
Acta Polytechnica Hungarica Vol. 4, No. 3, 2007

 – 5 –

Hardware Implementation of CMAC Type
Neural Network on FPGA for Command
Surface Approximation

Sándor Tihamér Brassai, László Bakó
Sapientia - Hungarian University of Transilvania, Faculty of Technical and
Human Sciences, Târgu–Mureş, Romania, 547367 Corunca, Şos. Sighişoarei 1C

E-mail: tiha@ms.sapientia.ro, lbako@ms.sapientia.ro

Abstract: The hardware implementation of neural networks is a new step in the evolution
and use of neural networks in practical applications. The CMAC cerebellar model
articulation controller is intended especially for hardware implementation, and this type of
network is used successfully in the areas of robotics and control, where the real time
capabilities of the network are of particular importance. The implementation of neural
networks on FPGA’s has several benefits, with emphasis on parallelism and the real time
capabilities.This paper discusses the hardware implementation of the CMAC type neural
network, the architecture and parameters and the functional modules of the hardware
implemented neuro-processor.

Keywords: Neural networks, CMAC, Neural networks hardware implementation, FPGA

1 Introduction

Great interest has been manifested lately for the utilization of adaptive modeling
and control, based on biological structures and learning algorithms. Control
systems need to have high dynamic performance and robust behavior. These
controllers are expected to cope with complex [1], uncertain and nonlinear
dynamic processes. It is difficult to obtain a mathematical representation of
uncertain and nonlinear dynamic processes that impose an intelligent modeling
and control. For static system modeling one can use feed-forward static networks
like Multi-Layer Perceptrons (MLP), Radial Basis Function (RBF). For dynamic
system modeling, neural networks that show temporal behaviour can be used.

The major disadvantage of MLPs and the MLP-based dynamic networks is their
slow training algorithm. This drawback may be an obstacle to apply them for real-
time adaptive modeling problems.

S. T. Brassai et al.
Hardware Implementation of CMAC Type Neural Network on FPGA for Command Surface Approximation

 – 6 –

Using networks with only a single trainable layer, the learning speed can be
significantly increased.

CMAC (Cerebellar Model Articulation Controller) and RBF (Radial Basis
Function) are networks with a single trainable layer and have better capabilities
than multi-layer perceptrons. The most important properties of the CMAC type
controller are the fast learning capability and the special architecture that allows
digital hardware implementation.

2 CMAC Network

Cerebellar Model Articulation Controller networks play an important role in non-
linear function approximation and system modeling. The main advantages of
CMAC type networks compared to MLP, are their extremely fast learning and the
possibility of low-cost digital implementation.

The CMAC network can be represented as a three layer system (Figure 1) with a
normalized input space, basis functions, and output, and can be considered as an
associative memory, which realizes two subsequent mappings.

Figure 1

CMAC network as a three layer system

The first one - which is a non-linear mapping - projects an input space point u into
a binary association vector a.

The association vectors always have C active elements, which means that C bits of
an association vector have the value ‘1’ and the others have the value ‘0’. C is an
important parameter of the CMAC network and it is much less than the length of
the association vector (Figure 2).

Acta Polytechnica Hungarica Vol. 4, No. 3, 2007

 – 7 –

In practical applications the two mappings are implemented by a two-layer
network. The first layer is responsible for mapping the input points to the
association vectors; this mapping is fixed (can be wired in hardware).

Figure 2

The mapping of a CMAC The trajectory tracking

The second layer is trainable and realizes a linear combination of the weight
vector and the association basis function vector. The input variables are divided
into overlapped regions and every region is subdivided into quantization intervals.
The output value for an input point can be considered as a weighted sum of
selected basis functions [2]. The resolution of the network and the shift positions
of the overlapping regions are determined by this quantization.

A given value of an input variable activates all the regions where the input is
within a quantization interval of a region.

Figure 3

The receptive fields of a two-variable Albus CMAC

S. T. Brassai et al.
Hardware Implementation of CMAC Type Neural Network on FPGA for Command Surface Approximation

 – 8 –

Every element in the association vector corresponds to a basis function. Each basis
function has a so-called receptive field.

