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Abstract: In this paper we work with nonparametric methods in modeling and analyzing the 
financial times series. We use the concept of fractal dimension for measuring the 
complexity of time series of observed financial data. The aim of this paper is to distinguish 
between the randomness and determinism of the financial information. We will compare the 
fractal analysis of the selected forward exchange rates. Fractal analysis has been 
introduced into financial time series by Mandelbrot and Peters. Due to the financial crisis 
this theory has gained new momentum. Fractal analysis indicates that conventional 
econometric methods are inadequate for analyzing financial time series. Adequate analysis 
of the financial time series allows us to predict precisely the future values and risks 
connected with portfolios that are influenced. We test for fractional dynamic behavior in a 
1-month forward exchange rate USD into GBP and Gold Price against USD. 
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1 Introduction 

The purpose of this paper is to show a potential presence of stochastic long 
memory in economic and financial time series. The long term memory property 
describes the high-order correlation structure of a series. The long memory 
existence in financial time series may be caused by investors’ reactions to market 
information. Some investors react to information as it is received, while some 
investors wait for confirmation of the new information and they do not react until 
a trend is clearly established. Classical capital market theory assumes that the 
markets follow a random walk, and this means that the current prices reflect all 
available information and future price changes can be determined only by new 
information. With all prior information already reflected in prices. This means 
each day’s price movement is unrelated to the previous day’s activity. It is 
assumed that all investors immediately react to new information, so that the future 

                                                           
1  The preliminary version of this contribution was presented at FSTA 2010 in 

Liptovský Ján 
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is unrelated to the past or the present. Thus, all investors react to new information 
with equal probability. This assumption has been necessary for the application of 
the Central Limit Theorem to capital market analysis. But investors really do not 
make their decisions in this manner. Although the reaction of the investors is 
random, they may prefer some information and therefore the probability of their 
decisions is not identical; their decision is biased in some direction. Therefore the 
market may follow a biased random walk. 

Biased random walks were studied by Hurst in 1940s. Hurst was a hydrologist 
studying the discharge rates of the River Nile at Aswan. He detected long memory 
behavior on the River Nile data. Hurst attributed this result to be a consequence of 
the flow rate having serial correlation. The Hurst parameter H displays long range 
dependence. Hurst [5] motivated Mandelbrot and his co–workers (Mandelbrot and 
van Ness [9]) to introduce fractional Gaussian noise to model long memory 
phenomena. 

Long memory or long term dependence is observed in contemporary financial 
time series. There exist a number of studies that have investigated the issue of 
persistence in financial asset returns. Using the Hurst rescaled-range (R/S) 
method, Greene and Fielitz (1977) reported long memory in daily stock returns 
series. This result has been overturned by Lo (1991) via the development and 
implementation of the more appropriate modified R/S method. The absence of 
long memory in stock returns is also reported by Aydogan and Booth (1988), 
Cheung, Lai, and Lai (1993), Cheung and Lai (1995), Crato (1994), and Barkoulas 
and Baum (1996). Booth, Kaen, and Koveos (1982) and Cheung (1993) report 
long-memory evidence in spot exchange rates. Helms, Kaen, and Rosenman 
(1984), Cheung and Lai (1993), Fang, Lai, and Lai (1994), and Barkoulas, Labys, 
and Onochie (1997) report that stochastic long memory may be a feature of some 
spot and futures foreign currency rates and commodity prices. 

The presence of fractal structure in asset returns raises a number of theoretical and 
empirical issues. First, as long memory represents a special form of nonlinear 
dynamics, it calls to question linear modeling and invites the development of 
nonlinear pricing models at the theoretical level to account for long memory 
behavior. 

The rest of this paper is organized as follows. Section two introduces the 
stochastic processes and self–similar stochastic processes. Section three briefly 
describes fractional Brownian motion. Section four describes fractal dimension 
and fuzzy sets. Data and empirical estimates are discussed in section five. The 
paper ends with a summary of our results. 
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2 Stochastic Processes and Self-Similar Stochastic 
Processes 

Given an observed time series, a question which is of interest is whether the data 
were generated by a dynamical system of finite dimension or whether the system 
is stochastic. In many observed time series it is not clear what the fundamental 
underlying process is that drives the system. However, in real processes we 
observe certain aspects that are the evidence of an underlying, more complex 
process. We can observe processes that display power-law scaling and long range 
dependence. The main problem is, if a given time series is related to an underlying 
more substantial process, whether it is possible to determine whether the 
underlying process is driven by a deterministic set of equations or a stochastic 
system, or whether the process is self-similar. This opens the question of what is 
the difference between a deterministic and a stochastic process and whether is it 
possible to make this distinction based on empirical observations. 

