
Acta Polytechnica Hungarica Vol. 14, No. 5, 2017

On Modification of Population-Based Approach
Used in Adaptive Differential Evolution Algorithm

Petr Bujok
Department of Computer Science, University of Ostrava
30. dubna 22, 70103 Ostrava, Czech Republic
petr.bujok@osu.cz

A new approach for the mutation operation in the differential evolution (DE) algorithm is
introduced. The aim of this technique is to enhance the mutation strategy to avoid the local
minimum area. The proposed method is implemented to five state-of-the-art DE variants and
the standard DE variant DE/rand/1/bin. Twelve DE variants are compared on CEC 2015
problems at four dimension levels. The results show that the proposed method is able to in-
crease the performance of the original DE variants in the significant part of the test problems.

Keywords: Global optimization problem; differential evolution; auxiliary population; exper-
imental comparison; CEC 2015 test suite

1 Introduction

A single-objective global optimization problem with bound constraints is defined
as follows. The cost function to be minimized is f (~x), ~x = (x1, x2, . . . ,xD) ∈ RD.
The domain of feasible solutions Ω is constrained by bounds, a lower limit (a j)
and an upper limit (b j), Ω = ∏

D
j=1[a j, b j], a j < b j, j = 1, 2, . . . ,D. The global

minimum point ~x∗ satisfying condition f (~x∗) ≤ f (~x), ∀~x ∈ Ω is the solution of the
problem. The fitness is inversely proportional to the cost function, in the case of the
minimization problem.

There is no deterministic algorithm which solves the global optimization problem
in a polynomial time in general. Evolutionary algorithms are mostly able to provide
an acceptable solution in a reasonable computational time. However, even very so-
phisticated adaptive evolutionary algorithms cannot guarantee the finding of an ac-
ceptable solution in the finite computational time. There are optimization problems,
where the state-of-the-art evolutionary algorithms fail. That is why new concepts
applied to evolutionary algorithms are intensively studied. Differential evolution
(DE) is one of the leading paradigms among the evolutionary algorithms.

In this paper, a new approach for the mutation operation in the DE algorithm is intro-
duced. This approach is focused on the problem when the optimization algorithms

– 163 –

Petr Bujok On Modification of Population-based Approach Used in Adaptive DE

get stuck in the local minimum. The newly proposed approach in the operation of
mutation is applied in several well known DE or adaptive DE variants. Selected
DE variants and the corresponding counterparts are used to solve the problems of
CEC 2015 test suite.

The rest of the paper is organized in the following manner. The basic scheme of the
DE algorithm, a brief description of the selected DE variants and some related works
are shown in Section 2, 2.1 and 2.2. The new approach for DE mutation is proposed
in Section 3. Settings of experiments and their results are given in Section 4 and 5.
Finally, conclusions are made in the last Section.

2 Differential Evolution Algorithm

Differential evolution introduced by Storn and Price in [11] is a population-based
evolutionary algorithm for problems with a real-valued cost function. The popula-
tion P of the size N is developed step-by-step from generation to generation.

DE uses evolutionary operators, i.e. mutation, crossover, and selection that are ap-
plied in the development of a new generation of P. The DE algorithm is shown in a
pseudo-code in Algorithm 1.

Algorithm 1 Differential evolution algorithm

initialize population P = {~x1,~x2, . . . ,~xN}
evaluate f (~xi), i = 1,2, . . . ,N
while stopping condition not reached do

for i = 1,2, . . . ,N do
create a new trial vector~y (mutation and crossover)
evaluate f (~y)
if f (~y)≤ f (~xi) then

insert~y into Q
else

insert~xi into Q
end if

end for
P← Q

end while

The new trial point~y is created from a mutant point ~u generated by using a kind of
the mutation and from the current point of the population ~xi by the application of
the crossover. A combination of the mutation and the crossover variant is usually
called a DE strategy. The mutation can cause that a mutant point~u moves out of the
domain Ω. In such a case, the values of u j 6∈ [a j, b j] are turned over into Ω by using
transformation u j ← 2× a j − u j or u j ← 2× b j − u j for the violated component.
A better point from the pair of ~xi, ~y, based on the value of the cost function, is
selected for the new generation (Q).