The shaded regions in Figure 3 are receptive fields of different basis functions [3].
If an input point is within a receptive field, the corresponding basis function is
selected. The basis functions are grouped into overlays. One overlay contains
basis functions with non-overlapping supports, but the union of the supports
covers the whole input space. The different overlays have the same structure; they
consist of similar basis functions in shifted positions. The positions of the overlays
and the basis functions of one overlay can be represented by definite points.

In the original Albus scheme the overlay-representing points are in the main
diagonal of the input space, while the basis function positions are represented by
the sub-diagonal points as it is shown in Figure 3. The overlay representing points
can be described as displacement vectors the elements of which are the
coordinates of the definite points. Every input data will select C basis functions,
each of them on a different overlay, so in an overlay one and only one basis
function will be active for every input point. As every selected basis function will
be multiplied by a weight value, the size of the weight memory is equal to the total
number of basis functions or to the length of the association vector. As an element
of the association vector can be considered as the value of a basis function for a
given input, the output of the binary basis function is one if an input is in its
receptive field and zero elsewhere:

⎪⎩

⎪
⎨
⎧

−=
otherwise

functionbasisthitheof
fieldreceptivetheisuif

uai

0

1
)((1)

The application of such functions means that if the basis functions are selected, the
sum of the corresponding weights will form the network's output value
independently of the exact position of the input point in the receptive fields of the
basis functions:

∑
=

=
C

i
ii wuauy

1
)()((2)

The output of the network can be obtained without the need of any multiplication
in the case of the binary basis function. As the output layer is the only trainable
layer of the CMAC, and as this output layer performs linear operations, the simple
LMS algorithm can be applied to train the network:

)()()()1(kakkwkw με+=+ (3)

where k is the discrete time index, ε(k) is the error of the network and a(k) is the
association vector at step k. As it is a sparse binary vector only those weights will
be modified during the training process which take part in the forming of the
output value.

Acta Polytechnica Hungarica Vol. 4, No. 3, 2007

 – 9 –

3 Parallel Implementations of Neural Networks

Fast implementations of neural network applications are useful because of the
very high number of required arithmetic operations. Such implementations might
use massively parallel computers as well as digital or analog hardware designs.
This section briefly discusses the use of the various possible parallel devices.

• General purpose parallel computers. Fine-grain parallel implementations on
massively parallel suffer from the connectivity of standard neural models which
results in costly information exchanges. Coarse grain parallel implementations are
mainly applied to neural learning, so that their efficiency suffers from the
sequentiallity of standard learning algorithms such as stochastic gradient descent.

• Dedicated parallel computers. Neuro-computers are parallel systems dedicated
to neural computing. They are based on computing devices such as DSPs (digital
signal processors), or neuroprocessors. Their use suffers from their cost and their
development time: they rapidly become out-of-date, compared to the most recent
sequential processors. Most well-known neurocomputers are described in [5, 6].

• Analog ASICs. Many analog hardware implementations have been realized.
They are very fast, dense and low-power, but they introduce specific problems,
such as precision, data storage, robustness. On-chip learning is difficult.

• Digital ASICs. Many digital integrated circuits have also been designed for
neural networks. Compared to analog chips, they provide more accuracy, they are
more robust, and they can handle any standard neural computation. They usually
implement limited parts of neural networks, so as to be included in neuro-
computer systems ([4, 8]).

• The FPGA solution. The appearance of programmable hardware devices,
algorithms may be implemented on very fast integrated circuits with software-like
design principles, whereas usual VLSI designs lead to very high performances at
the price of very long production times (up to 6 months).

FPGAs, such as Xilinx FPGA ([9]), are based on a matrix of configurable logic
blocks (CLBs). Each CLB contains several logic cells that are able to implement
small logical functions (4 or 5 inputs) with a few elementary memory devices
(flip-flops or latches) and some multiplexers. CLBs can be connected thanks to a
configurable routing structure. In Xilinx FPGAs, CLBs can be efficiently
connected to neighbouring CLBs as well as CLBs in the same row or column. The
configurable communication structure can connect external CLBs to input/output
blocks (IOBs) that drive the input/output pads of the chip.

An FPGA approach simply adapts to the handled application, whereas a usual
VLSI implementation requires costly rebuildings of the whole circuit when
changing some characteristics. A design on FPGA requires the description of
several operating blocks. Then the control and the communication schemes are

S. T. Brassai et al.
Hardware Implementation of CMAC Type Neural Network on FPGA for Command Surface Approximation

 – 10 –

added to the description, and an automatic ‘compiling’ tool maps the described
circuit onto the chip. Therefore configurable hardware appears as well- adapted to
obtain efficient and flexible neural network implementations.

