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Abstract: Performance modeling and prediction of web-based software systems are 

important and complicated considerations. The goal of our paper is to establish proper 

mathematical models in the form of difference equations, by subspace identification, in 

order to model and predict the performance of web-based software systems. First, 

simulation models have been provided to simulate the behavior of thread pool and queued 

requests. Second, analytical models have been proposed in form of state space models 

using subspace identification. In addition, it has been demonstrated that the proposed 

models can be applied to performance prediction of web-based software systems. The 

proposed models have been validated and verified. Furthermore, performance factor 

identification and performance prediction techniques have been proposed based on 

subspace identification. 
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1 Introduction 

Web-based software systems are client-server software applications, in which, 

clients run in web browsers. Because they serve a large number of users, their 

performance and efficiency have become of key importance. Their architecture 

and runtime environment mainly diverge from the previous concepts. Their 

performance modeling and prediction are active research fields. 

Performance evaluation is significant at every stage of the development process. 

There are three main techniques for performance evaluation: analytical modeling, 

simulation, and measurement [1]. 
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Web-based software systems access some resources while executing the requests 

of the clients. Typically, several requests arrive at the same time, thus, a 

competitive situation is established for the resources. For modeling such 

situations, queueing model-based approaches are widely used [1] [2] [3]. 

In our previous work [4] [5] [6], statistical methods have been provided in order to 

identify and investigate novel performance factors as well as queueing network 

models and evaluation algorithms have been proposed to model the identified 

dominant thread pool and queue limit performance factors. 

In this work [7] [8], a different approach is investigated for modeling the behavior 

of thread pool and queued requests, state space models are provided using 

subspace identification, in order to model and predict the performance.  

The paper is organized as follows: Section 2 covers the background and related 

work. Section 3 presents the contribution, namely, simulation models, state space 

models, performance prediction, error analysis, and propositions. Finally, the last 

section reports the conclusions. 

2 Background and Related Work 

This section is devoted to review the background and research efforts related to 

this work, namely, the concept of thread pool and queued requests, the used 

SimEvents Toolbox of MATLAB Simulink, and the applied subspace 

identification method. 

2.1 Concept of Thread Pool and Queued Requests 

In the case of using a thread pool depicted in Fig. 1, when a request arrives, the 

application adds it to an incoming queue [9]. A group of threads retrieves requests 

from this queue and processes them. As each thread is freed, another request is 

executed from the queue. 

The architecture of ASP.NET environment [5] [10] can be seen in Fig. 2. If a 

client is requesting a service from the server, the request goes through several 

subsystems before it is served. From the Internet Information Services (IIS), the 

requests are placed into the named pipe, which is a global queue between IIS and 

ASP.NET, its limit is set by the requestQueueLimit property. From the named 

pipe, the requests are placed into an application queue, which is used to maintain 

the availability of worker and I/O threads, its limit is configured by the 

appRequestQueueLimit property. When the limit is exceeded, the requests are 

rejected. 
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Figure 1 

Thread pool and queued requests 

 
Figure 2 

Architecture of ASP.NET environment 

2.2 MATLAB Simulink SimEvents 

MATLAB Simulink is used for modeling, simulation, and analysis of dynamic 

systems. Simulink is designed for time-based simulation, while SimEvents [11] is 

aimed for event-based simulation. SimEvents extends Simulink behavior with a 

discrete-event simulation model of computation. 

In SimEvents models, during a simulation, entities can pass through a network of 

queues, servers, switches, etc. Entities can carry data as attributes. Events can 

change state variables, outputs, occurrences of other events, for example, an entity 

advances from one block to another, and the service of an entity is completed in a 

server. Entities can wait in a queue; its capacity limits the simultaneous number of 

entities in the queue. Servers can serve entities in service time of given 

distribution; simultaneous number of entities can be finite or infinite. Entities can 

be routed from/to the selected input/output port using input/output switches. 

Multiple paths can be merged into a single path using path combiners. 



Ágnes Bogárdi-Mészöly et al. Performance Modeling of Web-Based Software Systems 
with Subspace Identification 

 – 30 – 

2.3 Subspace Identification 

Definition 1. The state space representation of a deterministic, discrete time, 

linear, time invariant system is defined by the following difference equations: 
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where 
k

x  represents the state vector, 
k

u  is the input vector, and 
k

y is the output 

vector at time k  as well as A is the state matrix, B is the input matrix, C is the 

output matrix, and D is the feedthrough matrix. 

The aim is to determine system matrices A, B, C, D from input-output data by 

subspace identification. The main thoughts of subspace identification algorithm 

are demonstrated as follows [12]. Input and output block Hankel matrices 

(
ii 11

, YU ) are constructed reflecting the history of input-output data. State 

sequence (
i

X ) plays an important role in derivation and interpretation.  
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State and output equations can be written using extended version of controllability 

(
i

Δ ) and observability (
i

Γ ) matrices as well as lower block triangular Toeplitz 

matrix (
i

H ). In geometrical interpretation, output is in the vector space 

determined by the union of state and input row spaces, state sequence can be 

estimated by projection of output row space onto orthogonal complement of input 

row space. Rank can be determined using singular value decomposition. 
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System matrices can be estimated in least squares sense from the following 

equations: 
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Subspace identification has been successfully applied in various application fields, 

also together with queueing models [13]. 