– 164 –

Acta Polytechnica Hungarica Vol. 14, No. 5, 2017

The most frequently used mutation strategy in DE is rand/1 and it is generated as
follows:

~u =~xr1 +F(~xr2−~xr2) (1)

where~xr1,~xr2,~xr3 are three mutually distinct points taken randomly from population
P, not coinciding with the current~xi, and F > 0 is a control parameter. The crossover
operator constructs the trial vector~y from current individual~xi and the mutant vector
~u. There are two types of a crossover and a binomial crossover replaces the elements
of vector~xi using the following rule:

~yi, j =

 ~ui, j if rand j(0,1)≤ CR or j = rand(1,D)

~xi, j otherwise.
(2)

where rand(1,D) is random vector uniformly distributed in [0,1) and CR ∈ [0,1]
is a control parameter influencing the number of elements to be exchanged by the
crossover. Eq. (2) ensures that at least one element of ~xi is changed, even if CR=
0. The variant of DE using mutation (1) and binomial crossover, in abbreviation
DE/rand/1/bin, is the most frequently used DE strategy in applications.

The DE algorithm has several control parameters whose settings significantly influ-
ence the ability to solve different optimization problems. These control parameters
and their settings have been intensively studied in recent years. A comprehensive
summary of an advanced results in DE research is available in [2, 3, 7], where
several kinds of the mutation and the crossover were listed and some adaptive or
self-adaptive DE variants were described. Swagantan et al.proposed a wide sur-
vey of state of the art of differential evolution algorithm. [4]. No strategy, i.e. a
combination of a mutation and crossover variant, is able to outperform all remain-
ing strategies in the case of all optimization problems. This fact corresponds with
the so-called No-free-lunch theorem [15]. On the other hand, adaptive variants of
DE enable to change DE control parameters during the run of the algorithm to the
current problem without trial-and-error tuning of the control parameters [9, 16].

2.1 Adaptive DE Variants

The self-adaptive DE variants (jDE [1], JADE [18], SaDE [10], and EPSDE [6])
are currently considered as the state-of-the-art DE variants and the performance of
novel DE variants is compared with these state-of-the-art DE variants in currently
appearing studies. These variants are also included in this experiment along with
a variant of composite trial vector generation strategies and the control parameters
that have been recently published (CoDE) [12].

A simple and efficient adaptive DE variant (mostly called jDE in literature) was
proposed by Brest et al. [1]. It uses the DE/rand/1/bin with an evolutionary self-
adaptation of F and CR. The pair of these control parameters is encoded with each
individual of the population and survives if an individual is successful, i.e. if it

– 165 –

Petr Bujok On Modification of Population-based Approach Used in Adaptive DE

generates such a trial vector which is inserted into the next generation. The values
of F and CR are initialized randomly for each point ~xi in population P and survive
with the individuals in the population, but they can be randomly mutated in each
generation with given probabilities τ1 and τ2.

The differential evolution algorithm with strategy adaptation (SaDE) was introduced
by Qin and Suganthan. A more sophisticated and a more efficient variant was pro-
posed later in [10] and it is used in our experimental comparison. Four mutation
strategies (rand/1/bin, rand/2/bin, rand-to-best/2/bin, and current-to-rand/1) for cre-
ating new trial vectors are stored in a strategy pool. Each strategy has a probability
to be selected and applied and these probabilities are updated after each LP genera-
tions.

JADE is an algorithm of the adaptive differential evolution, introduced by Zhang
and Sanderson in [18]. The original DE concept is extended with three different
improvements - current-to-pbest mutation strategy, adaptive control of parameters
F and CR, and archive A. The archive A is initialized as an empty set. In every
generation, parent individuals are replaced by a better offspring, (f (~y)≤ f (~xi)), in-
dividuals are put into the archive. After every generation the archive size is reduced
to N individuals by randomly dropping surplus individuals.