Cutler [2] defined what is meant by stochastic and deterministic time series. 
Lamperti [6] introduced the definition of a self-similar stochastic process. 
Mandelbrot [8] introduced Fractional Brownian Motion. We give a brief summary 
in this section. 

Definition 1 

The time series {X(tn): n=1,2,…} is said to be strictly stationary if for any finite 
collection t1,t2, …,tn and for all τ, 

Pr{X(t1)<x1, …, X(tn)<xn}= Pr{X(t1+τ)<x1, …, X(tn+τ)<xn}. 

Definition 2 

A mapping g: χ→ψ, between the metric spaces χ and ψ with metrics ρ1 and ρ2 
respectively, is said to satisfy a Lipschitz condition if, for all x1, x2∈χ, 

ρ2(g(x1),g(x2)) ≤ kρ1(x1, x2), 

where k is a constant. If in addition, g is one to one and g-1 also satisfies a 
Lipschitz condition on its domain, then g is bi-Lipschitz. 

Definition 3 

Let {X(tn): n=1,2,…} be a strictly stationary time series with values in ψ. The 
predictive dimension, denoted by ζ, is defined as the smallest n≥1 such that there 
exists a mapping Ψ: ψn→ψ such that 

X(tn)= Ψ[X(t1),…, X(tn-1)], 

with probability 1. If no function Ψ exists for all n≥1, then ζ=∞. 

Cutler formulated a theorem that says that a strictly stationary process with known 
predictor function Ψ and finite predictive dimension ζ can be predicted as a 
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function of the previous ζ observations. Subsequently this is used for defining a 
stochastic and deterministic time series. 

Theorem 

Let {X(tn): n=1,2,…} be a strictly stationary time series with finite predictive 
dimension ζ and predictor function Ψ. Then, for all integers m≥0, 

Y(tm+1+ζ)=Ψ(Y(tm+1), Y(tm+2), …, Y(tm+ζ)), 

with probability 1. 

Definition 4 

A strictly stationary time series {X(tn): n=1,2,…} is said to be deterministic if ζ<∞ 
and stochastic if ζ=∞, where ζ is the predictive dimension. 

The following discussion will be concerned with Lamperti’s [6] idea of scaling in 
a process X(t). Firstly we introduce the notion of equality of finite dimensional 
distributions. 

Definition 5 

Let X1(t) and X2(t) be two stochastic processes. We will say that these processes 
have the same finite dimensional distributions if, for any n≥1 and t1, t2,…,tn  

(X1(t1), X1(t1), …, X1(tn)) 
d
=  (X2(t1), X2(t1), …, X2(tn)) or (X1(t)) 

d
=  (X2(t)), 

where 
d
=  denotes equality of probability distributions [4]. 

Definition 6 

d–dimensional process X(t) is a semi–stable process, if it obeys a simple 
continuity condition and, for s>0, the relationship 

{X(st)}
d
= {b(s) (X(t)+c(s))} 

holds, where b(s) is a positive function and c(s)∈Rd. 

Lamperti [6] showed that if X(t) is a proper semi-stable process and X(0)=0, then 
c(s)=0 and b(s)=sH where H is a positive constant. That is, 

{X(st)}
d
= {sHX(t)}. (1) 

Definition 7 

The increments of a random function {X(t): –∞<t<∞} are said to be self–similar 
with parameter H if for any s>0 and any τ 

{X( st+τ ) – X( τ )}
d
=  { Hs (X( t+τ )– X( τ ))}. 
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If the increments of X(t) are self–similar and X(0)=0, then X(t) is also self–similar 
(see equation (1)). If X(t) has self–similar and stationary increments and is mean 
square continuous, then it can be shown that 0≤H<1. 

