elements connected in parallel (see Figure 4), which -
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similarly to the Standard-Solid model – can be used for modeling elastic and 

delayed elastic deformation components of rubbers. In applications where not only 

a qualitative but also a quantitative analysis is requested, a large number of 

Maxwell terms must be used (in many cases more than 20, see [5]). 

 

Figure 4 

n-term generalized Maxwell-model 

The relaxation modulus of the generalized Maxwell-model can be specified 

according to Eq. (5) 

i

tn

r 0 i

i 0

E (t) E E 1 e





 
    

 
 

  (5) 

where Er(t) is the elastic modulus of the material at a given moment of relaxation; 

E0 is the glassy modulus of the material; Ei and τi are the i-th modulus and 

relaxation time of the n-term generalized Maxwell-model. In practice, the i-th 

modulus of the generalized Maxwell-model is specified, instead of the Ei value, by 

an ei dimensionless energy parameter. 
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Similarly to the theory of linear viscoelasticity, the external variable T i(t) in 

Eq. (3) can be expressed in the form of a convolution integral as specified in Eq. 

(7). 






 de)t(Se)t(T i

)Tt(
t

0

0
ii



, (7) 

where )(0 tS  is the time derivative of II. Piola-Kirchoff stress corresponding to the 

glassy state (see later). 

Hereafter, the forms of Eq. (3) and (7) suitable for engineering calculations are 

specified with reference to a constant strain rate uniaxial tensile test. As a 

consequence of the convolution integral, calculations are performed incrementally 
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at Δt time intervals. The II. Piola-Kirchoff stress corresponding to the relaxed state 

is defined according to Eq. (8). 














 




n

1i
iGL

GL0
GL e1

)(W
)(S

, (8) 

which, being expanded by the Signiorini material law can be seen in Eq. (9) and 

(10) for the relaxed and glassy states. 

n
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By substituting the values of ε
GL

 in Eq. (9) and (10) by Eq. (11), the equations can 

be made dependent on t (v denotes the speed of tension). 

 
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 
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The t dependent expression S
0
(t) can be used for specifying the external variable 

Ti(t) in the form of Eq. (12). 

  )tt(T)tt(S)t(Se)t(T ii
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
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t

i
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


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The output parameters of the calculation are the Green-Lagrange strain and 

II. Piola-Kirchoff stress pairs. For the sake of comparability with the 

measurements, the stress and strain values were converted into engineering values 

by Eq. (15) and (16). 

112 GLm   (15) 

 1mPKm    (16) 

The calculation scheme can predict the mechanical behaviour of a rubber-like 

material by using any type of hyperelastic material law, if the Cauchy-Green strain 

tensor associated with the dominant type of loading (uniaxial tension, biaxial 

tension, simple shear and planar shear) is known and Eq. (4) can be expressed by 

its invariants. As seen, the above calculation schema works with the instantaneous 

values. Naturally a calculation scheme to be based on relaxation values can also 

be formulated [4, 7]. The resulted characteristics and values will be the same but 

the forms of equations will differ. 
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In the case of complex geometry or stress state, for example the finite element 

method (FEM) can be used to predict the material behaviour. [1, 2, 5]. In the 

MSC. Marc commercial FE software, the input parameters of a visco-hyperelastic 

analysis are constant material parameters defining the strain energy density 

corresponding to the glassy state (cij), as well as dimensionless energy parameters 

(ei) and relaxation times (τi) [2]. In order to take into consideration the 

incompressible nature of elastomers, special elements with Hermann formula can 

be applied. 

3 Parameter Identification Based on Stress 

Relaxation Test 

It is time-consuming and expensive to measure the time dependent behaviour of 

viscoelastic materials; therefore they are primarily used if the target is to describe 

the complex mechanical behaviour of the material in a broad frequency and 

temperature range, for which dynamic mechanical thermal analyzer (DMTA) 

measurements are widely applied. By shifting the isotherms measured by DMTA 

based on the time-temperature superposition, large generalized Maxwell-models 

(number of terms can reach 40) can be produced to cover frequency ranges which 

exceed even 20 orders of magnitude [6]. 