In the EPSDE adaptive variant [6], an ensemble of mutation strategies and param-
eter values is applied. The mutation strategies and the values of control parameters
are chosen from pools. The combination of the strategies and the parameters in the
pools should have diverse characteristics, so that they can exhibit distinct perfor-
mance during different stages of evolution when dealing with a particular problem.
The triplet of (strategy, F , CR) is encoded along with each individual of the popula-
tion. If the parent vector produces a successful offspring vector, this triplet survives
with the trial vector for the next generation and it is also stored. Otherwise, the
triplet is randomly reinitialized.

The last adaptive DE variant used in the experiments is DE with composite trial
vector generation strategies and control parameters, CoDE, presented by Wang et
al. [12]. The results showed that CoDE is at least competitive with the algorithms
in the comparison. The CoDE combines three well-studied trial vector strategies
with three control parameter settings in a random way to generate trial vectors. The
strategies are rand/1/bin, rand/2/bin, and current-to-rand/1 and all the three strate-
gies are applied when generating a new vector (select the offspring vector with the
least function from the triplet).

2.2 Related Works

Zamuda and Brest [17] introduced a detail analysis of controlling of the F , CR
parameters in a new adaptive DE variant (SPSRDEMMS) derived from jDE [1].
Multi-mutation strategy mechanism is applied to the population size reduction. Ap-
plied population-size reduction mechanism decreases a population size to half of
a certain size in three defined stages. Moreover, the population of individuals is
divided into two sub-populations, superior and inferior ones, with respect to the

– 166 –

Acta Polytechnica Hungarica Vol. 14, No. 5, 2017

function values. Further, a migration of the best individual from the better part to
the worse part is occasionally performed. The analysis shows the influence of very
small changes of τ1 and τ2 on the efficiency of SPSRDEMMS.

Wang et al. proposed in 2016 [13] a new DE variant with enhanced covariance ma-
trix crossover called CPI-DE. In this algorithm, a covariance matrix is computed
using the mean vector of the search distribution and it is further updated after each
generation. This covariance matrix enables to generate new individuals in the Eigen
coordinate system (principal components). Two new individuals are generated for
each parent-vector, one in the standard coordinate system and the second one in
Eigen coordinate system. The best one from triplet of parent, children1 and chil-
dren2 is used in next generation. CPI-DE is able to increase performance in two
classic DE variant and three state-of-the-art algorithms as it shown on CEC 2013
and CEC2014 test suites at dimension levels D = 30 and D = 50. CPI-JADE variant
is further compared with three various JADE versions applying another covariance-
matrix approaches.

Wang et al. study a restrained condition of selecting individuals for mutation in
DE [14]. This condition ensures that a randomly selected individuals for mutation
are mutually different and that there is no degenerated (zero-valued) differential
vector. Authors performed experimental comparison of this restrained condition in
six classic DE variants with various mutation and seven state-of-the-art DE algo-
rithm on two benchmark sets (CEC 2005 and CEC 2013). Results show that three
out of six classic DE variants perform significantly better when restrained condition
is violated. In the case of adaptive DE, only CoDE variant without this restrained
condition perform significantly better than the original CoDE algorithm.

Piotrowski in [8] summarized a population size control. Author widely compared
several fixed and flexible population size setting in ten various DE algorithms on two
various test benchmark sets. Author recommended fixed population size N = 100
for artificial problems with smaller dimensions, for middle dimension (approxi-
mately D = 30) a fixed settings N = 3D or N = 5D are the best choice. For dimen-
sion D= 50, the best performing population size was found N = 5D or N = 100. For
the real-world problems with various dimensionality (1 ≤ D ≤ 240) the population
size should be set N = 100 or N = 50. In the case of flexible population size, JADE
with reduction of N based on (un-)successes in previous generations was the best
performing algorithm. If there is no improvement in 4 generations, 1 % of poorer
individuals are removed, and vice versa, if the population is improved, 1 % of newly
generated individuals are added.