Neural Networks on FPGAs: Specific Assets

As stated above, FPGAs offer a cheap, easy and flexible choice for hardware
implementations. They also have several specific advantages for neural
implementations:

• Reprogrammable FPGAs permit prototyping

• FPGAs may be used for embedded applications, when the robustness and the
simplicity of neural computations is most needed, even for lowscale productions.

4 Implemented CMAC Network Block Modules

The most important characteristics are the number of inputs, inputs’ limits,
number of internal points, generalization parameters, the basis function’s type. For
a better use of the capacity of the FPGA instrument the above mentioned
parameters are a multiple or exponent of two.

Figure 4

Implemented CMAC network block schemtic

The implemented network consists of the following main modules: the
input/output module, the control module, and the network itself. The input output
module assures the weight initialization, the data introduction and extraction. The
control unit drives the network both in the output elaboration and the training

Acta Polytechnica Hungarica Vol. 4, No. 3, 2007

 – 11 –

phase. The network itself is composed of several functional subunits, which were
separately designed in VHDL. The modular design assures a network with a high
flexibility and easy manageability. Figure 4 shows the implemented CMAC
network block’s schematic.

4.1 The Input/Output Module

The input/output module: Due to the fact that, by construction, the utilized FPGA
development board uses the PC parallel port for downloading the configuration
bit-stream, the easiest and most forthcoming way to exchange data with the
CMAC network also is to use the same port. The issue that arises by doing so, is
the limited number of bits available, which requires a custom serial protocol to be
put in place. Hence, a synchronous, full-duplex serial communication module, the
input/output module has been implemented. It manages the delivery of the initial
weight values, the network input and the retrieval of the network output.

4.2 The Control Unit

The control unit is composed of a binary counter a sequence decoder and a layer
decoder. This unit elaborates the different signals to control the network in
different phases.

For each training point a time step is composed of seven cycles. Four cycles are
used to compute the neural network output and three to calculate and update the
new weight values (Figure 5). The computation cycles take place after the input
and target values have been uploaded.

Figure 5

Flowchart of the neural network computation

S. T. Brassai et al.
Hardware Implementation of CMAC Type Neural Network on FPGA for Command Surface Approximation

 – 12 –

4.3 CMAC Network Overlay Module

Two versions of the network have been developed. In the first version the weight
values were stored in internal registers and the used triangular basis functions
were implemented using logical elements (Figure 6). The main drawback of this
approach is the fact that the most of the flip-flop type resources of the FPGA have
been consumed by the weight storage. As a result it was impossible to implement
large networks by this means.

Figure 6

Overlay module structure I

In the second version of the network architecture we used Block RAMs to store
weights and the basis function values (Figure 7).

Figure 7

Overlay module structure II

Acta Polytechnica Hungarica Vol. 4, No. 3, 2007

 – 13 –

By applying this change of FPGA resource utilization strategy, several advantages
have emerged. The implementation has become more flexible as several basis
function types can be now easily programmed.

The weight address and basis function address can be easily computed by integer
division and by the rest of the integer division. In our Block RAM implementation
the above mentioned operation can smoothly be implemented by selecting the
higher or the lower bits of network input value.

In the case of multiple inputs the weight addressing is accomplished by simple
mapping of the weights addresses on higher and lower memory address positions.

5 Experimental Results

These modules were developed in VHDL description language without using any
schematics. The implemented networks were parameterized. Any other network
can be generated by modifying the network parameters defined in the top level
module.

For an easy development and tests an interface was created in Matlab with a driver
implemented in Visual C++. The Visual C++ module contains the following
functions: basis function upload, weights’ initial value upload, inputs and target
value uploads, the network output download to PC which, were accessed from
Matlab.

Multiple tests and multiple networks with different parameters were tested. Table
1 contains the network parameters used in the performed experiments. The figures
in the following section present some measurement results. These figures were
recorded as results of a network with two input variables.

