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Abstract: The knowledge of orthotropic material properties of composite layers is very 

important for mechanical design of machine structures from composite material. This 

information cannot be found in related professional literature therefore it is necessary to 

determine by measurement, by basic experiments of mechanics of materials. The paper 

presents a new 3D finite element layer model-cell based on the meso-structure of a textile 

composite layer, with which one shall be able to determine the material constants of an 

orthotropic layer. The applicability of the numerical layer model-cell and the accuracy of 

the numerical results are confirmed by experimental results. The numerically determined 

material properties of the layers are used at mechanical modeling and computation of 

complex, layered composite structures. 

Keywords: orthotropic material properties; textile composite; composite layer; finite 

element method, layer model-cell; validation with experiments 

1 Introduction 

Textile composites are plastics reinforced by glass, carbon, aramid, etc. fabrics. 

The laminated textile composite plates consist of one 2D fabric in each layer. The 

reinforcing fibers are arranged into flat roving, that run parallel to each other in 

the textile. The thickness of the textile and a composite layer can be measured in 

tenth of mm-s. The mechanical analysis of a textile composite structure is a com-

plicated problem because every single layer and the roving in it have anisotropic 

feature generally. With the majority of engineering problems the behavior of the 

material can be described by homogeneous macroscopic modeling with satisfying 

accuracy from engineering point of view. There is a verified computation method 

for determination of the material properties of a multilayered complete plate from 
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given layer material properties. The aim of this research is to provide a new, 

improved numerical method, a layer model-cell for computation of material 

properties of a single layer. 

Different kinds of fabrics are used in textile composites and the majority of them 

have two main roving directions, perpendicular to each other. These main or prin-

cipal fiber directions make it possible that the behavior of the majority of textile 

composite materials can be handled as an orthotropic material from macroscopic 

point of view with sufficient accuracy. 

In Figure 1 it is seen the 1 2x x  material coordinate system of the textile composite 

layer. 1x  is the chain direction (first principal material direction) of the textile 

whereas 2x  is the weft direction (second principal material direction). 

 

Figure 1 

Material coordinate system of a textile composite layer 

From macroscopic point of view a textile composite layer can be considered as an 

orthotropic material in the plane stress state with good approximation. The linear 

elastic, orthotropic material law in case of the plane stress state, in the coordinate 

system of principal material directions of the layer, has the following form [4], 

[9]: 
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Material law (1) of the textile composite layer contains five macroscopic material 

constants: the 1E , 2E  moduli of elasticity in principal material directions, the 12 , 

21  Poisson's ratios and the 12G  shear modulus of elasticity. Four of them are 

independent because the matrix C  of material constants is symmetric, therefore 

the relationship between the Young’s moduli and Poisson’s ratios is [4]: 

12 21

1 2E E

 
 . (2) 

The average strain and stress of a textile composite layer with Volume V can be 

defined as follows [11], [12], [14]: 
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There are no standards for building of the structure of a textile composite, for the 

fiber/matrix proportion and coupling and for the weaving method therefore there 

are a number of ways for the composite material variations and engineering appli-

cations. Therefore, the material properties of a composite structure usually cannot 

be found in the literature, in manuals or in standards. For determination of the 

material constants of a textile composite there are usually two procedures: 

- In the first one, the given material is produced and the material properties are 

determined by measurement on test specimens cut out from the material. 

- In the other one, the material constants of a single composite layer are deter-

mined by a so-called mixture rule knowing the material constants and volume 

fraction of the fiber and the matrix in the composite layer. 

The aim of our research is to provide a numerical method for determination of the 

material constants in the material law (1). For this purpose, we developed a finite 

element 3D layer model-cell. This model-cell is suitable for the determination of 

the macroscopic material constants of a textile composite layer of known geome-

try and material parts. We have proved by measurements on eight-layer composite 

test specimens that the macroscopic material constants computed by the layer 

model-cell can reach the necessary accuracy for the modeling of the structure. The 

paper describes the necessary steps for building of the layer model-cell and the 

prescription of the loading and the periodic boundary conditions for the given 

loading cases in general. It shows how to calculate the material constants from the 

numerical results. 

For determination of material properties of the layer there are several numerical 

methods in the relevant literature which use the material properties of the textile 

and matrix of the layer [10], [15], [16], [17]. Compared to the models that can be 

found in the literature we specified the kinematic boundary conditions in a differ-

ent way in this paper. In addition, we defined the average stress of the finite ele-

ment model-cell also in a different way. From these modifications, we hope the 

improvement and growth of the accuracy of the layer model-cell. 

