
Acta Polytechnica Hungarica Vol. 13, No. 7, 2016

 – 27 –

Performance Modeling of Web-based Software

Systems with Subspace Identification

Ágnes Bogárdi-Mészöly, András Rövid, Shohei Yokoyama

Department of Automation and Applied Informatics, Budapest University of

Technology and Economics, Magyar tudósok krt. 2, 1117 Budapest, Hungary

Institute of Applied Mathematics, Óbuda University, Bécsi út 96/B, 1034

Budapest, Hungary

Department of Computer Science, Shizuoka University, Hamamatsu Campus,

Shizuoka ken, Hamamatsu shi, Naka ku, Jouhoku 3-5-1, 432 8011, Japan

agi@aut.bme.hu, rovid.andras@nik.uni-obuda.hu, yokoyama@inf.shizuoka.ac.jp

Abstract: Performance modeling and prediction of web-based software systems are

important and complicated considerations. The goal of our paper is to establish proper

mathematical models in the form of difference equations, by subspace identification, in

order to model and predict the performance of web-based software systems. First,

simulation models have been provided to simulate the behavior of thread pool and queued

requests. Second, analytical models have been proposed in form of state space models

using subspace identification. In addition, it has been demonstrated that the proposed

models can be applied to performance prediction of web-based software systems. The

proposed models have been validated and verified. Furthermore, performance factor

identification and performance prediction techniques have been proposed based on

subspace identification.

Keywords: web-based software system; subspace identification; performance modeling;

performance factor identification; performance prediction

1 Introduction

Web-based software systems are client-server software applications, in which,

clients run in web browsers. Because they serve a large number of users, their

performance and efficiency have become of key importance. Their architecture

and runtime environment mainly diverge from the previous concepts. Their

performance modeling and prediction are active research fields.

Performance evaluation is significant at every stage of the development process.

There are three main techniques for performance evaluation: analytical modeling,

simulation, and measurement [1].

Ágnes Bogárdi-Mészöly et al. Performance Modeling of Web-Based Software Systems
with Subspace Identification

 – 28 –

Web-based software systems access some resources while executing the requests

of the clients. Typically, several requests arrive at the same time, thus, a

competitive situation is established for the resources. For modeling such

situations, queueing model-based approaches are widely used [1] [2] [3].

In our previous work [4] [5] [6], statistical methods have been provided in order to

identify and investigate novel performance factors as well as queueing network

models and evaluation algorithms have been proposed to model the identified

dominant thread pool and queue limit performance factors.

In this work [7] [8], a different approach is investigated for modeling the behavior

of thread pool and queued requests, state space models are provided using

subspace identification, in order to model and predict the performance.

The paper is organized as follows: Section 2 covers the background and related

work. Section 3 presents the contribution, namely, simulation models, state space

models, performance prediction, error analysis, and propositions. Finally, the last

section reports the conclusions.

2 Background and Related Work

This section is devoted to review the background and research efforts related to

this work, namely, the concept of thread pool and queued requests, the used

SimEvents Toolbox of MATLAB Simulink, and the applied subspace

identification method.

2.1 Concept of Thread Pool and Queued Requests

In the case of using a thread pool depicted in Fig. 1, when a request arrives, the

application adds it to an incoming queue [9]. A group of threads retrieves requests

from this queue and processes them. As each thread is freed, another request is

executed from the queue.

The architecture of ASP.NET environment [5] [10] can be seen in Fig. 2. If a

client is requesting a service from the server, the request goes through several

subsystems before it is served. From the Internet Information Services (IIS), the

requests are placed into the named pipe, which is a global queue between IIS and

ASP.NET, its limit is set by the requestQueueLimit property. From the named

pipe, the requests are placed into an application queue, which is used to maintain

the availability of worker and I/O threads, its limit is configured by the

appRequestQueueLimit property. When the limit is exceeded, the requests are

rejected.