In the majority of problems occurring in engineering practice, viscoelastic models 

of a small number of terms can be used to describe time and frequency dependent 

behaviour with appropriate accuracy. These models represent the dynamic 

behaviour of the material in only a small frequency range; in the literature, it is 

recommended that the parameters be determined primarily by stress relaxation 

tests [2, 10]. 

In the event of stress relaxation, the rubber undergoes a completely elastic 

deformation as a consequence of a theoretically abrupt excitation of expansion. 

Then the strain is kept constant and the rubber becomes delayed elastic with the 

stress decreasing from the initial maximum value, thus undergoing stress 

relaxation. In real tests, abrupt excitation of expansion is not possible: the loading 

phase is realized with a finite speed, so the relaxation partly takes place before the 

strain becomes constant. As a result, the maximum stress will not be identical with 

the maximum stress of the material with no relaxation in the loading phase. 

The majority of FE softwares (Msc. Marc, Abaqus, Ansys) have built-in 

algorithms to fit the parameters of a characteristically 10-term generalized 

Maxwell-model to the relaxation test data. The curve fitting algorithm of Msc. 

Marc performs this fitting to a shear modulus vs. time curve derived from the 

measurement. In this case, Eq. (5) contains the shear modulus of the material 

instead of its tensile modulus. In order to determine the shear modulus, the force-

time curve yielded by the measurement must be converted into an engineering 
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stress-time curve by using Eq. (2) (see Figure 3a). The momentary or relaxation 

modulus of the material (Er) can be calculated by dividing the measured 

engineering stress values by the strain ε0 applied in the relaxation measurements. 

The shear modulus can be calculated on the basis of the relaxation modulus curve 

by 

3)1(2

EE
G 






 (17) 

where ν is the Poisson ratio of the material (in the case of incompressibility 

ν=0.5). In the course of fitting, the value of the glassy (or instantaneous) shear 

modulus G0 is also produced. Obviously, this is not identical with the real glassy 

modulus of the material because the loading phase was realized with a finite strain 

rate in the stress relaxation measurement. The traditional approach presented so 

far is only suitable for producing the parameters of a generalized Maxwell-model 

corresponding to small strain viscoelasticity, due to the fact that the dependence of 

G0 on strain is not taken into account. In order to introduce it, [2] proposes to 

substitute the value of E0 by a two parameter Mooney-Rivlin hyperelastic material 

law. The parameters can be estimated by using Eq. (18) and (19). 

  0 10 01E 6 c c     (18) 

01

10

c 1

c 4


  

 (19) 

In the manner described, the parameters of viscoelastic model were produced on 

the basis of stress relaxation measured at strain level of 5, 60 and 100% (see 

Figure 3a). The parameters are shown in Table 2. 

Table 2 

Parameters specified on the basis of stress relaxation 

 Strain level [%] 

 5  60  100  

e1 [-] 0.0625 0.122 0.1176 

e2 [-] 0.1289 0.0755 0.0870 

e3 [-] 0.1076 0.0425 0.0309 

τ1 [s] 0.1124 10.007 10.3299 

τ2 [s] 11.0958 78.1938 83.7698 

τ3 [s] 99.6630 123.54 137.777 

E0 [MPa] 3.8804 1.36624 1.5461 

Using these parameters, the FE method was applied for calculating the stress-

strain and stress-time curves at a speed of 1000 mm/min. The material constants 

of the two parameter Mooney-Rivlin material law applied in the calculation were 

computed from the value of E0 specified in Table 2, using Eqs. (18) and (19). The 

FE model used is shown in Figure 5. 
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Figure 5 

FE model and deformed shape of a standard specimen at 60 % strain 

The model consists of 10400 linear hexahedron elements. The coefficient of 

friction between the rigid and meshed parts was μ = 2 in order to avoid slippage. 