2 The Roving Model-Cell 

A roving in the textile includes several thousands of μm  diameter reinforcing 

fibers which are impregnated by the matrix material. There is also matrix material 

between the single fibers. We do not model these single fibers separately in the 

layer model-cell of the textile composite. We consider the roving as one “fiber” if 

we model the layer reinforced by textile woven from homogeneous roving’s. 

The cross section and the 1 2 3r r rx x x  roving material coordinate system of the in-

vestigated roving, which is impregnated by matrix, can be seen in Figure 2. In 
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figures the length dimensions are given in mm. The direction parallel to the rein-

forcing fibers is 1rx . We determined the orthotropic, macroscopic material proper-

ties of the roving by the roving model-cell described in the paper [3]. For the 

structure of the roving model cell we assume that the reinforcing fibers are posi-

tioned in a regular hexagonal shape everywhere in the complete roving. In a hex-

agonal layout (Figure 3) one fiber is surrounded by six others in a way that those 

are in equal distance from each other. The cross section of the roving model-cell is 

marked by a thick line in Figure 3. 

   

 Figure 2 Figure 3 

 The cross section and Hexagonal layout of the 

 material coordinate system of a flat roving  fibers in the roving 

In the studied case the matrix is always isotropic, but the carbon fibers are trans-

versely isotropic and are in a hexagonal layout in the roving model-cell, therefore, 

also the roving-model cell has transversely isotropic behavior. In the roving the 

plane of isotropy is the 2 3r rx x  plane. For the investigated case the macroscopic 

material properties determined by the roving model-cell are [3]: 

1 177 236 MParE , 
12 13 0 202  r r . , 

12 13 4115 MPa r rG G , 

2 3 10 352 MPa r rE E , 
23 0 430r .  , 

23 3 620 MParG . 

We validate the results of the roving model-cell also here because these material 

properties are the input data for the textile composite layer model-cell. The 

experiment validates both the results of the roving model-cell and the textile 

composite layer model-cell together. 



Acta Polytechnica Hungarica Vol. 14, No. 2, 2017 

 – 51 – 

3 The Layer Model-Cell 

3.1 The Geometry and Finite Element Mesh of Layer Model-

Cell 

A textile composite layer can also be considered as periodic parts, volume 

elements, cells. The layer can be built up from these periodic domains, from so 

called model-cells. 

We show the building up of the layer model-cell, and validate the numerical re-

sults by experiment. We produced the eight layer, 2 mm thick composite specimen 

reinforced with plain weave carbon textile used for the experiments by manual 

lamination (Figure 4). The matrix material was polyester resin. In order to prevent 

that the production process would influence the material properties of the test 

specimens we hardened each sheet with identical technological parameters in the 

autoclave: 65 68 °CT   , 6 barp  , 2 ht  . 

 

Figure 4 

Eight-layer textile composite plate 

The thickness of the textile and the waviness of the roving we determined after 

lamination by measurement. The cross section of the textile can be seen in Fig. 5 

after lamination. 

 

Figure 5 

Cross section of the investigated textile after lamination 

During the building up of the layer model with thickness th  we assumed that the 

textile with th  thickness is located in the middle of the composite layer (Fig. 6): 

2

th h
v


 . (4) 
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 Figure 6 Figure 7 

 Textile in the composite layer One unit in the textile 

In order to be able to provide more simple boundary conditions we apply the side 

surfaces of the model cell parallel to the planes of the material principal directions 

[8]. The dimensions in 
1x  and 

2x  direction of the layer model-cell we determined 

in a way that the cell should contain one unit both in chain- and weft directions. In 

the case of a plain weave textile this means 2-2 complete (1 2 0 5 2.   ) roving 

(Figure 7, dashed line square). E.g. at a 2/2 twill weave textile one unit consists of 

4-4 roving. 