Acta Polytechnica Hungarica Vol. 13, No. 7, 2016

 – 29 –

Figure 1

Thread pool and queued requests

Figure 2

Architecture of ASP.NET environment

2.2 MATLAB Simulink SimEvents

MATLAB Simulink is used for modeling, simulation, and analysis of dynamic

systems. Simulink is designed for time-based simulation, while SimEvents [11] is

aimed for event-based simulation. SimEvents extends Simulink behavior with a

discrete-event simulation model of computation.

In SimEvents models, during a simulation, entities can pass through a network of

queues, servers, switches, etc. Entities can carry data as attributes. Events can

change state variables, outputs, occurrences of other events, for example, an entity

advances from one block to another, and the service of an entity is completed in a

server. Entities can wait in a queue; its capacity limits the simultaneous number of

entities in the queue. Servers can serve entities in service time of given

distribution; simultaneous number of entities can be finite or infinite. Entities can

be routed from/to the selected input/output port using input/output switches.

Multiple paths can be merged into a single path using path combiners.

Ágnes Bogárdi-Mészöly et al. Performance Modeling of Web-Based Software Systems
with Subspace Identification

 – 30 –

2.3 Subspace Identification

Definition 1. The state space representation of a deterministic, discrete time,

linear, time invariant system is defined by the following difference equations:

,+=
kkk+

BuAxx
1

 (1)

,
kkk

+= DuCxy (2)

where
k

x represents the state vector,
k

u is the input vector, and
k

y is the output

vector at time k as well as A is the state matrix, B is the input matrix, C is the

output matrix, and D is the feedthrough matrix.

The aim is to determine system matrices A, B, C, D from input-output data by

subspace identification. The main thoughts of subspace identification algorithm

are demonstrated as follows [12]. Input and output block Hankel matrices

(
ii 11

, YU) are constructed reflecting the history of input-output data. State

sequence (
i

X) plays an important role in derivation and interpretation.



























11

132

21

1

jiii

j

j

i

uuu

uuu

uuu

U









,



























11

132

21

1

jiii

j

j

i

yyy

yyy

yyy

Y









 (3)

 
11 


jiiii

xxxX  (4)

State and output equations can be written using extended version of controllability

(
i

Δ) and observability (
i

Γ) matrices as well as lower block triangular Toeplitz

matrix (
i

H). In geometrical interpretation, output is in the vector space

determined by the union of state and input row spaces, state sequence can be

estimated by projection of output row space onto orthogonal complement of input

row space. Rank can be determined using singular value decomposition.





















1i

i

CA

CA

C

Γ


,  BABBAΔ 1 i

i
 (5)


























DBCABCABCA

DCBCAB

DCB

D

H











432

0

00

000

iii

i
 (6)

Acta Polytechnica Hungarica Vol. 13, No. 7, 2016

 – 31 –

ii

i

i 111
UΔXAX 


,

iiii 111
UHXΓY  (7)

System matrices can be estimated in least squares sense from the following

equations:

























 

i

i

i

i

U

X

DC

BA

Y

X
1

 (8)

Subspace identification has been successfully applied in various application fields,

also together with queueing models [13].

3 Performance Modeling

The main contribution of this paper is to establish state space models using

subspace identification method in order to model and predict the performance of

web-based software systems. Table 1 summarizes the notations used in provided

models.

Table 1

Notations of models

Notation Input/output Model Meaning

1
u Input simulation number of all users

2
u Input simulation service time

3
u Input simulation number of all dropped requests

4
u Input simulation waiting time in queue

y Output simulation average response time

measured
y Output simulation average response time

(yy 
measured

)

model
y Output state space average response time

3.1 Simulation Models

Firstly, for modeling thread pool and queue limit, simulation models (Fig. 3) have

been provided using SimEvents of MATLAB Simulink in order to simulate the

thread pool and queued requests behavior as well as to obtain input-output data for

subspace identification method. Results of other simulation models or

measurements can also be used as input-output data.

Ágnes Bogárdi-Mészöly et al. Performance Modeling of Web-Based Software Systems
with Subspace Identification

 – 32 –

Figure 3

Simulation model

Acta Polytechnica Hungarica Vol. 13, No. 7, 2016

 – 33 –

SimEvents models have been designed according to the concept of thread pool

and queued requests (see in Section 2.1) as well as the available SimEvents blocks

(see in Section 2.2).