The covariance structure is derived from scaling law as follows [4]: 

Let X(t) be process with stationary self–similar increments. Then the covariance 
function is 

E[(X(t+τ+1) – X(t+τ))(X(t+1) – X(t))]= { }HHH
H

2222 211
2
1 τττσ −−++ , 

where 2
Hσ = E[(X(t+1) – X(t))2] for all t. 

The process X(t) is said to be isotropic if 

{X(t)– X(s)}
d
= {X( st − )}. (2) 

3 Fractional Brownian Motion 

A Gaussian process is uniquely determined by its auto covariance function. 
Fractional Brownian Motion is a unique Gaussian self-similar process that we will 
denote as BH(t) [4]. The increments of fractional Brownian motion are referred to 
as fractional Gaussian noise. If BH(0)=0, then the process BH(t) is isotropic (see 
equation (2)). 

When H=0.50, BH(t) is simply Brownian motion. The system is independently 
distributed. When H differed from 0.50, the observations are not independent. 
Each observation carried a “memory” of all the events that preceded it. What 
happens today influences the future. Where we are now is a result of where we 
have been in the past. Time is important. The impact of the present on the future 
can be expressed as a correlation: 

C=2(2H-1)–1,  (3) 

where C is the correlation measure and H is the Hurst exponent. The time series is 
random, and events are random and uncorrelated. The present does not influence 
the future. Its probability density function can be a normal curve, but it does not 
have to be. 

When H>0.50 the autocorrelations are positive and have a power-law decay, 
hence long range dependence. If 0.50≤H<1.00, the time series have a persistent or 
trend–reinforcing character. If the time series was up (down) in the last period, 
then the chances are that it will continue to be positive (negative) in the next 
period. Trend is apparent. The strength of the trend-reinforcing behavior, or 
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persistence, increases as H approaches 1.0. The strength of the bias depends on 
how far H is above 0.50. The closer H is to 0.5, the noisier it will be, and the less 
defined its trends will be. Persistent series are called by Mandelbrot as fractional 
Brownian motion, or biased random walk. 

When H<0.50 the correlation are negative and have a rapid decay. For 0≤H<0.50 
the time series is antipersistent, or ergodic. If the time series was up in the 
previous period, it is more likely to be down in the next period. Conversely, if it 
was down before, it is more likely to be up in the next period. The strength of this 
antipersistent behavior depends on how close H is to zero. The closer it is to zero, 
the closer C in equation (3) moves toward –0.50, or negative correlation. This time 
series is more volatile than a random series. 

The Hurst coefficient H characterizes long-memory dependence. Self-similarity of 
the time series is characterized by fractal dimension. Fractal dimension expresses 
the regularity of series and states how similarity scales up when such a time series 
is observed over a longer time interval. The self-similarity could be also regarded 
as a measure of geometrical complexity of an object under discussion. 

In principle, fractal dimension and Hurst coefficient are independent of each other: 
fractal dimension is a local property, and long-memory dependence is a global 
characteristic. Nevertheless, the two notions are closely linked. For self-affine 
processes, the local properties are reflected in the global ones, resulting in the 
relationship D+H=2 between fractal dimension, D, and Hurst coefficient, H. 

The determination of the fractal dimension is inherently associated with set-based 
constructs. The generic box dimension [8] measures in which way the number of 
occupied boxes (those including the elements of the time series) increases when 
the size of the box decreases. The other common techniques of fractal 
determination uses a so-called correlation dimension in which a count of elements 
concerns a family of spheres constructed around each data point. What is common 
to the existing techniques (in spite of evident technical differences) is that all of 
them exploit sets regarded as information granules that allow us to see only a 
certain part of the phenomenon. The changes in the size of the information 
granules imply how large a part we are taking into consideration. Information 
granulation is an example of abstraction. There are numerous facets of the 
granular information processing, and there are a variety of formal frameworks in 
which such information granulation takes place. These include, for instance, set 
theory, fuzzy sets, random sets, rough sets and many others [7]. 
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4 Fractal Dimension and Fuzzy Sets 

In this section, we review the main constructs of fractal dimension and then 
proceed with their generalization in terms of information granules expressed in the 
language of fuzzy sets [7]. 