The 
1 2 3, , x x x  material principle directions of the model-cell and the 

1 2 3, , r r rx x x  

principal direction of the roving can be seen in Figure 8. In the case of the roving 

1 3r rx x  is the symmetry plane. We applied the model-cell’s side surfaces perpen-

dicular to 
1x  and 

2x  axes in a way that those should coincide with the 
1 3r rx x  and 

2 3r rx x  material principal direction planes of the roving. In this case the four side 

surfaces at tension remain in plane and they displace parallel with the 
1 3x x  and 

2 3x x  planes of the model-cell. At shear in 
1 2x x  plane the points of the side surfac-

es will displace in the same way in direction of the shear. At shear, there is no 

deformation on the side surfaces perpendicular to 
1x  axis in 

2x  direction and on 

the surfaces perpendicular to 
2x  axis in 

1x  direction. 

 

Figure 8 

1 2 3x ,x ,x  material principal direction of the layer model-cell and  

1 2 3r r rx ,x ,x  material principal direction of the roving 

The dimensions of the layer model-cell and the identity signs of the six side sur-

faces are seen in Figure 9. We marked the side lengths with a and b because we 

provided a general formulation for the composite layer finite element modeling. 

This formulation is also valid for such a weave where a b , e.g. the chain- and 
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the weft direction roving densities are not identical. The dimensions of the inves-

tigated composite layer model-cell in Figure 9 are: 

0 25 mmh . ,  0 22 mmth . ,  0 015 mmv . , 

4 mma b  ,  
1 2 2 mmt t  ,  

1 2 1 8 mmr rs s .  , 

21 mmA AA A   , 21 mmB BA A   , 216 mmC CA A   . 

We did the finite element computation with the NX I-deas 6.1 program code. We 

applied a mesh of parabolic tetrahedron elements for the layer model-cell. Due to 

the periodicity, we need to apply the so called periodical boundary conditions on 

the layer model-cell. Therefore, we need to generate the finite element mesh in a 

way that, on the opposite side surfaces there should be nodes opposite of each 

other and by this way node pairs will be created on two side surfaces of the mod-

el-cell. On the side surfaces perpendicular to 
1x  and 

2x  axes it was necessary to 

specify surface connections for the two-two surface pairs belonging to the matrix 

and located opposite to each other, and for the surface pair perpendicular to the 
3x  

axis. 

 

Figure 9 

Dimensions of the layer model cell 

   

 Figure 10 Figure 11 

 Finite element mesh of the layer model-cell Finite element mesh of the textile layer 

We generated the finite element mesh so that we generated second order triangle 

shaped shell elements for the surfaces first then by using those we generated sec-

ond order tetrahedron shaped (3D) elements inside the layer model-cell. In Figure 

10 we can see the finite element mesh of the layer model cell, which includes 

38 974  elements and 56 587  nodes. Figure 11 shows the finite element mesh of 

the textile. XYZ  coordinate system shown in Figures 10 and 11 corresponds to 

the 1 2 3x x x  coordinate system of Figures 8 and 9. 
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3.2 Loading of the Layer Model-Cell 

We simulated the basic experiments of mechanics of materials with the layer 

model-cell in a way that we specified a kinematic loading and node displacement 

field for the side surfaces of the model-cell. For the nodes at the corners of the 

model-cell and at the center points of the side surfaces we referred with node 

numbers in Figure 12. 

   

Figure 12 

Marking the nodes at the eight corners of the layer model cell and at the center points of the side 

surfaces 

A node displacement vector is in the model-cell in the 
1 2 3x x x  coordinate system: 

1 2 3  u ue ve we . (5) 

For the layer model-cell (Figure 9) the following general periodic boundary condi-

tions can be applied [11]: 

   1 2 3 1 2 3

j j j

i i j ij iu X ,X ,X u X ,X ,X x c     . (6) 

j

iu   and j

iu   are the displacement in iX  direction on the surface pair perpendicu-

lar to the 
jX  axis in the 1 2 3X X X  global coordinate system. The j   index means 

the positive 
jX  axis and j   marks the negative 

jX  direction in the coordinate 

system of the model-cell (Figure 9). 
jx  is the side length of the model-cell. j

ic  

( 1 2 3i j , ,  ) is the change of distance of the side surfaces (tension or compres-

sion) in 
jX  directions of the model-cell, whereas j i

i jc c  ( 1 2 3i j , ,  ) is the 

displacement in the plane of the side surface resulting from the shear of the side 

surfaces. The (6) boundary condition ensures the periodicity and the continuity of 

the displacement field in the composite material layer. The (6) equation provides, 

for the appropriate points, the difference of the displacements on both opposite 

surfaces. j

iu   and j

iu   displacements are functions of 1X , 2X , 3X  coordinates. 