Users (requests) and working threads (resources) have been generated by time-

and event-based entity generators, combined by entity combiners, split by entity

splitters. Feedbacks have been realized by path combiners. Response time has

been monitored using start and read timers.

Application and global queues and their limits have been represented by queues

and their capacities. User think time and dropping requests have been modeled as

infinite server, thread pool as N-server with exponentially distributed think-, drop-

and service time. Dropping method has been implemented by output switch and

embedded function of its switching criteria according to appRequestQueueLimit

and requestQueueLimit properties.

Simulation models have been provided for a given number of users and increasing

number of users. Simulation has been performed over time using lower and higher

queue limits. Simulation results are depicted in Fig. 4.

In case of a higher queue limit (5000), all requests can be served; there are no

dropped requests (2nd and 4th rows). In case of a lower queue limit (100), some

requests are rejected, dropped (1st and 3rd rows).

For a given number of users (150), the number of users in the system is fixed; the

average response time tends to a steady value (1st and 2nd rows). For increasing

number of users (from 0 to around 1700), the number of users is increasing, in

case of a lower queue limit, the same number of users can be served, increasing

number of dropped requests causes some slightly increasing overhead in response

time (3rd row), however, in case of a higher queue limit, all requests can be served,

response time is increasing linearly (4th row).

3.2 State Space Models

Secondly, analytical models in form of state space models using subspace

identification have been provided examining various input factors and their effects

to each other.

For provided simulation models subspace identification method has been applied

and implemented in MATLAB. We would like to model and predict the

performance, hence a performance metric has been chosen as output like average

response time, and various performance factor candidates have been investigated

as inputs like number of all users (
1

u), service time (
2

u), number of all dropped

requests (
3

u), waiting time in queue (
4

u).

Ágnes Bogárdi-Mészöly et al. Performance Modeling of Web-Based Software Systems
with Subspace Identification

 – 34 –

Figure 4

Simulation results (left column:
3

u , right column: y)

The relationship between the above mentioned metric and the factor candidates,

has been modeled by subspace identification (see Fig. 5). In case of input
2

u the

relationship is weak, since the service time is exponentially distributed. In case of

inputs
1

u and
3

u the relationship is moderately strong (1st row). In case of input

4
u the relationship is extremely strong (bottom right corner). Furthermore,

combining inputs
1

u and
3

u – whose individual relationship to output is only

moderately strong – the relationship between combined inputs
3,1

u and output is

stronger (bottom left corner).

Acta Polytechnica Hungarica Vol. 13, No. 7, 2016

 – 35 –

Figure 5

Relationship between input factors and output metric y in case of increasing number of users using

lower queue limit

The system matrices of the state space model in case of the strongest relationship,

namely, in case of input
4

u using lower queue limit for increasing number of

users are shown in Fig. 6. Since in this case the system has only one input and one

output, B is a column vector, C is a row vector, D is a constant. As the model

order 4 was chosen reflecting the best setting.

The detailed results in case of the strongest relationship, namely, in case of input

4
u are depicted in Fig. 7 using lower and higher queue limits for a given and

increasing numbers of users. The relationship is extremely strong in all cases.

The proposed method has been validated, and its correctness has been verified by

comparing the results of simulation (
measured

y) and analytical models (
model

y)

depicted in Figs. 5 and 7.

Ágnes Bogárdi-Mészöly et al. Performance Modeling of Web-Based Software Systems
with Subspace Identification

 – 36 –

A 0.78953 0.27977 0.47337 -0.033463

 -0.80127 0.34866 0.23873 0.13293

 0.28777 -0.78382 -0.18142 0.089506

 -0.39018 0.74561 -1.0258 0.086449

B -0.54887

 0.84371

 1.4622

 -2.5302

C 4.8106 -0.28536 2.2575 -0.25992

D 0

Figure 6

System matrices in case of input factor
4

u and output metric y for increasing number of users using

lower queue limit

Figure 7

Relationship between input factor
4

u and output metric y

Acta Polytechnica Hungarica Vol. 13, No. 7, 2016

 – 37 –

3.3 Performance Prediction

In addition, it has been demonstrated that the proposed method can be applied to

performance prediction of web-based software systems. The state space model has

been determined based on only the first half of the simulated data. For the second

half it has been predicted by the proposed state space model.