The rigid surfaces shown in Figure 5 approach each other according to the arrows 

indicated during the first 20 s of the calculation, in a way that the initial thickness 

(b0 = 10 mm) of the model is reduced to 6 mm. The next 300 s is a static phase of 

relaxation, followed by the motion of rigid surface in direction x, according to 

Figure 5. The speed of the motion was constant up to a prescribed strain value. 

The stress relaxation occurs by keeping the rigid surfaces in a fixed position. 

Similarly to the measurements, force and elongation values were collected from 

the calculation and converted into stress-strain and stress-time curves. Figures 6a 

and 6b show the results calculated for the phases of loading and relaxation, 

respectively. The calculations in Figure 6 are based on the viscoelastic parameters 

given in Table 2 and the Mooney-Rivlin parameters (c01, c10) computed from the 

glassy modulus (Eo) by Eqs. 18-19. 

 

(a) 
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(b) 

Figure 6 

Measured and calculated (a) stress-strain and (b) stress-time curves of the stress relaxation 

measurement 

In order to quantify the differences between the curves, a so-called standard error 

is applied. In the case of an n number of x and y sampling values, the error can be 

calculated as 

 




n

1i

2
ii )yx(

n

1

.  (20) 

The behaviour measured is overestimated by the material law derived from stress 

relaxation at a strain of 5% – the standard error being 0.294 MPa – while it is 

significantly underestimated by those derived from relaxation at strain of 60% and 

100 % with a standard error of 0.637 MPa and 0.560 MPa, respectively. One of 

the reasons for this is that at ε = 5%, the material had much less time to relax than 

at ε = 60 or 100%, so the E0 glassy modulus value determined here approximates 

the real value better. This difference is also affected by the ratio specified in Eq. 

(19), which is a constant value independent of the material composition and test 

conditions. The characteristics of the curves calculated also considerably differ 

from the characteristics measured since the two parameter Mooney-Rivlin 

material law cannot provide a stress-strain curve having an inflexion point, which 

is typical with rubbers over a certain strain level. As indicated by the standard 

errors between the curves defined, the method proposed by [2] can be used for 

modeling the behaviour of rubbers primarily in the range of small strains, since in 

this case the stress relaxation occurring in the course of loading causes a smaller 

problem. Similarly, the difference between the behavior of the two-parameter 

Mooney-Rivlin material law and the real rubber is smaller at small strains than at 

large ones. 

In order to partially solve the problems of the material laws derived from the 

relaxation test, the authors propose to apply a multi-parameter – e.g. the Signiorini 

hyperelastic – material model to be determined from the stress-strain curves of 

tensile tests. According to this, the free parameters of the hyperelastic model were 
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determined from tensile tests conducted at different speeds (see Figure 2) by using 

the curve fitting algorithm of MSC. Marc. Table 3 shows the fitted parameters and 

their ratios. 

Table 3 

Model parameters obtained from curve fitting 

 
min

10
mm

v 
 

min
100

mm
v 

 

min
500

mm
v 

 

min
1000

mm
v 

 

c01[MPa] 1.2665 1.289 1.2835 1.3317 

c10[MPa] -0.6382 -0.6697 -0.6905 -0.6774 

c20[MPa] 0.1104 0.109 0.1099 0.1172 

c01/ c10 [-] -1.9845 -1.9247 -1.8588 -1.9659 

c10/ c20 [-] -5.7808 -6.1440 -6.2830 -5.7799 

The ratios of parameters derived from separate tensile tests indicate small standard 

deviation; therefore, as a good approximation, they can be considered as identical 

regardless of the strain rate. Hereafter, the ratios of the 1000 mm/min tensile test 

will be used in the calculations. 

As a first step, the parameters of the hyperelastic material model were recalculated 

by using the parameter ratios (see last column in Table 3) and the glassy modulus 

(E0 = 3.88 MPa from Table 2.) determined. To do this Eq. (4) was differentiated 

twice with respect to ε, yielding the E(ε) function. Substituting the value ε = 0 will 

produce the expression to describe the connection of E0 and the constant material 

parameters as shown in Eq. (21). 