3 Performance Modeling 

The main contribution of this paper is to establish state space models using 

subspace identification method in order to model and predict the performance of 

web-based software systems. Table 1 summarizes the notations used in provided 

models. 

Table 1 

Notations of models 

Notation Input/output Model Meaning 

1
u  Input simulation number of all users 

2
u  Input simulation service time 

3
u  Input simulation number of all dropped requests 

4
u  Input simulation waiting time in queue 

y  Output simulation average response time 

measured
y  Output simulation average response time 

( yy 
measured

) 

model
y  Output state space average response time 

3.1 Simulation Models 

Firstly, for modeling thread pool and queue limit, simulation models (Fig. 3) have 

been provided using SimEvents of MATLAB Simulink in order to simulate the 

thread pool and queued requests behavior as well as to obtain input-output data for 

subspace identification method. Results of other simulation models or 

measurements can also be used as input-output data. 
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Figure 3 

Simulation model 
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SimEvents models have been designed according to the concept of thread pool 

and queued requests (see in Section 2.1) as well as the available SimEvents blocks 

(see in Section 2.2). 

Users (requests) and working threads (resources) have been generated by time- 

and event-based entity generators, combined by entity combiners, split by entity 

splitters. Feedbacks have been realized by path combiners. Response time has 

been monitored using start and read timers. 

Application and global queues and their limits have been represented by queues 

and their capacities. User think time and dropping requests have been modeled as 

infinite server, thread pool as N-server with exponentially distributed think-, drop- 

and service time. Dropping method has been implemented by output switch and 

embedded function of its switching criteria according to appRequestQueueLimit 

and requestQueueLimit properties. 

Simulation models have been provided for a given number of users and increasing 

number of users. Simulation has been performed over time using lower and higher 

queue limits. Simulation results are depicted in Fig. 4. 

In case of a higher queue limit (5000), all requests can be served; there are no 

dropped requests (2nd and 4th rows). In case of a lower queue limit (100), some 

requests are rejected, dropped (1st and 3rd rows). 

For a given number of users (150), the number of users in the system is fixed; the 

average response time tends to a steady value (1st and 2nd rows). For increasing 

number of users (from 0 to around 1700), the number of users is increasing, in 

case of a lower queue limit, the same number of users can be served, increasing 

number of dropped requests causes some slightly increasing overhead in response 

time (3rd row), however, in case of a higher queue limit, all requests can be served, 

response time is increasing linearly (4th row). 

3.2 State Space Models 

Secondly, analytical models in form of state space models using subspace 

identification have been provided examining various input factors and their effects 

to each other. 

For provided simulation models subspace identification method has been applied 

and implemented in MATLAB. We would like to model and predict the 

performance, hence a performance metric has been chosen as output like average 

response time, and various performance factor candidates have been investigated 

as inputs like number of all users (
1

u ), service time (
2

u ), number of all dropped 

requests (
3

u ), waiting time in queue (
4

u ). 
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Figure 4 

Simulation results (left column: 
3

u , right column: y ) 

The relationship between the above mentioned metric and the factor candidates, 

has been modeled by subspace identification (see Fig. 5). In case of input 
2

u  the 

relationship is weak, since the service time is exponentially distributed. In case of 

inputs 
1

u  and 
3

u  the relationship is moderately strong (1st row). In case of input 

4
u  the relationship is extremely strong (bottom right corner). Furthermore, 

combining inputs 
1

u  and 
3

u  – whose individual relationship to output is only 

moderately strong – the relationship between combined inputs 
3,1

u  and output is 

stronger (bottom left corner). 
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Figure 5 

Relationship between input factors and output metric y in case of increasing number of users using 

lower queue limit 

The system matrices of the state space model in case of the strongest relationship, 

namely, in case of input 
4

u  using lower queue limit for increasing number of 

users are shown in Fig. 6. Since in this case the system has only one input and one 

output, B  is a column vector, C  is a row vector, D  is a constant. As the model 

order 4 was chosen reflecting the best setting. 

The detailed results in case of the strongest relationship, namely, in case of input 

4
u  are depicted in Fig. 7 using lower and higher queue limits for a given and 

increasing numbers of users. The relationship is extremely strong in all cases. 

The proposed method has been validated, and its correctness has been verified by 

comparing the results of simulation (
measured

y ) and analytical models (
model

y ) 

depicted in Figs. 5 and 7. 
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A  0.78953 0.27977 0.47337 -0.033463 

 -0.80127 0.34866 0.23873 0.13293 

 0.28777 -0.78382 -0.18142 0.089506 

 -0.39018 0.74561 -1.0258 0.086449 

B  -0.54887    

 0.84371    

 1.4622    

 -2.5302    

C  4.8106 -0.28536 2.2575 -0.25992 

D  0    

Figure 6 

System matrices in case of input factor 
4

u  and output metric y  for increasing number of users using 

lower queue limit 

 

 

 

Figure 7 

Relationship between input factor 
4

u  and output metric y  
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3.3 Performance Prediction 

In addition, it has been demonstrated that the proposed method can be applied to 

performance prediction of web-based software systems. The state space model has 

been determined based on only the first half of the simulated data. For the second 

half it has been predicted by the proposed state space model. 