Consider a time series {X(tn): n=1,2,…, N}, where X(tn) R∈  and tn denote discrete 
time moments in which the values of this time series are recorded. In this sense, 
we are provided with a collection of two-dimensional elements S={ X(tn): 
n=1,2,…, N}. The structural complexity of S is measured by a fractal dimension 
D̂ defined by the following limit 

)log(
))(log(limˆ

0 ε
ε

ε

ND
→

= , (4) 

where N(ε) is a number of boxes of size ε used to cover the object (here the given 
time series). In essence, the above relationship relates to the power law stating 

that DN ˆε=  . In practice, the fractal dimension has to be estimated with the use of 
some experimental data. A collection of ‘‘c’’ experiments concerns a 
determination of the number of boxes N(ε) for a given value of the size of the box. 
Then experimental pairs (εj, N(εj)), j= 1, 2, …; c are used to determine parameters 
of the linear model. It can be easily shown (from (3)) that in a double logarithmic 
model of the form 

CDN += )log()(log εε  (5) 

the fractal dimension D appears as a slope of the computed regression line. The 
regression model itself is constructed through a minimization of the well known 
performance index Q treated as a sum of squared errors 

2

1
))log()((log cDNQ k

c

k
k −−=∑

=

εε . (6) 

The most intuitive approach to the determination of the fractal dimension uses the 
box method [8]. Another method uses a sphere of radius ε. Total number of points 
covered by the spheres N(ε) is equal to 

∑∑
=

≠
=

Ω
−

=
N

i

N

ij
j

ijNN
N

1 1

)(
)1(

1)( εε  (7) 

where )(εijΩ is a sphere defined as follows 

( ) ( )
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⎪
⎨
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22 εε jiji
ij

xxtt . (8) 
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Pedrycz and Bargiela [7] used fuzzy set ( )εijA  to compute of the fractal 

dimension: 

∑∑
=

≠
=

Ω
−

=
N

i

N

ij
j

ijij A
NN

N
1 1

)()(
)1(

1)( εεε , where (9) 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
= 2

2

exp
ε

ε ji
ij

xx
A . (10) 

For the time series we can use: 

( ) ( )∑
=

−=Ω
ε

εε
1i

ii Mx  (11) 

where ( )εiΩ  is cumulative deviation over ε period, Mε is an average xi over 
period of length of ε.  

( ) ( )( ) ( )( )εεε iiN Ω−Ω= minmax . (12) 

This approach is known as R/S analysis ([7, 10, 11]), where usually ( )εN  is 
denoted as R/S and ε as n. 

The detailed computations of the fractal dimension are described, for example, in 
[7, 10] and they are realized on the basis of the regression model (5). 

Mandelbrot used R/S analysis which was developed by Hurst [5]. Mandelbrot, 
Taqqu and Wallis demonstrated the superiority of R/S analysis over more 
conventional methods of determining long-range dependence, such as analyzing 
autocorrelations, variance ratios and spectral decompositions, in their several 
papers. In this paper our analysis will be based on the study described in Peters 
[10] or Robinson [11]. In this paper we compute Hurst coeficient H and his 
expected value E(H) using modified R/S analysis2 and we will verify null 
hypothezis: The time series is random walk. 

To verify this hypothesis, we calculate expected value of the adjusted range3 
E(R/Sn) and its variance4 Var(E(R/Sn)). 

                                                           
2  The R/S statistics is modified so that its statistical behavior is invariant over a general 

class of short memory processes, but deviates for long-memory processes. ([11],       
p. 91) 

3  This formula was derrived by Anis and Lloyd ([10], p. 71) 
4  Variance was calculated by Feller ([10], p. 66) 
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Using the results of equation (13) we can generate the expected values of the 
Hurst exponent. The expected Hurst exponent will vary depending on the values 
of n we use to run the regression. Any range will be appropriate as long as the 
system under study and the E(R/Sn) series cover to the same values of n. For 
financial purpose, we will begin with n=10. The final value of n will depend on 
the system under study. 

R/S values are random variables, normally distributed and therefore we would 
expect that the values of H would also be normally distributed ([10], p. 72): 

T
HVar n

1)( = , (15) 

where T is total number of observations in the sample. Note that the Var(Hn) does 
not depend on n or H, but it depends on the total sample size T. Now t-statistics 
will be used to verify the significance of the null hypothesis. 