)cc(6E 01100   (21) 

 

(a) 
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(b) 

Figure 7 

Comparison of measured and calculated (a) stress-strain and (b) stress-time curves 

As can be seen, Eq. (21) corresponds to Eq. (18) proposed by [2] for the two-

parameter Mooney-Rivlin material law. Based on the parameter ratios and Eq. 

(21), the recalculated material parameter values are c01 = 1.3163 MPa, 

c10 =  0.6696 MPa, and c20 = 0.1158 MPa, respectively. Figure 7a shows the 

measured and calculated (by using the recalculated parameters) loading phases of 

relaxation tests at ε = 100%. 

As can be observed, the material law produced is capable of approximating the 

values measured much better than the calculation method proposed by [2]. In this 

case, the standard error of the loading phase is 0.0629 MPa, which is on an order 

of magnitude smaller than the former value. Figure 7b shows the measured and 

calculated relaxation phases of the relaxation test at 5%, 60% and 100% strain. 

In all the cases, the calculations underestimate the measurements, which is a 

consequence of the lower glassy modulus (E0) value resulting from the relaxation 

test. The glassy modulus coming from stress relaxation measurement is smaller to 

the real value due to the stress relaxation during the loading phase. In the case of 

relaxation, the standard error between the calculation and the measurement is 

0.01945 MPa, 0.0466 MPa, and 0.07519 MPa, respectively. 

4 Parameter Identification from Simple Tensile Tests 

The previous chapter showed the possibility of producing the parameters of a 

material law representing real mechanical behaviour through a stress relaxation 

test of small strain performed at the highest strain rate possible. However, the 

parameters can be obtained without a relaxation test, simply from two tensile tests 

of different speeds [11]. An advantage of this method is that the required material 

parameters, which are able to describe the mechanical behavior of the material in 
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a limited frequency and time range important in practice, can be produced with a 

minimum amount of tests. 

The method is based on the recognition that the tensile tests with different strain 

rates result in different stress values at the same level of strain due to stress 

relaxation (Figure 2). From these differences the parameters of the spring-dashpot 

model (e.g. generalized Maxwell-model) can be identified. Figure 8 shows the 

block diagram of the method. 

As seen, we need to calculate the first partial derivatives of the stress-strain curves 

of tensile tests measured at two different strain rates. This yields the elastic 

modulus-strain curves (EI(ε) and EII(ε)). Then the ratio of EI(ε) and EII(ε) values is 

calculated at different strains (Em(ε)). As a next step, the expression derived from 

Eq. (5) for the generalized Maxwell-model (Em
fitted

(ε)) is fitted to the Em(ε) values 

obtained by substituting the time parameter t with an expression including the 

length of the specimen, the tension speed and the strain (similarly to Eq. (11)). 

The fitting itself can be performed with the method of least squares for models 

with a smaller number of terms or by genetic algorithm in the case of a higher 

number of terms. It is also possible to apply one of the increasingly-used 

optimization methods, e.g. the differential evolution (DE) algorithm detailed in 

[12]. 

The parameters of a 3-term generalized Maxwell-model were determined by the 

built in genetic algorithm of Matlab [13], using the 1000 mm/min and 10 mm/min 

measurement results of isoprene rubber. Table 4 shows the identified parameters. 

Table 4 

Identified parameters 

 ei [-] τi [s] 

term 1 0.0756 0.101 

term 2 0.0615 8.120 

term 3 0.2039 91.891 

Based on the analysis of the fitted parameters, it can be stated that the relaxation 

times correspond, with good approximation, to the relaxation times specified on 

the basis of the stress relaxation test at ε = 5%, but the sum of dimensionless 

energy parameters is Σei = 0.299 according to the relaxation measurement, while 

Σei = 0.341 on the basis of tensile tests. 

If the viscoelastic parameters are known, then the glassy modulus can be 

determined from the equations presented in Figure 8. Contrary to the linear 

viscoelastic materials, where the glassy modulus has no strain dependency in the 

case of large strain viscoelasticity, the glassy modulus depends on the strain. 