3 Enhanced Approach for DE Mutation Strategy

A new approach to increase the efficiency of DE algorithm is proposed. The main
idea is to enhance the mutation strategy to avoid the local minimum area. A signif-
icant problem is that when the population contains some potentially good solutions
the population is slowly moved towards these good individuals. Sometimes this fact
causes that the solution is detected quickly, but often only a poor local solution is

– 167 –

Petr Bujok On Modification of Population-based Approach Used in Adaptive DE

found. The solution to avoid the population from getting stuck in the local solution
area could be in our new DE mutation strategy approach.

Algorithm 2 Differential evolution with enhanced mutation strategy

initialize population P = {~x1,~x2, . . . ,~xN}
evaluate f (~xi), i = 1,2, . . . ,N
initialize auxiliary population R = {~z1,~z2, . . . ,~zNr}, Nr = N ∗ pr, pr ∈ [0, 1]
while stopping condition not reached do

for i = 1,2, . . . ,N do
create a mutation vector~u from P and R (using 3 rules)
produce a new trial point~y
evaluate f (~y)
if f (~y)≤ f (~xi) then

insert~y into Q
else

insert~xi into Q
if point from R was used then

reinitialize currently used point from R
end if

end if
end for
P← Q

end while

Besides the population P of the N potential solutions another population R is initial-
ized and kept in the initialized form during the search process. Sometimes, one of
the vectors in the mutation strategy could be selected from the auxiliary population
R, to leave the local solution area.

The situation in Figure 1 illustrates when the points of the population P (circles
filled white) get stuck in the local solution area. In spite of the stuck P, the points
of the auxiliary population R (circles filled black) are located out from the local
solution area and they could move the points of P.

This mutation approach has several parameters whose settings significantly influ-
ence the efficiency of this method. The first parameter is the size of the auxiliary
population R, denoted Nr. The value of this parameter should be taken from the
interval [1,N]. A bigger size of R means more places to move in the area Ω. We
suppose to compute the value of Nr as a proportion of the population P, Nr= N·pr,
where pr is a real number from [0,1].

The next parameter specifies which point(s) of the actually used mutation strategy
will be selected from Nr. We suppose a very simple idea based on three rules:

1. only one point in the mutation strategy could be selected from R,

2. if the best point is used in the mutation strategy, it is never taken from R,

3. the first point in the equation of the mutation strategy is never taken from R.

– 168 –

Acta Polytechnica Hungarica Vol. 14, No. 5, 2017

a1 a2

b1

b2

Figure 1
Population located in the local solution area and point of the auxiliary population R

For example, in rand/1 mutation strategy (1) only one of the points in bracket (~xr2
or~xr3) could be taken from R.

The last setting of the proposed method specifies how often the auxiliary population
is used. There are many possible ways how to set this parameter, we suppose the
simplest one. The point in the mutation strategy which is given to be from R is
selected from the union of both populations P∪R in each step of each generation. It
means that only the size of the auxiliary population, pr, could control the frequency
of using points from R. The bigger the pr value is, the more frequently points from
R are used and vice versa.

When the point ~z j from the auxiliary population R was used and generate a suc-
cessful trial individual (f (~y) ≤ f (~xi)), then ~z j survives in R. On the other hand,
when a new trial individual is generated using some point of R and it is unsuccess-
ful (f (~y) > f (~xi)), the used point from R is randomly reinitialized in Ω to move to
a better place.

4 Experiments and Settings

The aim of the experiments in this paper is to verify the performance of the pro-
posed enhanced approach in mutation strategy. We apply the proposed method in
six DE variants, one standard DE with fixed settings and five adaptive DE variants
mentioned in Section 2.1. All algorithms in the experiment are implemented in the
Matlab environment.

The test suite of 15 problems was proposed for a special session on Real-Parameter
Numerical Optimization, a part of the Congress on Evolutionary Computation (CEC)

– 169 –

Petr Bujok On Modification of Population-based Approach Used in Adaptive DE

2015. This session was intended as a competition of optimization algorithms where
new variants of algorithms are introduced. The functions are described in [3] in-
cluding the experimental settings required for the competition. The source code of
the functions is also available on the web site given in this report.