The results in case of input
4

u are depicted in Fig. 8. The relationship is

extremely strong in all cases. The performance prediction facility has been

validated and verified, by comparing the results of simulation (
measured

y) and

analytical models (
model

y). The relationship without and with prediction has around

the same strength comparing the results shown in Figs. 7 and 8.

Figure 8

Relationship between input factor
4

u and output metric y with prediction

3.4 Error Analysis

Error analysis has been performed by examining goodness of fit, firstly using

lower and higher queue limits for a given and increasing number of users (without

prediction), secondly comparing the results without and with prediction.

Ágnes Bogárdi-Mészöly et al. Performance Modeling of Web-Based Software Systems
with Subspace Identification

 – 38 –

The model and measured outputs have been compared by the NRMSE

(Normalized Root Mean Square Error) fitness value, namely, the goodness of fit.

Definition 2. The goodness of fit is defined as follows where norm stands for L2

norm, and the associated notations are in Table 1.

100
))((

)(
1 mod 



















measuredmeasured

elmeasured

meannorm

norm

yy

yy
 (9)

The results (without prediction) are presented in Table 2. Recall that for input
2

u

the relationship is weak. In case of a higher queue limit, when there are no

dropped requests, for input
3

u the relationship is weak. In case of a lower queue

limit, when some requests are dropped, for input
3

u the relationship is moderately

strong. For input
1

u the relationship is (moderately) strong. For input
4

u the

relationship is extremely strong.

Furthermore, combining inputs, whose individual relationship to output is only

moderately strong, the relationship between combined inputs
3,1

u and output is

stronger.

Column “Increasing number of users” ”Queue limit” “100” corresponds to Fig. 5,

row “
4

u ” to Fig. 7.

Table 2

Goodness of fit in percentages for different inputs (without prediction)

Input

Increasing number of users Given number of users

Queue limit

100 5000 100 5000

1
u 67.39 95.74 81 80.41

2
u - - - -

3
u 69.87 - 55.79 -

4
u 96.71 98.16 89.21 92.76

3,1
u 85.35 95.01 86.4 83.32

The relationship without and with prediction is extremely strong in all cases, and

it has around the same strength comparing the results of goodness of fit shown in

Table 3. Column “Without prediction” corresponds to Fig. 7, while column “With

prediction” to Fig. 8.

Acta Polytechnica Hungarica Vol. 13, No. 7, 2016

 – 39 –

Table 3

Goodness of fit in percentages for input
4

u without and with prediction

Without prediction With prediction

Increasing

number of users

Q
u

e
u

e
 l

im
it

100 96.71 96.73

5000 98.16 97.54

Given number

of users

100 89.21 88.35

5000 92.76 92.72

3.5 Propositions

To summarize, we can say that the subspace identification method can be applied

to performance factor identification and performance prediction.

Proposition 1. The subspace identification method can be applied to performance

factor identification.

It is shown the way in which the subspace identification method can be applied to

identifying performance factors. The input is one (or more) performance factor

candidate(s). The output is one (or more) performance metric(s).

The relationship between the factor candidate and the metric is modeled by

subspace identification. If the relationship cannot be calculated, in other words,

weak, then it is not a performance factor. If the relationship can be calculated, the

goodness of fit in percentages is high, the performance factor candidate influences

the performance, namely, a novel performance factor is identified.

The related experimental results are demonstrated in Sections 3.2 and 3.4.

Proposition 2. The subspace identification method can be used for performance

prediction.

It is shown the way in which the subspace identification method can be applied to

predicting performance. The input is one (or more) identified performance

factor(s) by Proposition 1. The output is one (or more) performance metric(s).

