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Abstract: The hardware implementation of neural networks is a new step in the evolution 
and use of neural networks in practical applications. The CMAC cerebellar model 
articulation controller is intended especially for hardware implementation, and this type of 
network is used successfully in the areas of robotics and control, where the real time 
capabilities of the network are of particular importance. The implementation of neural 
networks on FPGA’s has several benefits, with emphasis on parallelism and the real time 
capabilities.This paper discusses the hardware implementation of the CMAC type neural 
network, the architecture and parameters and the functional modules of the hardware 
implemented neuro-processor. 
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1 Introduction 

Great interest has been manifested lately for the utilization of adaptive modeling 
and control, based on biological structures and learning algorithms. Control 
systems need to have high dynamic performance and robust behavior. These 
controllers are expected to cope with complex [1], uncertain and nonlinear 
dynamic processes. It is difficult to obtain a mathematical representation of 
uncertain and nonlinear dynamic processes that impose an intelligent modeling 
and control. For static system modeling one can use feed-forward static networks 
like Multi-Layer Perceptrons (MLP), Radial Basis Function (RBF). For dynamic 
system modeling, neural networks that show temporal behaviour can be used. 

The major disadvantage of MLPs and the MLP-based dynamic networks is their 
slow training algorithm. This drawback may be an obstacle to apply them for real-
time adaptive modeling problems. 
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Using networks with only a single trainable layer, the learning speed can be 
significantly increased. 

CMAC (Cerebellar Model Articulation Controller) and RBF (Radial Basis 
Function) are networks with a single trainable layer and have better capabilities 
than multi-layer perceptrons. The most important properties of the CMAC type 
controller are the fast learning capability and the special architecture that allows 
digital hardware implementation. 

2 CMAC Network 

Cerebellar Model Articulation Controller networks play an important role in non-
linear function approximation and system modeling. The main advantages of 
CMAC type networks compared to MLP, are their extremely fast learning and the 
possibility of low-cost digital implementation. 

The CMAC network can be represented as a three layer system (Figure 1) with a 
normalized input space, basis functions, and output, and can be considered as an 
associative memory, which realizes two subsequent mappings. 

 
Figure 1 

CMAC network as a three layer system 

The first one - which is a non-linear mapping - projects an input space point u into 
a binary association vector a. 

The association vectors always have C active elements, which means that C bits of 
an association vector have the value ‘1’ and the others have the value ‘0’. C is an 
important parameter of the CMAC network and it is much less than the length of 
the association vector (Figure 2). 
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In practical applications the two mappings are implemented by a two-layer 
network. The first layer is responsible for mapping the input points to the 
association vectors; this mapping is fixed (can be wired in hardware). 

 
Figure 2 

The mapping of a CMAC The trajectory tracking 

The second layer is trainable and realizes a linear combination of the weight 
vector and the association basis function vector. The input variables are divided 
into overlapped regions and every region is subdivided into quantization intervals. 
The output value for an input point can be considered as a weighted sum of 
selected basis functions [2]. The resolution of the network and the shift positions 
of the overlapping regions are determined by this quantization. 

A given value of an input variable activates all the regions where the input is 
within a quantization interval of a region. 

 
Figure 3 

The receptive fields of a two-variable Albus CMAC 
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Every element in the association vector corresponds to a basis function. Each basis 
function has a so-called receptive field. 

The shaded regions in Figure 3 are receptive fields of different basis functions [3]. 
If an input point is within a receptive field, the corresponding basis function is 
selected. The basis functions are grouped into overlays. One overlay contains 
basis functions with non-overlapping supports, but the union of the supports 
covers the whole input space. The different overlays have the same structure; they 
consist of similar basis functions in shifted positions. The positions of the overlays 
and the basis functions of one overlay can be represented by definite points. 

In the original Albus scheme the overlay-representing points are in the main 
diagonal of the input space, while the basis function positions are represented by 
the sub-diagonal points as it is shown in Figure 3. The overlay representing points 
can be described as displacement vectors the elements of which are the 
coordinates of the definite points. Every input data will select C basis functions, 
each of them on a different overlay, so in an overlay one and only one basis 
function will be active for every input point. As every selected basis function will 
be multiplied by a weight value, the size of the weight memory is equal to the total 
number of basis functions or to the length of the association vector. As an element 
of the association vector can be considered as the value of a basis function for a 
given input, the output of the binary basis function is one if an input is in its 
receptive field and zero elsewhere: 
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The application of such functions means that if the basis functions are selected, the 
sum of the corresponding weights will form the network's output value 
independently of the exact position of the input point in the receptive fields of the 
basis functions: 
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The output of the network can be obtained without the need of any multiplication 
in the case of the binary basis function. As the output layer is the only trainable 
layer of the CMAC, and as this output layer performs linear operations, the simple 
LMS algorithm can be applied to train the network: 

)()()()1( kakkwkw με+=+  (3) 

where k is the discrete time index, ε(k) is the error of the network and a(k) is the 
association vector at step k. As it is a sparse binary vector only those weights will 
be modified during the training process which take part in the forming of the 
output value. 