It is expected that CEC test suite will currently become one of the most relevant
benchmarks required for publishing new single-objective optimization algorithms.
The test functions CEC 2015 are divided into four categories, based on its difficulty
(from easy to hard): unimodal functions (F1, F2), multimodal functions (F3 - F5),
hybrid functions (F6 - F8) and composition functions (F9 - F15).

Our tests were carried out at four levels of dimension, D = 10,30,50,100, with 51
independent runs per each test function. Each point in the population is evaluated by
the cost function. The function-error value is computed as the difference between
the function value of the current point and the known function value in the global
minimum point. The run of the algorithm stops if the prescribed amount of function
evaluation MaxFES = D× 104 is reached or if the minimum function error in the
population is less than 1×10−8. Such an error value is considered sufficient for an
acceptable approximation of the correct solution. The search range (domain) for all
the test functions is [−100, 100]D.

The parameters of the state-of-the-art DE variants are set to the recommended val-
ues. The values of the jDE variant parameters, τ1 = 0.1, τ2 = 0.1, the learning
period of the SaDE variant, LP= 50, the learning period of the EPSDE variant,
LP= N = 100. The population size of P is set to N = 100 for state-of-the-art al-
gorithms and N = 30 for standard DE/rand/1/bin variant. The control parameters
of F and CR are in standard DE set F = 0.8, CR= 0.8. The size of the auxiliary
population R is set Nr= N×pr, where pr= 0.05. Then the value is Nr= 5 for the
state-of-the-art variants and Nr= 2 for the standard DE/rand/1/bin variant.

5 Results

The median values of twelve compared algorithms (six original DE variants and six
corresponding counterparts based on the proposed approach) are presented in Ta-
bles 3-14. The original variants are denoted based on the abbreviation mentioned
above and the names of the new DE variants are enhanced by the text -mut. The me-
dian values were computed from 51 independent runs for each algorithm, function
and dimension level. The median value for a better variant from the pair original-
new is printed in bold.

The performance of the proposed method is compared by Wilcoxon two-sample
test. The results of these tests are shown in the column Sign.. The symbol + denotes
that new approach outperforms the original DE variant significantly, the symbol -
marks better performance of the original DE variant and the symbol≈ is used when
there is no significant difference between the DE variants. When the DE variant of
the pair is significantly better, the median value is printed in bold and underlined.

For a better comparison of the performance of the proposed approach, the number

– 170 –

Acta Polytechnica Hungarica Vol. 14, No. 5, 2017

of the wins and losses are counted in Table 1. These numbers are counted indepen-
dently for each pair of algorithm and each dimension level. Based on the percent
values of wins we can observe that the enhanced mutation method has the least
efficiency for the JADE (30 %) and EPSDE (33 %) variants. Contrary, the most
efficiency of the new approach is for the standard DE (62 %), for jDE (48 %) and
CoDE (47 %) variants. The overall performance of all 12 algorithms was compared

Table 1
The number of wins and losses of adaptive DE variants and corresponding counterparts

Alg. D = 10 D = 30 D = 50 D = 100 ∑ %
CoDE 5 5 7 6 23 38.3

CoDE-mut 6 8 6 8 28 46.7
DE 5 6 3 4 18 30

DE-mut 7 8 11 11 37 61.7
EPSDE 7 7 7 8 29 48.3

EPSDE-mut 4 5 6 5 20 33.3
JADE 4 8 7 12 31 51.7

JADE-mut 5 5 6 2 18 30
jDE 4 5 5 5 19 31.7

jDE-mut 7 8 7 7 29 48.3
SaDE 4 8 5 7 24 40

SaDE-mut 6 5 8 8 27 45

Table 2
Mean ranks from Friedman-rank test results for all the algorithms in comparison