Table 1
Network parameters

Parameter name Parameter value
Number of inputs 2
Number of bits per input variable 8
Basis functions receptive filed dimension 32x32
Number of overlays 4
Number of bits for weight value 6
Number of bits for basis function values 4

In the next figures 3D plots are presented for two target surfaces (Figure 8 and
Figure 13), with a two variable function approximation. The subsequent figures
contain a few samples of the learning process, starting with the response given
using randomly initialized weights (Figure 9 respectevly Figure 14). As one can
easily see, how the network gradually learns its tasks (in Figures 10, 11 for the

S. T. Brassai et al.
Hardware Implementation of CMAC Type Neural Network on FPGA for Command Surface Approximation

 – 14 –

first surface and in Figures 15, 16 for the second surface) and how the error
decreases (Figures 12 and 17). It should be mentioned that all parameters use
integer representation. Obviously better accuracy could be achieved by using
floating point or fixed point arithmetics.

Table 2
Resource utilization

Nr of resources Used Available Used %
Slices 132 7680 1.7
Slice Flip Flops 107 15360 0.7
4 input LUTs 232 15360 1.5
Bonded IOBs 65 173 37
BRAMs 8 24 33
MULT18X18s 4 24 16.5
GCLKs 3 8 37

As it can be seen from Table 2, the resource utilization of the current
implementation is very low, a version with higher precision would comfortably fit
on the FPGA circuit.

Figure 8

Reference surface

Figure 9

Initial form of surface

Figure 10

Learned surface after 20 epochs

Figure 11

Learned surface after 40 epochs

Acta Polytechnica Hungarica Vol. 4, No. 3, 2007

 – 15 –

Figure 12

Squared aproximation error

Figure 13
Reference surface

Figure 14

Initial form of surface

Figure 15

Learned surface after 40 epochs

Figure 16

Learned surface after 100 epochs

Figure 17

The trajectory tracking

Conclusions

A CMAC type hardware implemented network with one and two inputs has been
developed. Due to the nature of the platform (FPGA), a very flexible architecture
took shape, where most of the parameters can be modified. In the hardware
implemented CMAC controller the follow error can be decreased by increasing
the number of bits used for parameter representation, and for input coding.

S. T. Brassai et al.
Hardware Implementation of CMAC Type Neural Network on FPGA for Command Surface Approximation

 – 16 –

Using an FPGA with more resources, the presented controller can easily be
modified to use more than two inputs. The developed network is very fast, in 8
clock cycles it can obtain the network output. One of the main novelties of this
implementation is that on-chip dynamic learning is performed without significant
loss of efficiency and precision while maintaining reasonably low FPGA resource
utilization.

References

[1] J. S. Albus, "A New Approach to Manipulator Control: The Cerebellar
Model Articulation Controller (CMAC)," Transaction of the ASME, Sep,
1975, pp. 220-227

[2] Horváth Gábor, Neuralis hálozatok és műszaki alkalmazások, Műegyetemi
Kiadó, Budapest

[3] Horváth, G. Szabó, T. “Kernel CMAC With Improved Capability”, IEEE
Transactions on Systems, Man and Cybernetics, Part B, Volume: 37, Issue:
1, 2007, pp. 124-138, ISSN: 1083-4419

[4] W. Eppler, T. Fisher, H. Gelnmeke, T. Becher, G. Kock. High Speed
Neural Network Chip on PCI-Board. In Proc. MicroNeuro, 1997, pp. 9-17

[5] T. Nordstrem, B. Svensson. Using and Designing Massively Parallel
Computers for Artificial Neural Networks. Journal of Parallel and
Distributed Computing, 14(3), 1992, pp. 260-285

[6] M. Schaefer, T. Schoenauer, C. Wo I ff, G. Hartmann, H. Klar, U. Ruckert.
Simulation of Spiking Neural Networks - Architectures and
Implementations. Neurocomputing, 2002, (48), pp. 647-679

[7] Brassai Sándor Tihamér, Dávid László, Bakó László, Hardware
Implementation of CMAC-based Artificial Network with Process Control
Application, Timişoara, Transaction on Electronics and communication,
Scientific buletin of the „Politehnica” University of Timisoara, 2004, pp.
209-213, ISSN 1583-3380

[8] J. Wawrzynek, K. Asanovi~, N. Morgan. The Design of a
Neuromicroprocessor. IEEE Trans. on Neural Networks, 1993, 4(3):394-
399

[9] Xilinx, editor. The Programmable Logic Data Book. Xilinx, 2002