The relationship between the factor candidate and the metric is modeled by

subspace identification. The state space model is determined based on only the

first part of the measured or simulated data. The other part is predicted by the

provided state space model.

The related experimental results are shown in Sections 3.3 and 3.4.

Ágnes Bogárdi-Mészöly et al. Performance Modeling of Web-Based Software Systems
with Subspace Identification

 – 40 –

Conclusions

Recently, web-based software systems have proliferated. Their performance

modeling and prediction are relevant issues. In this work, proper mathematical

models have been established in form of difference equations by subspace

identification in order to model and predict their performance.

First, simulation models have been provided using SimEvents of MATLAB

Simulink to simulate the thread pool and queued requests behavior of web-based

software systems as well as to obtain input-output data for subspace identification

method. Second, analytical models in form of state space models using subspace

identification have been provided investigating various input factors and their

effects to each other. In addition, it has been shown that the proposed method can

be applied to performance prediction of web-based software systems. The

proposed models have been validated and their correctness has been verified by

comparing the results of simulation and analytical models, as well as, by error

analysis. Above all, performance factor identification and performance prediction

techniques have been proposed based on subspace identification.

Acknowledgement

This work is supported by the Japan Society for Promotion of Science

Postdoctoral Fellowship (26・04765).

References

[1] R. Jain: The Art of Computer Systems Performance Analysis, John Wiley

and Sons, 1991

[2] T.G. Robertazzi: Computer Networks and Systems: Queueing Theory and

Performance Evaluation, Springer, Cambridge, 2000

[3] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, A. Tantawi: An

Analytical Model for Multi-tier Internet Services and its Applications,

ACM SIGMETRICS Performance Evaluation Review, 2005, Vol. 33, No.

1, pp. 291-302

[4] Á. Bogárdi-Mészöly, Z. Szitás, T. Levendovszky, H. Charaf: Investigating

Factors Influencing the Response Time in ASP.NET Web Applications,

Lecture Notes in Computer Science, Springer, 2005, Vol. 3746, pp. 223-

233

[5] Á. Bogárdi-Mészöly: Improved Performance Models for Web-based

Software Systems, Modeling Thread Pool and Queue Limit Performance

Factors, Lambert Academic Publishing, Saarbrücken, 2010, 132 p.

[6] Á. Bogárdi-Mészöly, T. Levendovszky: A Novel Algorithm for

Performance Prediction of Web-based Software Systems, Performance

Evaluation, Elsevier, 2011, Vol. 68, No. 1, pp. 45-57

Acta Polytechnica Hungarica Vol. 13, No. 7, 2016

 – 41 –

[7] Á. Bogárdi-Mészöly, A. Rövid, S. Yokoyama: Subspace Identification for

Web-based Software Systems, International Conference on Engineering

and Applied Science, Japan, Sapporo, July 20-22, 2015, pp. 119-127

[8] Á. Bogárdi-Mészöly, A. Rövid, S. Yokoyama: Performance Prediction of

Web-based Software Systems with Subspace Identification, International

Scientific Conference on Engineering and Applied Sciences, Japan, Naha,

July 29-31, 2015, pp. 89-98

[9] D. Carmona: Programming the Thread Pool in the .NET Framework, in

.NET Development (General) Technical Articles, Microsoft Spain, 2002,

http://msdn.microsoft.com/en-us/library/ms973903.aspx

[10] T. Marquardt: ASP.NET Performance Monitoring, and When to Alert

Administrators, in ASP.NET Technical Articles, 2003,

http://msdn.microsoft.com/en-us/library/ms972959.aspx

[11] SimEvents, MATLAB, MathWorks,

http://www.mathworks.com/help/simevents/

[12] P. Overschee, B. Moor, Subspace Identification for Linear Systems: Theory

– Implementation – Applications, Kluwer Academic Publishers, 2011

[13] P. Várlaki, T. Vadvári, Queueing Models and Subspace Identification in

Logistics, Acta Technica Jaurinensis, 2014, Vol. 8, No. 1, pp. 63-76