Acta Polytechnica Hungarica Vol. 4, No. 3, 2007 

 – 9 – 

3 Parallel Implementations of Neural Networks 

Fast implementations of neural network applications are useful because of the 
very high number of required arithmetic operations. Such implementations might 
use massively parallel computers as well as digital or analog hardware designs. 
This section briefly discusses the use of the various possible parallel devices. 

• General purpose parallel computers. Fine-grain parallel implementations on 
massively parallel suffer from the connectivity of standard neural models which 
results in costly information exchanges. Coarse grain parallel implementations are 
mainly applied to neural learning, so that their efficiency suffers from the 
sequentiallity of standard learning algorithms such as stochastic gradient descent. 

• Dedicated parallel computers. Neuro-computers are parallel systems dedicated 
to neural computing. They are based on computing devices such as DSPs (digital 
signal processors), or neuroprocessors. Their use suffers from their cost and their 
development time: they rapidly become out-of-date, compared to the most recent 
sequential processors. Most well-known neurocomputers are described in [5, 6]. 

• Analog ASICs. Many analog hardware implementations have been realized. 
They are very fast, dense and low-power, but they introduce specific problems, 
such as precision, data storage, robustness. On-chip learning is difficult. 

• Digital ASICs. Many digital integrated circuits have also been designed for 
neural networks. Compared to analog chips, they provide more accuracy, they are 
more robust, and they can handle any standard neural computation. They usually 
implement limited parts of neural networks, so as to be included in neuro-
computer systems ([4, 8]). 

• The FPGA solution. The appearance of programmable hardware devices, 
algorithms may be implemented on very fast integrated circuits with software-like 
design principles, whereas usual VLSI designs lead to very high performances at 
the price of very long production times (up to 6 months). 

FPGAs, such as Xilinx FPGA ([9]), are based on a matrix of configurable logic 
blocks (CLBs). Each CLB contains several logic cells that are able to implement 
small logical functions (4 or 5 inputs) with a few elementary memory devices 
(flip-flops or latches) and some multiplexers. CLBs can be connected thanks to a 
configurable routing structure. In Xilinx FPGAs, CLBs can be efficiently 
connected to neighbouring CLBs as well as CLBs in the same row or column. The 
configurable communication structure can connect external CLBs to input/output 
blocks (IOBs) that drive the input/output pads of the chip. 

An FPGA approach simply adapts to the handled application, whereas a usual 
VLSI implementation requires costly rebuildings of the whole circuit when 
changing some characteristics. A design on FPGA requires the description of 
several operating blocks. Then the control and the communication schemes are 
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added to the description, and an automatic ‘compiling’ tool maps the described 
circuit onto the chip. Therefore configurable hardware appears as well- adapted to 
obtain efficient and flexible neural network implementations. 

Neural Networks on FPGAs: Specific Assets 

As stated above, FPGAs offer a cheap, easy and flexible choice for hardware 
implementations. They also have several specific advantages for neural 
implementations: 

• Reprogrammable FPGAs permit prototyping 

• FPGAs may be used for embedded applications, when the robustness and the 
simplicity of neural computations is most needed, even for lowscale productions. 

4 Implemented CMAC Network Block Modules 

The most important characteristics are the number of inputs, inputs’ limits, 
number of internal points, generalization parameters, the basis function’s type. For 
a better use of the capacity of the FPGA instrument the above mentioned 
parameters are a multiple or exponent of two. 

 
Figure 4 

Implemented CMAC network block schemtic 

The implemented network consists of the following main modules: the 
input/output module, the control module, and the network itself. The input output 
module assures the weight initialization, the data introduction and extraction. The 
control unit drives the network both in the output elaboration and the training 
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phase. The network itself is composed of several functional subunits, which were 
separately designed in VHDL. The modular design assures a network with a high 
flexibility and easy manageability. Figure 4 shows the implemented CMAC 
network block’s schematic. 

4.1 The Input/Output Module 

The input/output module: Due to the fact that, by construction, the utilized FPGA 
development board uses the PC parallel port for downloading the configuration 
bit-stream, the easiest and most forthcoming way to exchange data with the 
CMAC network also is to use the same port. The issue that arises by doing so, is 
the limited number of bits available, which requires a custom serial protocol to be 
put in place. Hence, a synchronous, full-duplex serial communication module, the 
input/output module has been implemented. It manages the delivery of the initial 
weight values, the network input and the retrieval of the network output. 