Therefore, these surfaces remain not necessarily in plane during the deformation. 

With the layer model-cell we simulated the basic experiments (tension-pressure 

and shear) of mechanics of materials and we determined the orthotropic material 

properties from the model-cell computed stress and strain state. We realised the 

simulation of these basic experiments with separate, kinematic loading cases. 
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During providing the kinematic loading, on A+, A–, B+, B– side surfaces we gave 

displacements not for the individual nodes but the complete side surfaces in a way 

that we prescribed the displacement only for the middle node and we connected all 

nodes on the surface in the given direction. This prescription ensures that the side 

surface can displace in the prescribed direction as a rigid body. From the loading, 

we got reaction forces. These reaction forces were reduced to the center node of 

the surface. Since, the side surfaces of the layer model-cell coincide with the 

planes of the material principal directions of the roving (Figure 8), the following 

average stress appears on the side surfaces of the model-cell: 

1

j

i

ij ij

j j( A )

F
dA

A A
   . (7) 

iF  is a reaction force in 
ix  direction on the surface perpendicular to 

jx  axis and, 

jA  is the area of the side surface. 

3.3 Tension Test Simulation with the Layer Model-Cell 

For the computation of the 
1E  modulus of elasticity and 

12  Poisson's ratio of the 

textile composite layer we need to simulate an 
1x  directional tension for 

2E  and 

for 
21  we need to simulate an 

2x  directional tension with the layer model-cell. At 

tension the strains are non-zero (
1 2 0,   ) in the strain tensor in the (1) constitu-

tive equation. The (6) general equation for tension is the following: 

j

i j jc x  , 
j

i

j

j

c

x



 ,  1  2i j ,  . (8) 

At tension tests the side surfaces of the model-cell perpendicular to 1x  and 2x  

axes remain in plane and displace parallel with the planes of principal directions. 

We ensured the parallelism requirement in the case of the tension loading by con-

necting all the nodes on the side surface in the direction perpendicular to the sur-

face. These prescriptions are summarized by the relationships (9) – (10). Accord-

ing to equation (9) we connected all nodes on A+ surface in 1x  direction. The 

independent node is N2, meaning that the displacement of all nodes on A+ surface 

are identical with displacement of the N2 node in 1x  direction. 

 2 3 10A Nu u ;x ;x u   ,  2 3 2A Nu u a;x ;x u   , (9) 

 1 3 50B Nv v x ; ;x v   ,  1 3 8B Nv v x ;b;x v   . (10) 

In relationships (9) – (10): 

10 x a  , 
20 x b  , 

30 x h  . (11) 
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The A– and B– side surfaces were clamped only in the central node in the direc-

tion perpendicular to the surface at the 
1x  and 

2x  directional tensions: 

10 0A Nu u   , 
12 0B Nv v   . (12) 

As a result of the tension the waviness (Figure 8) in the roving decreases in direc-

tion of the tension and increases perpendicularly to the tension. Therefore, C+ and 

C– side surfaces do not remain in plane. In order to restrain the rigid body dis-

placement and rotation of the C– side surface we have to prescribe zero displace-

ment for the N1 node in 
3x  direction: 

1 0Nw  . (13) 

The kinematic loading belonging to the 
1x  and 

2x  directional tension test of the 

layer model-cell were determined as follows. At the 
ix  directional tension we 

prescribed the 
i  specific strain for the model-cell and computed the 

ix  direction-

al displacement of the side surface perpendicular to the 
ix  direction from the (8) 

equation. In this case, we did not prescribe the cross contraction. 

In the case of the 
1x  directional tension 

1  is given, consequently: 

9 1A Nu u a   . (14) 

In the case of the 
2x  directional tension 

2  is prescribed, out of which the dis-

placement of the B+ side surface is: 

11 2B Nv v b   . (15) 

In the case of 
1x  and 

2x  directional tensions we need to specify periodic bounda-

ry condition in addition so that the opposite nodes should displace on the same 

way on the side surface. For fulfilment of this requirement the node pairs must be 

connected on the opposite A / A   and B / B   side surfaces, except the edges 

of the model-cell: 

A / A  :    2 3 2 30v ;x ;x v a;x ;x ,    2 3 2 30w ;x ;x w a;x ;x , (16) 

B / B  :    1 3 1 30u x ; ;x u x ;b;x ,    1 3 1 30w x ; ;x w x ;b;x . (17) 

In relationships (16) – (17) and (19) – (26): 

10 x a  , 20 x b  , 30 x h  . (18) 

On the layer model cell we prescribed periodic boundary condition for the 

C /C   side surface in the plane of the side surface. 