Alg. D = 10 D = 30 D = 50 D = 100 Mean
JADE 4.1 4.7 4.7 4.5 4.5

JADE-mut 3.8 4.9 4.7 5.3 4.7
jDE-mut 5.5 5.5 5.4 4.9 5.3

jDE 5.6 5.7 5.6 4.9 5.5
EPSDE 7.1 5.7 5.5 6 6.1

EPSDE-mut 7.6 5.7 5.6 6.2 6.3
SaDE-mut 5.3 7.6 6.7 6.7 6.6

SaDE 5.5 7.3 7.1 6.7 6.6
CoDE-mut 8.9 6.7 7.4 7.5 7.6

CoDE 9 7.4 7.5 7.5 7.8
DE-mut 7.7 8.4 8.1 8.6 8.2

DE 7.9 8.4 9.7 9.2 8.8

using Friedman test for medians of function-error values. The null hypothesis on the
equal performance of the algorithms was rejected, the achieved p value for rejection
was p < 5×10−7. Mean ranks of the algorithms are presented in Table 2. Note that
the algorithm winning uniquely in all the problems has the mean rank 1 and another
algorithm being a unique looser in all the problems has the mean rank 12. In the
last column of Table 2, the average mean rank is computed for all dimensions. It is

– 171 –

Petr Bujok On Modification of Population-based Approach Used in Adaptive DE

obvious that the least mean rank is for the original JADE variant. Interesting is the
fact that all pairs of the original DE and the corresponding counterpart are together.
Such a newly proposed DE variant outperforms the original algorithm in four out of
six cases.

In some problems with many local-solution areas, DE algorithm often gets stuck. In
these situations, the individuals of P are located in very small (local-solution) area
and standard DE algorithm is not able to jumped-out. When the individual from the
proposed auxiliary R population is in a mutation occasionally applied, it promises
to use individuals out of the local solution area. On the other side, provided results
show in some problems, that using the auxiliary memory decreases the convergence
of DE. It could be caused by the fact that pr is set to fixed value. Some adaptive
mechanism for pr value could be helpful.

The value of the fundamental control parameter pr influences the efficiency of al-
gorithm. For smaller pr values, very small auxiliary R population of initialized
individuals is used. This means that probability to select some individual of R in the
mutation is very small and moving the population from local solution area is rarely.
On the other side, when pr is set to big value (i.e. close to 1), the initialized points
from R are applied more frequently (almost in each mutation) and the convergence
of the algorithm is decreased.

Conclusions
The experimental comparison showed that the newly proposed enhanced mutation
variant increased the performance of five state-of-the-art DE variants and also of the
standard DE variant in some of the test problems. The number of wins of the new
variants was smaller in the case of very efficiency JADE (30 %) and EPSDE (33 %)
variants. The best performance was detected in the standard DE/rand/1/bin (62 %),
jDE (48 %) or CoDE (47 %) variants.

Based on the Friedman rank test for median values, we can see that the best mean
rank was acquired by the original JADE variant. No one DE variant has the best or
the worst results for all problems and dimension levels. This fact only validates the
No-Free-Lunch theorem [15].

This first study of the proposed mutation method showed that only several initialized
individuals kept during the search process could significantly increase the perfor-
mance of DE. There are many possible parameters to study and improve proposed
technique. The study of the control parameters of the auxiliary population remains
a challenge for further research.

Acknowledgement
This work was supported by the University of Ostrava from the project
SGS08/UVAFM/2016.

– 172 –

Acta Polytechnica Hungarica Vol. 14, No. 5, 2017

Table 3
Medians of function values from 51 runs for DE/rand1/bin and DE/rand1/bin-mut variants and the results
of Wilcoxon signed rank test for D = 10,30