4.2 The Control Unit 

The control unit is composed of a binary counter a sequence decoder and a layer 
decoder. This unit elaborates the different signals to control the network in 
different phases. 

For each training point a time step is composed of seven cycles. Four cycles are 
used to compute the neural network output and three to calculate and update the 
new weight values (Figure 5). The computation cycles take place after the input 
and target values have been uploaded. 

 
Figure 5 

Flowchart of the neural network computation 
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4.3 CMAC Network Overlay Module 

Two versions of the network have been developed. In the first version the weight 
values were stored in internal registers and the used triangular basis functions 
were implemented using logical elements (Figure 6). The main drawback of this 
approach is the fact that the most of the flip-flop type resources of the FPGA have 
been consumed by the weight storage. As a result it was impossible to implement 
large networks by this means. 

 
Figure 6 

Overlay module structure I 

In the second version of the network architecture we used Block RAMs to store 
weights and the basis function values (Figure 7). 

 
Figure 7 

Overlay module structure II 
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By applying this change of FPGA resource utilization strategy, several advantages 
have emerged. The implementation has become more flexible as several basis 
function types can be now easily programmed. 

The weight address and basis function address can be easily computed by integer 
division and by the rest of the integer division. In our Block RAM implementation 
the above mentioned operation can smoothly be implemented by selecting the 
higher or the lower bits of network input value. 

In the case of multiple inputs the weight addressing is accomplished by simple 
mapping of the weights addresses on  higher and lower memory address positions. 

5 Experimental Results 

These modules were developed in VHDL description language without using any 
schematics. The implemented networks were parameterized. Any other network 
can be generated by modifying the network parameters defined in the top level 
module. 

For an easy development and tests an interface was created in Matlab with a driver 
implemented in Visual C++. The Visual C++ module contains the following 
functions: basis function upload, weights’ initial value upload, inputs and target 
value uploads, the network output download to PC which, were accessed from 
Matlab. 

Multiple tests and multiple networks with different parameters were tested. Table 
1 contains the network parameters used in the performed experiments. The figures 
in the following section present some measurement results. These figures were 
recorded as results of a network with two input variables. 

Table 1 
Network parameters 

Parameter name Parameter value
Number of inputs 2
Number of bits per input variable 8
Basis functions receptive filed dimension 32x32
Number of overlays 4
Number of bits for weight value 6
Number of bits for basis function values 4

In the next figures 3D plots are presented for two target surfaces (Figure 8 and 
Figure 13), with a two variable function approximation. The subsequent figures 
contain a few samples of the learning process, starting with the response given 
using randomly initialized weights (Figure 9 respectevly Figure 14). As one can 
easily see, how the network gradually learns its tasks (in Figures 10, 11 for the 
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first surface and in Figures 15, 16 for the second surface) and how the error 
decreases (Figures 12 and 17). It should be mentioned that all parameters use 
integer representation. Obviously better accuracy could be achieved by using 
floating point or fixed point arithmetics. 

Table 2 
Resource utilization 

Nr of resources Used Available Used %
Slices 132 7680 1.7
Slice Flip Flops 107 15360 0.7
4 input LUTs 232 15360 1.5
Bonded IOBs 65 173 37
BRAMs 8 24 33
MULT18X18s 4 24 16.5
GCLKs 3 8 37

As it can be seen from Table 2, the resource utilization of the current 
implementation is very low, a version with higher precision would comfortably fit 
on the FPGA circuit. 

 
Figure 8 

Reference surface 

 
Figure 9 

Initial form of surface 

 
Figure 10 

Learned surface after 20 epochs 

 
Figure 11 

Learned surface after 40 epochs 
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Figure 12 

Squared aproximation error 

 

Figure 13 
Reference surface 

 
Figure 14 

Initial form of surface 

 
Figure 15 

Learned surface after 40 epochs 

 
Figure 16 

Learned surface after 100 epochs 

 
Figure 17 

The trajectory tracking 

Conclusions 

A CMAC type hardware implemented network with one and two inputs has been 
developed. Due to the nature of the platform (FPGA), a very flexible architecture 
took shape, where most of the parameters can be modified. In the hardware 
implemented CMAC controller the follow error can be decreased by increasing 
the number of bits used for parameter representation, and for input coding. 
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Using an FPGA with more resources, the presented controller can easily be 
modified to use more than two inputs. The developed network is very fast, in 8 
clock cycles it can obtain the network output. One of the main novelties of this 
implementation is that on-chip dynamic learning is performed without significant 
loss of efficiency and precision while maintaining reasonably low FPGA resource 
utilization. 
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