C /C  :    1 2 1 20u x ;x ; u x ;x ;h ,    1 2 1 20v x ;x ; v x ;x ;h . (19) 
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With this boundary condition we ensured that bending will not occur at the tension 

of the layer due to the decrease or increase of waviness of the roving. The straight 

line connecting the node pairs so remained perpendicular to the middle surface 

before deformation. 

As we have already written earlier, we intend to use this layer model-cell for the 

determination of material properties of a given layer of a multilayer textile com-

posite plate. Therefore, we cannot prescribe periodicity in 
3x  direction for the 

C /C   side surface while modeling a layer of such a composite plate where 

every layer is the same (textile, layer thickness, fiber direction). Namely there is a 

very small likelihood that the textile reinforcement is positioned in the same way 

in the layers following each other in the composite plate. For this case a 

 0 0 0 0/ / /     layer composition textile composite plate is shown as an exam-

ple in Figure 13. The dashed lines mark the boundaries of the layers. 

 

Figure 13 

Positioning of the textile in a four layer composite plate 

We need to connect the node pairs at the opposite edges, except the corner points 

of the model-cell, according to the (20) – (26) relationships: 

On edges in 
1x  direction:    1 10 0 0u x ; ; u x ;b; ,     1 10 0 0w x ; ; w x ;b; , (20) 

   1 10u x ; ;h u x ;b;h ,    1 10w x ; ;h w x ;b;h , (21) 

   1 10u x ;b; u x ;b;h . (22) 

On edges in
2x  direction:    2 20 0 0v ;x ; v a;x ; ,     2 20 0 0w ;x ; w a;x ; , (23) 

   2 20v ;x ;h v a;x ;h ,    2 20w ;x ;h w a;x ;h , (24) 

   2 20v a;x ; v a;x ;h . (25) 

On edges in 3x  direction:        3 3 3 30 0 0 0w ; ;x w a; ;x w a;b;x w ;b;x   . (26) 

On the C– side surface every corner has the same displacement in 3x  direction. 

Therefore, we connect the nodes at the corners in 3x  direction. The independent 

node is N3: 

1 2 4 3N N N Nw w w w   . (27) 
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On the C+ side surface we also connect the nodes at the corners in 
3x  direction. 

The independent node is N7: 

5 6 8 7N N N Nw w w w   . (28) 

Figure 14 shows the connection between the nodes at the opposite side surfaces 

and edges. It is necessary to skip the edges at the opposite sides and the corners at 

the opposite edges so that the model-cell will not be over-determined. 

  

Figure 14 

Connecting the nodes for ensuring the periodicity 

At the tension in 
1x  direction we numerically determined the following reaction 

forces and the cross contraction: 

A AF F   , 
1 0B NF F   , 

Bv 
. 

We calculate the 
1  average normal stress as the quotient of the reaction force 

appearing on the A+ side surface and the area of the side surface according to (7). 

From that we determine 
1E  Young's modulus in the usual way. 

12  Poisson's ratio 

can be calculated from the numerically determined 
Bv 

 displacement and from the 

prescribed 
Au 

 displacement. These calculations can also be done for 
2x  direction 

in the similar way. At the tension in 
2x  direction we numerically determined the 

following reaction forces and the cross contraction: 

B BF F   , 
1 0A NF F   , 

Au 
. 

Table 1 summarises the prescribed kinematic loading of the investigated textile 

composite model cell as well as the numerically determined reaction forces, the 

cross contraction and the calculated average stresses and material properties for 

both loading cases. 

Table 1 

The given and determined quantities of the investigated textile composite model-cell 

Tension in 1x  direction 

Kinematic loading 
3

1 2 10   , 3

9 8 10  mmA Nu u 

     

Numerically determined 

quantities 

 1101 4 NAF . e  ,  1101 4 NAF . e    

48 271 10  mmBv . 

   
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Average stress 1 101 4 MPa. 
 

Material properties 1 50 700 MPaE  , 
12 0 103.   