The results in case of input 
4

u  are depicted in Fig. 8. The relationship is 

extremely strong in all cases. The performance prediction facility has been 

validated and verified, by comparing the results of simulation (
measured

y ) and 

analytical models (
model

y ). The relationship without and with prediction has around 

the same strength comparing the results shown in Figs. 7 and 8. 

 

Figure 8 

Relationship between input factor 
4

u  and output metric y  with prediction 

3.4 Error Analysis 

Error analysis has been performed by examining goodness of fit, firstly using 

lower and higher queue limits for a given and increasing number of users (without 

prediction), secondly comparing the results without and with prediction. 
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The model and measured outputs have been compared by the NRMSE 

(Normalized Root Mean Square Error) fitness value, namely, the goodness of fit. 

Definition 2. The goodness of fit is defined as follows where norm stands for L2 

norm, and the associated notations are in Table 1. 
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The results (without prediction) are presented in Table 2. Recall that for input 
2

u  

the relationship is weak. In case of a higher queue limit, when there are no 

dropped requests, for input 
3

u  the relationship is weak. In case of a lower queue 

limit, when some requests are dropped, for input 
3

u  the relationship is moderately 

strong. For input 
1

u  the relationship is (moderately) strong. For input 
4

u  the 

relationship is extremely strong.  

Furthermore, combining inputs, whose individual relationship to output is only 

moderately strong, the relationship between combined inputs 
3,1

u and output is 

stronger. 

Column “Increasing number of users” ”Queue limit” “100” corresponds to Fig. 5, 

row “
4

u ” to Fig. 7. 

Table 2 

Goodness of fit in percentages for different inputs (without prediction) 

Input 

Increasing number of users Given number of users 

Queue limit 

100 5000 100 5000 

1
u  67.39 95.74 81 80.41 

2
u  - - - - 

3
u  69.87 - 55.79 - 

4
u  96.71 98.16 89.21 92.76 

3,1
u  85.35 95.01 86.4 83.32 

The relationship without and with prediction is extremely strong in all cases, and 

it has around the same strength comparing the results of goodness of fit shown in 

Table 3. Column “Without prediction” corresponds to Fig. 7, while column “With 

prediction” to Fig. 8. 
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Table 3 

Goodness of fit in percentages for input 
4

u  without and with prediction 

 
Without prediction With prediction 

Increasing 

number of users 

Q
u

e
u

e
 l

im
it

 

100 96.71 96.73 

5000 98.16 97.54 

Given number 

of users 

100 89.21 88.35 

5000 92.76 92.72 

3.5 Propositions 

To summarize, we can say that the subspace identification method can be applied 

to performance factor identification and performance prediction. 

Proposition 1. The subspace identification method can be applied to performance 

factor identification. 

It is shown the way in which the subspace identification method can be applied to 

identifying performance factors. The input is one (or more) performance factor 

candidate(s). The output is one (or more) performance metric(s).  

The relationship between the factor candidate and the metric is modeled by 

subspace identification. If the relationship cannot be calculated, in other words, 

weak, then it is not a performance factor. If the relationship can be calculated, the 

goodness of fit in percentages is high, the performance factor candidate influences 

the performance, namely, a novel performance factor is identified.  

The related experimental results are demonstrated in Sections 3.2 and 3.4. 

Proposition 2. The subspace identification method can be used for performance 

prediction. 

It is shown the way in which the subspace identification method can be applied to 

predicting performance. The input is one (or more) identified performance 

factor(s) by Proposition 1. The output is one (or more) performance metric(s). 

The relationship between the factor candidate and the metric is modeled by 

subspace identification. The state space model is determined based on only the 

first part of the measured or simulated data. The other part is predicted by the 

provided state space model.  

The related experimental results are shown in Sections 3.3 and 3.4. 



Ágnes Bogárdi-Mészöly et al. Performance Modeling of Web-Based Software Systems 
with Subspace Identification 

 – 40 – 

Conclusions 

Recently, web-based software systems have proliferated. Their performance 

modeling and prediction are relevant issues. In this work, proper mathematical 

models have been established in form of difference equations by subspace 

identification in order to model and predict their performance. 

First, simulation models have been provided using SimEvents of MATLAB 

Simulink to simulate the thread pool and queued requests behavior of web-based 

software systems as well as to obtain input-output data for subspace identification 

method. Second, analytical models in form of state space models using subspace 

identification have been provided investigating various input factors and their 

effects to each other. In addition, it has been shown that the proposed method can 

be applied to performance prediction of web-based software systems. The 

proposed models have been validated and their correctness has been verified by 

comparing the results of simulation and analytical models, as well as, by error 

analysis. Above all, performance factor identification and performance prediction 

techniques have been proposed based on subspace identification. 
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