D = 10 D = 30
F DE DE-mut Sign. DE DE-mut Sign.
1 6.27E-02 7.95E-07 + 2.52E+06 61214.9 +
2 0 0 = 171.082 7.86E-06 +
3 20.3169 20.2226 + 20.9627 20.5971 +
4 20.3463 9.90912 + 204.622 45.0517 +
5 982.36 411.36 + 6857.85 3978.27 +
6 0.41629 1.61939 - 3789.85 6690.13 -
7 0.14615 0.19463 ≈ 5.49817 3.02143 +
8 0.32203 0.468 - 1103.15 946.748 ≈
9 100.019 100.018 ≈ 106.192 106.686 -
10 143.109 143.108 ≈ 693.532 735.922 ≈
11 4.31265 4.35499 ≈ 410.239 459.271 -
12 112.403 112.239 ≈ 112.553 109.451 +
13 0.09273 0.09715 - 0.01032 0.01068 -
14 6677.01 6677.01 ≈ 42626.4 43511.7 -
15 100 100 ≈ 100 100 ≈

Table 4
Medians of function values from 51 runs for DE/rand1/bin and DE/rand1/bin-mut variants and the results
of Wilcoxon signed rank test for D = 50,100

D = 50 D = 100
F DE DE-mut Sign. DE DE-mut Sign.
1 4.79E+07 348268 + 6.21E+07 1.34E+06 +
2 121.174 3.58E-03 + 369.562 36.8171 +
3 21.1391 20.8247 + 21.3243 21.2112 +
4 403.504 87.5563 + 910.326 226.249 +
5 13041.1 8637.04 + 30157.3 25113.5 +
6 158580 78616 + 1.93E+07 305807 +
7 42.5321 41.8693 ≈ 137.958 127.193 ≈
8 25810.7 20548 + 3.21E+06 127927 +
9 103.113 102.228 + 110.593 108.105 +

10 3792.33 1266.27 + 10286.9 4194.43 +
11 442.227 709.328 - 760.799 1779.12 -
12 201.536 117.477 + 200.406 116.659 +
13 0.02498 0.02607 - 0.06267 0.06543 -
14 52669.4 52682 - 108853 108887 -
15 100 100 ≈ 100 104.402 -

– 173 –

Petr Bujok On Modification of Population-based Approach Used in Adaptive DE

Table 5
Medians of function values from 51 runs for CoDE and CoDE-mut variants and the results of Wilcoxon
signed rank test for D = 10,30

D = 10 D = 30
F CoDE CoDE-mut Sign. CoDE CoDE-mut Sign.
1 0 0 ≈ 4103.29 8799.17 -
2 0 0 ≈ 0 0 ≈
3 20.1112 20.0963 + 20.6215 20.5205 +
4 10.8867 10.3145 + 111.928 101.869 +
5 443.423 431.602 ≈ 4562.86 4120.39 +
6 27.4738 25.4821 ≈ 758.52 778.078 ≈
7 1.11645 0.94282 + 8.44592 8.41286 ≈
8 2.32 2.39408 ≈ 265.22 251.065 ≈
9 100.474 100.596 - 107.496 107.712 -
10 149.322 147.102 + 535.597 537.875 ≈
11 3.98753 4.10085 ≈ 410.262 301.232 +
12 112.796 112.996 - 110.897 110.783 ≈
13 0.09345 0.09356 ≈ 0.0111 0.01115 ≈
14 6662.87 6662.87 ≈ 42854.9 42838.2 ≈
15 100 100 ≈ 100 100 ≈

Table 6
Medians of function values from 51 runs for CoDE and CoDE-mut variants and the results of Wilcoxon
signed rank test for D = 50,100

D = 50 D = 100
F CoDE CoDE-mut Sign. CoDE CoDE-mut Sign.
1 277480 362414 - 1.36E+06 1.27E+06 ≈
2 1.96E-08 1.02E-06 - 1.67E-06 2.51E-05 -
3 20.8712 20.8052 + 21.1895 21.1579 +
4 268.033 250.965 + 721.089 686.159 +
5 9764.8 9185.22 + 25291.2 25060.5 +
6 4122.22 4687.87 ≈ 316670 296073 ≈
7 41.5762 41.54 ≈ 135.926 142.072 -
8 1283.72 1289.14 ≈ 91204.4 119871 -
9 102.967 103.066 - 110.522 110.429 ≈
10 1877.67 1732.36 + 2946.49 3029.96 ≈
11 403.616 417.833 - 917.103 1049.05 -
12 117.295 117.154 ≈ 115.211 115.435 ≈
13 0.0284 0.02858 - 0.07484 0.0704 +
14 52680.6 52680.6 ≈ 108891 108885 ≈
15 100 100 ≈ 100 100 ≈