Tension in 
2x  direction 

Kinematic loading 
3

2 2 10   , 3

11 8 10  mmB Nv v 

     

Numerically determined 

quantities 

 2101 4 NBF . e  ,  2101 4 NBF . e    

48 271 10  mmAu . 

   
 

Average stress 2 101 4 MPa. 
 

Material properties 2 50 700 MPaE  , 
21 0 103.   

3.4 Shear Test Simulation with the Layer Model-Cell 

Formula (6) of the pure shear looks as follows: 

1

2

j

i j ijc x  , 
1

2

i

j i jic x  ,  1  2i j ,  . (29) 

For the calculation of 
12G  shear modulus of elasticity of the textile composite 

layer we simulated a pure shear on the 
1 2x x  surface. In this case the 12 21

1 1

2 2
   

average shearing strain differs from zero in the strain tensor (1). 

12 21

1 1

2 2
  , 12 12 21

1 1

2 2
    . (30) 

We modeled the pure shear by a prescribed displacement in 
2x  direction of the 

side surfaces perpendicular to the 
1x  axis or by a prescribed displacement in 

1x  

direction of the side surfaces perpendicular to the 
2x  axis of the layer model-cell. 

We realized the above kinematic prescriptions/conditions at the center points of 

the A+, A–, B+, B– side surfaces by using the following values: 

10 0A Nv v   , 9 21

1

2
A Nv v a    , (31) 

12 0B Nu u   , 11 12

1

2
B Nu u b    . (32) 

For the modeling of the shear test it was necessary to connect the nodes on the 

side surfaces perpendicular to 1x  and 2x  axes: 

 2 3 10A Nv v ;x ;x v   ,  2 3 2A Nv v a;x ;x v   , (33) 
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 1 3 50B Nu u x ; ;x u   ,  1 3 8B Nu u x ;b;x u   . (34) 

In relationships (33) – (34): 

10 x a  , 
20 x b  , 

30 x h  . (35) 

In the case of the 
1 2x x  plane shear the C+ and C– side surfaces do not remain in 

plane. For prevention of the rigid body displacement and rotation we restrained 

the N1 node at the center of C– side surface in 
3x  direction: 

1 0Nw  . (36) 

In the case of a pure shear the node pairs must be connected at the opposite side 

surfaces, with the exception of the edges of the model-cell, according to (37) – 

(39). In the plane of C /C   side surface, similarly to the tension test simula-

tion, we also provided periodic boundary condition. 

A / A  :    2 3 2 30u ;x ;x u a;x ;x ,    2 3 2 30w ;x ;x w a;x ;x . (37) 

B / B  :    1 3 1 30v x ; ;x v x ;b;x ,    1 3 1 30w x ; ;x w x ;b;x . (38) 

C /C  :    1 2 1 20u x ;x ; u x ;x ;h ,    1 2 1 20v x ;x ; v x ;x ;h . (39) 

In (37) – (39) and (41) – (47) relationships: 

10 x a  , 
20 x b  , 

30 x h  . (40) 

In the case of the opposite edges, except of the corner points of the model-cell, we 

need to connect the node pairs as follows: 

On edges in 
1x  direction:    1 10 0 0v x ; ; v x ;b; ,    1 10 0 0w x ; ; w x ;b; , (41) 

   1 10v x ; ;h v x ;b;h ,    1 10w x ; ;h w x ;b;h , (42) 

   1 10v x ;b; v x ;b;h . (43) 

On edges in 
2x  direction:    2 20 0 0u ;x ; u a;x ; ,    2 20 0 0w ;x ; w a;x ; , (44) 

   2 20u ;x ;h u a;x ;h ,    2 20w ;x ;h w a;x ;h , (45) 

   2 20u a;x ; u a;x ;h . (46) 

On edges in 3x  direction:        3 3 3 30 0 0 0w ; ;x w a; ;x w a;b;x w ;b;x   . (47) 

For taking into consideration the periodicity we connect the nodes at the corners in 

3x  direction on C– side surface, the independent node is N3: 

1 2 4 3N N N Nw w w w   . (48) 
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On the C+ side surface we also connect the nodes at the corner points in 
3x  direc-

tion, the independent node is the N7: 

5 6 8 7N N N Nw w w w   . (49) 

The numerically determined reaction forces at 
1 2x x  plane shear are the following: 

A AF F   , 
B BF F   , 

1 0NF  . 