Figure 9 shows the glassy modulus determined from the 1000 mm/min uniaxial 

tensile test in function of strain. 
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Figure 8 

Block diagram of the tensile test based parameter identification method 

 

 

Figure 9 

Glassy modulus identified by curve fitting in function of strain 
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The glassy modulus curve depicted is not linear and is not defined at ε = 0. Its 

value for the smallest ε is 4.27 MPa, which can be considered as the E0 glassy 

modulus of the material. The identified glassy modulus exceeds the 3.88 MPa 

value of the glassy modulus determined from the stress relaxation test at ε = 5% 

strain. The glassy modulus (E0) and the parameter ratios in Table 3 can be used to 

determine the parameters of the Signiorini material law (c01 = 1.43798 MPa, 

c10 = -0.73146 MPa, and c20 = 0.12655 MPa). 

Figure 10 shows the measured and calculated characteristics of the relaxation tests 

measured at 5%, 60% and 100% strain, using the hyperelastic and viscoelastic 

parameters identified. 

 

Figure 10 

Comparison of simulation and measurement 

As can be seen, the simulation differs slightly from measurement. After the nearly 

identical stress maximum, the calculated relaxation curve does not proceed 

parallel with the measured one, but intersects it at t = 120 s. The relative error 

between the measurement and the calculation is 0.01001 MPa, 0.0164 MPa and 

0.03655 MPa, respectively. 

Figure 11a shows the measured and calculated tensile tests at 1000 mm/min and 

10 mm/min tensile speed. At 10 mm/min the agreement is less good but the 

accuracy is still acceptable. The standard error of the simulation at higher speed is 

0.008442 MPa, and that of the simulation at lower speed is 0.05626 MPa 

compared to the measurements. 

The engineering stress-strain curves of the tensile tests were determined by 

analytical calculations as well, as shown in Figure 11b. The figure also shows the 

states corresponding to the glassy and relaxed state. The relaxed state shown in 

Figure 11b is lower than the one identified by measurement (Figure 3b). This is 

partly due to the fact that stress relaxation tests lasted for 200 s, which does not 

ensure that the final relaxed state is identified. 
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(a) 

 

(b) 

Figure 11 

(a) Calculated tensile tests of various speeds; (b) comparison of the engineering stress-strain curves of 

tensile tests with the calculated characteristics 

Figure 12a shows the stress-strain curve of the measurement at 1000 mm/min, and 

Figure 12b shows that of the measurement at 10 mm/min, together with the results 

of the FE calculation using the material law set up on the basis of tensile tests and 

those of analytical calculations. 

 

(a) 
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(b) 
Figure 12 

Engineering stress-strain curves of the measurements, FE and analytical calculations at (a) 1000 
mm/min and (b) 10 mm/min 

As can be observed, the calculations at the higher speed approximate the results 

measured perfectly; the standard error of the FE calculation is 0.008442 MPa, 

while the error of the analytical calculation is 0.008398 MPa. As compared to the 

10 mm/min measurement, the error of the FE calculation is 0.05626 MPa, while 

the error of the analytic calculation is 0.0672 MPa. The slight difference between 

the analytical and the FE calculations presumably follows from the discretization 

applied in the numerical adaptation of the equations presented in Chapter 2. 

Conclusions 

In the present paper, a new parameter identification method has been presented. 

The proposed method enables the parameters of large strain generalized Maxwell-

model to be determined on the basis of constant strain rate tensile tests. The 

application of the method has been presented for a specimen made of isoprene 

rubber. It has been proved that the method is able to identify large strain 

viscoelastic parameters of Maxwell-model with reasonable accuracy. In the event 

that one has only a standard tensile tester for material characterization, the 

proposed method is especially useful. 

It will be shown in another paper that the proposed method can be used not only in 

the case of uniaxial tension, but also in the case of biaxial tension, simple shear, 

and planar shear. 
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