If Hurst exponent H is approximately equal to its expected value E(H), it means 
that the time series is independent and random during the analysed period (the 
Hurst exponent is insignificant). If the Hurst exponent H is greater (smaller) than 
its expected value E(H), the time series is persistent (antipersistent) (the Hurst 
exponent is significant). If the series exhibits a persistent character, then the time 
series has long memory and the ratios R/Sn will be increasing. If the ratios R/Sn 
will be decreasing the time series will be antipersistent. The “breaks” may 
signalize a periodic or nonperiodic component in the time series with some finite 
frequency. We calculated the V–statistics to estimate precisely where this break 
occurs [10]: 

nSRV nn )(=  (16) 

5 Data and Empirical Results 

The data set consists of daily forward 1-month exchange rate USD into GBP and 
Gold Price against USD from 02/01/1979 to 04/11/2010 for a total 8050 daily 
observations. These were obtained from Bank of England5. 

                                                           
5  http://www.bankofengland.co.uk 
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We begin by applying R/S analysis to the 1-month forward exchange rates USD 
into GBP. During the period 02/01/1979–04/11/2010, the Hurst coefficient H of 
the 1-month forward exchange rate USD into GBP is equal to 0.5702. The 
expected Hurst exponent is equal to E(H)=0.5407. The variance of E(H) is 
1/T=1/8050, for Gaussian random variables. The standard deviation of E(H) is 
0.0111. The Hurst exponent for the daily 1-month forward exchange rates USD 
into GBP is 2.6513 standard deviations away from its expected value. This is 
highly significant result at the 95% level. The time series has persistent character. 
Also plotted is E(R/Sn) (dashed line) as a comparison against the null hypothesis 
that the system is an independent process (Figure 1). There is clearly a systematic 
deviation from the expected values. However, breaks in R/S graph (see Figure 1) 
appear. To estimate precisely where this break occurs, we calculated V–statistics 
(Figure 1). V-statistics clearly stops groving at n=50, n=322, n=575 or n=805 
observations. These “breaks” may be signal of a periodic or nonperiodic 
component in the time series. We will run regression to estimate the Hurst 
exponent for R/Sn values in the next subperiods: n<50, 50≤ n ≤4025, 10<n<322, 
322≤ n ≤4025, 10<n<575, 575≤ n ≤4025, 10<n<805 and 805≤ n ≤4025. Table 1 
and Table 2 show the regression results. During periods for n<50, 10<n<322 and 
10<n<575 the time series has random character. The Hurst exponents are 
insignificant. During periods for 50≤ n ≤4025, 322≤ n ≤4025 and 575≤ n ≤4025 
the time series has persistent character. The Hurst exponent is significant. It means 
that ancient history had random character and recent history has a long memory 
effect. During periods for 50≤ n ≤805 the time series has a persistent character, but 
during period 805≤ n ≤4025 the time series has an antipersistent character and the 
Hurst exponent is significant. We have found that 1-month forward exchange rate 
USD into GBP has 4 nonperiodic cycles. The longest is a 805-day cycle, or about 
3 years. The shortest is a 50-day cycle, or about 10 weeks. 

 
R/S analysis, Forward exchange rate, 1 month, US$  into Sterling, dailly data

log_RS

log_ERS

log_RS

1

2

3

4

5

log_N

2 3 4 5 6 7 8 9

 

V−statistics, Forward exchange rate, 1 month, US$  into Sterling, dailly data

V_stat

V_ERS

V_stat

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

log_N

2 3 4 5 6 7 8 9

 
Figure 1 

R/S analysis and V statistics of the daily log return of USD into GBP, (1979-2010) 
H=0.5702, E(H)= 0.5407 
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Table 1 
Regression results, 1-month forward FX rate USD vs GBP, estimation of the Hurst exponent, 

(1979-2010, daily data) 

1-month forward R/S E(R/S) R/S E(R/S) R/S E(R/S) R/S E(R/S) 
FX rate 
GBPvsUSD 10<n<50 50≤ n ≤4025 10<n<322 322≤ n≤4025 