Due to the duality of   stresses the average shear stress must be identical on the 

side surfaces perpendicular to the 
1x , 

2x  axes: 

1

12

B

B

F

A
 



 , 2

21

A

A

F

A
 



 , 
12 21  . (50) 

The stress distribution is never homogenous in the layer model-cell. Figure 15 

shows the 
12  stress distribution, the deformation is illustrated with a zoom of 

200 . 

 

Figure 15 

12  stress distribution in the layer model-cell at shear test in 1 2x x plane 

Shear modulus in 
1 2x x  plane: 

12

12

12

G



 . (51) 

Table 2 summarises the given kinematic loading at the plane shear test of the 

textile composite model-cell as well as the numerically determined reaction 

forces, the average stresses and the shear modulus. 

Table 2 

The given and determined quantities of the investigated textile composite model-cell 

Pure shear in the 1 2x x  plane 

Kinematic 

loading 

3

12 2 10   , 3

12 21

1 1
10

2 2
     

3

9 4 10  mmA Nv v 

    , 3

11 4 10  mmB Nu u 

     
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Reaction forces 
 25 8 NAF . e  ,  25 8 NAF . e    

 15 8 NBF . e  ,  15 8 NBF . e    

Average stresses 12 5 8 MPa.  , 
21 5 8 MPa.   

Shear modulus 12 2 900 MPaG   

3.5 Macroscopic Material Properties of the Composite Layer 

Determined by the Layer Model-Cell – Summary of 

Numerical Results 

According to Sections 3.3 and 3.4, by carrying out simulations on the layer model-

cell five orthotropic material constants can be defined, four of them are independ-

ent due to the requirements of (2) equation. However, in this case the studied 

composite layer has only three independent material constants because the rein-

forcement in the textile is the same in 
1x  and 

2x  directions (Figure 9): 

1 2 50 700 MPaE E  , 
12 0 103.  , 

12 2 900 MPaG  . (52) 

3.6 Characteristic Data of the Textile Composite Layer Used 

in the Experiment 

 

Figure 16 

Plain weave textile 

 

Figure 17 

Material coordinate system of a carbon fiber 

The composite is reinforced with a SIGRATEX KDL 8003 type plain weave 

carbon tissue. In Figure 16 we can see the plain weave textile before 

impregnation. The elementary fibers are ordered into a flat, untwisted roving. The 

type of the roving is Torayca T300-3K. 3K means that there are 3000fn   carbon 

fibers with 7 mfd    in the roving. 

Material properties of applied carbon fiber are known from the [7], [13] literature, 

in the 1 2 3f f fx x x  material coordinate system of Figure 17: 

1 230 000 MPafE   
12 13 0 166f f .    

12 13 6 432 MPaf fG G   

2 3 15 000 MPaf fE E   
23 0 400f .   

23 5 357 MPafG  . 
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The matrix material is an AROPOL M105TB type polyester resin, which is linear 

elastic, isotropic material. The mE  Young’s modulus and the 
m  Poisson's ratio of 

the matrix were determined by measurement according to ASTM D638-10 

standard [1]. The 
mG  modulus of elasticity was determined by the (53) 

relationship, that is valid for the isotropic materials: 

3 677 MPamE  , 0 346m .  , 
 

1365 9  MPa
2 1

m

m

m

E
G .


 


. (53) 

We produced layered composite sheets also from the polyester resin, from which 

we cut out the test specimens which we needed for the measuring of the material 

properties of the matrix material. The parameters of production process of the 

matrix material were identical to the ones applied at the production of the textile 

composite plates ( 65 68 °CT   , 6 barp  , 2 ht  ), therefore the material 

properties measured on these test specimen must be identical to the material prop-

erties of the matrix material of the investigated composite. 

4 Validation of Results of the Layer Model-Cell by 

Measurement 

The macroscopic material constants of a layer of an eight-layer textile composite 

laminate was determined by finite element simulation with the layer model-cell in 

Section 3. For validation of results by measurement we can only use an eight-layer 

composite laminate. 

In the measurement investigated laminate all layers has the same orientation: 

 0 0 0 0 0 0 0 0/ / / / / / /        . The 1 2 3x x x  material coordinate system of the 

composite laminate is identical to the material coordinate system of a single layer. 

The material constants of the eight-layer textile composite plate are identical to 

the material constants of the single layers (52), therefore: 

8 8

1 2 1 50 700 MPal lE E E   ,   8

12 12 0 103l .   ,   8

12 12 2 900 MPalG G  . 