Intercept -0.236 -0.241 -0.200 0.041 -0.149 -0.152 -0.247 0.093 

Hurst exponent 0.592 0.589 0.574 0.522 0.564 0.561 0.581 0.515 

Standard Error 0.009 0.006 0.048 0.008 0.019 0.016 0.072 0.003 

R squared 0.999 1.000 0.995 1.000 0.999 0.999 0.984 0.999 

Number of obs. 7   12   13   6   

Significance 0.260   4.701   0.323   5.993   

 

Table 2 
Regression results, 1-month forward FX rate USD vs GBP, estimation of the Hurst exponent, 

(1979-2010, daily data) 

1-month forward R/S E(R/S) R/S E(R/S) R/S E(R/S) R/S E(R/S) 
FX rate GBP vs 
USD 10<n<575 575≤ n≤4025 10<n<805 805≤ n≤4025 

Intercept -0.146 -0.131 -0.235 0.118 0.558 -0.119 0.508 0.126 

Hurst exponent 0.563 0.554 0.580 0.511 -0.126 0.551 0.486 0.510 

Standard Error 0.021 0.019 0.095 0.001 0.025 0.020 0.001 0.001 

R squared 0.999 0.999 0.964 1.000 1.000 0.999 1.000 1.000 

Number of obs. 15   4   16   3   

Significance     6.191   -60.715   -2.153   

 

R/S analysis of Gold Price against USD from 02/01/1979 to 04/11/2010 exhibits 
random behavior. The Hurst coefficient H is equal to 0.547, E(H) = 0.540 and it is 
insignificant (see Figure 2). Table 3 summarizes the regression results. However 
we found 2 breaks on R/S plot (respectively in V-statistics plot, see Figure 2) for 
n=161 and n=322. During periods 10<n<161 and 10≤n≤322 the time series has 
random character, but during periods 161<n<4025 and 322≤ n ≤4025 the time 
series has persistent character. The presence of the persistent value of H confirms 
that Gold prices against USD have fractal structure in recent history. We found 
one periodic cycle with length 161 (or approximately 32 weeks). 



M. Bohdalová et al. Fractal Analysis of the Forward Exchange Rates 

 – 68 – 

R/S analysis, Gold price against US$, dailly data
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V−statistics, Gold price against US$, dailly data
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Figure 2 

R/S analysis and V statistics of the daily log return of Gold prices against USD, (1979-2010) 
H=0.547, E(H) = 0.540 

Table 3 
Regression results, Gold vs GBP, estimation of the Hurst exponent, (1979-2010, daily data) 

Gold versus GBP R/S E(R/S) R/S E(R/S) R/S E(R/S) R/S E(R/S) 

10<n<161 161≤ n ≤4025 10<n<322 322≤ n≤4025 

Intercept -0.2523 -0.2040 0.2446 0.0672 -0.1633 -0.1644 -0.4465 0.0894 

Hurst exponent 0.5854 0.5763 0.5631 0.5181 0.5582 0.5639 0.5910 0.5150 

Standard Error 0.0113 0.0109 0.0482 0.0041 0.0268 0.0146 0.0469 0.0027 

R squared 0.9994 0.9994 0.9941 0.9999 0.9979 0.9934 0.9934 0.9999 

Number of observation 9  10  12  7  

Significance 0.8165  4.0375  -0.5114  6.8189  

Conclusion 

In this paper, we propose a fractal analysis of the selected financial time series. In 
both causes, we found fractal structure. Nonperiodic cycles for forward exchange 
rate affirm evidence that the currency markets may be nonlinear systems. 
Currency markets are characterized by abrupt changes traceable to central bank 
intervention attempts by governments to control the value of each respective 
currency. 

Periodic cycle in the time series Gold prices against USD may be related to the 
economic cycle. The cycle length measures how long it takes for a single period’s 
influence to reduce to immeasurable amounts. In statistical terms, it is the 
decorrelation time of the series. In terms of nonlinear dynamics, memory effect is 
lost when this time expires. 

Information obtained by fractal analysis can be used as the basis for momentum 
analysis and other forms of technical analysis. The second use is in choosing 
periods for model development, particularly for back testing. 
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