The 
1E  modulus of elasticity and the 

12  Poisson's ratio of the eight-layer textile 

composite were determined by measurement according to EN ISO 527-4 standard 

[6]. The experimental examinations were performed with the test specimen that 

can be seen in Figure 18. In the experiment tensions took place in the material 

principal directions, 1 xe e  and 2 ye e . In the tension test the 1  longitudinal 

and the 2  transversal strain, the F tension force and the change of L length of 

specimen were measured with 0 02 sect .  sampling. 
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Figure 18 

Tension test specimen 

 

Figure 20 

Test specimen in the 

tension test machine 

 

Figure 19 

Shear test specimen 

For determination of 
1E  modulus of elasticity a  1 1   linear function was fitted 

on the  1 1;   measured point set by the least squares method. The slope of this 

linear function is the investigated 
1E . For the determination of 

12  Poisson's ratio 

a  2 1   linear function was fitted for the  1 2;   measured point set by the least 

squares method. 
12  is equal to the -1 times the slope of the obtained linear func-

tion. We processed the measurement data by the Microsoft Excel program. We 

carried out the tension test by using six tension test specimens. One of these can 

be seen in Figure 20 in the tension test machine. 

The 
12G  shear modulus was measured according to regulations of ASTM D3518 / 

D3518M – 13 standard [2]. The shape and dimension (Figure 19) of the shear test 

specimen was the same as the tension test specimen (Figure 18), however in the 

shear test specimen the reinforcing textile is positioned in every layer in 45° com-

pared to the longitudinal axis of the test specimen. It means that the 
1x  material 

principal direction had a –45° angle with the axis of the tension. At the shear test 

the 
x , y  strains, the F tension force and the change of L length of specimen 

were measured with 0 02 sect .  sampling. 

The 12  shearing strain value from the x , y  strains (coordinate transformation) 

and the 12  shear stress from the x  normal stress could be computed. The 12  

stress is a linear function of the 12  shearing strain. For determination of 12G  

shear modulus of elasticity a  12 12   linear function was fitted on the  12 12;   

measured point set by the least squares method. The slope of this linear function is 
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the investigated 
12G . The shear test was also carried out by using six test speci-

mens. 

The averages of the material constants were calculated from the six tension and 

six shear results. We determined the variance and variance square of the measured 

values as well as the deviation from the average. If the deviation was too large at 

any of the test specimens, we studied whether the given measurement has a math-

ematically or statistically detectable gross error. If we noted a gross error, we 

ignored the measured results belonging to the given experiment. Then we used 

Student’s distribution to calculate the error range of the determined material con-

stants [5]. 

Table 3 contains the computed and measured results for the 1E  modulus of elastic-

ity, the 12  Poisson's ratio and the 12G  shear modulus of elasticity. We can ob-

serve that the material properties created by the layer model-cell are within the 

margin of error of the measurement. The deviation of computed results is below 

4% compared to the average of the measurement. So, the layer model-cell fulfils 

the necessary accuracy required for engineering modeling. This fact confirms that 

the model-cell approach for determination of layer properties is an efficient and 

well applicable method for determination of the orthotropic material constants of 

textile composite layers. 

Table 3 

Comparing the measurement results to the layer model-cell results 

Finite element 

layer model-cell 
Measurement 

Deviation of the results of 

model-cell from the average 

value of measurement 

1 50 700  MPaE   
1 50 094 1480 MPaE    606 MPa  1 21 . %  

12 0 103.   
12 0 102 0 016. .    0 001.  0 98 . %  

12 2 900 MPaG   
12 3 018 254 MPaG    118 MPa  3 91 . %  

Conclusions 

The paper presents a layer model-cell for the estimation and determination of the 

macroscopic, orthotropic material properties of a single layer of a multilayered 

textile composite material. It introduces the building up of the finite element layer 

model-cell and the prescription of boundary conditions applied to the finite ele-

ment computations. It shows an example for determination of macroscopic mate-

rial properties of the given textile composite layer with the numerical modeling of 

a unidirectional tension and plane shear by the layer model-cell. 

Beside the determination of the material properties by the layer model cell the 

paper shows results for the same material by experimental way. The comparison 

of the results obtained from simulation and experiments confirms and proves the 

applicability of the layer model-cell and the roving model-cell in engineering. 
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