– 174 –

Acta Polytechnica Hungarica Vol. 14, No. 5, 2017

Table 7
Medians of function values from 51 runs for EPSDE and EPSDE-mut variants and the results of Wilcoxon
signed rank test for D = 10,30

D = 10 D = 30
F EPSDE EPSDE-mut Sign. EPSDE EPSDE-mut Sign.
1 0 0 ≈ 1125.5 2224.95 ≈
2 0 0 ≈ 0 0 ≈
3 20.1312 20.1168 ≈ 20.6018 20.6295 ≈
4 11.4291 11.2616 ≈ 124.249 123.511 ≈
5 467.604 495.116 ≈ 4885.59 4989.62 ≈
6 15.3399 19.4987 ≈ 941.091 990.867 ≈
7 0.4456 0.44256 ≈ 7.08087 7.22593 ≈
8 0.64177 0.77123 ≈ 333.416 391.655 ≈
9 100.002 100.003 - 105.659 105.444 ≈
10 141.556 141.67 ≈ 544.848 551.536 ≈
11 3.33224 3.31824 ≈ 404.124 404.124 ≈
12 112.07 112.185 ≈ 110.261 110.226 ≈
13 0.09273 0.09273 ≈ 0.01036 0.01032 ≈
14 6670.66 6677.01 ≈ 42793 42784.3 ≈
15 100 100 ≈ 100 100 ≈

Table 8
Medians of function values from 51 runs for EPSDE and EPSDE-mut variants and the results of Wilcoxon
signed rank test for D = 50,100

D = 50 D = 100
F EPSDE EPSDE-mut Sign. EPSDE EPSDE-mut Sign.
1 175045 177178 ≈ 587919 609679 ≈
2 0 0 ≈ 0 0 ≈
3 20.8877 20.8681 ≈ 21.2029 21.2111 ≈
4 286.909 288.666 ≈ 779.656 779.749 ≈
5 10383.8 10305.2 ≈ 27304.9 27242.8 ≈
6 2172.48 2702.65 ≈ 203293 175716 ≈
7 41.0566 41.1552 ≈ 136.885 135.937 ≈
8 869.352 1086.5 ≈ 35186 39968.2 ≈
9 102.456 102.502 ≈ 108.614 108.674 ≈
10 1003.44 938.6 ≈ 3020.22 3281.25 ≈
11 439.034 437.629 ≈ 854.065 862.279 ≈
12 201.536 117.442 + 200.406 117.141 ≈
13 0.02516 0.02502 ≈ 0.06269 0.06239 ≈
14 52662.7 52678.2 ≈ 108865 108870 ≈
15 100 100 ≈ 100 100 ≈

– 175 –

Petr Bujok On Modification of Population-based Approach Used in Adaptive DE

Table 9
Medians of function values from 51 runs for JADE and JADE-mut variants and the results of Wilcoxon
signed rank test for D = 10,30

D = 10 D = 30
F JADE JADE-mut Sign. JADE JADE-mut Sign.
1 0 0 ≈ 1.31028 4.04967 -
2 0 0 ≈ 0 0 ≈
3 20.0579 20.052 ≈ 20.2779 20.2812 ≈
4 3.55754 3.48658 ≈ 26.5575 25.3809 ≈
5 52.7562 57.1781 ≈ 1699.69 1734.4 ≈
6 0.41629 0.41629 ≈ 941.019 1019.68 ≈
7 0.30991 0.31690 ≈ 7.87472 7.66545 +
8 0.53595 0.57577 ≈ 219.249 251.085 ≈
9 100 100 ≈ 106.547 106.395 ≈

10 143.108 143.108 ≈ 715.256 742.593 ≈
11 2.97343 3.02492 ≈ 408.796 408.851 ≈
12 111.798 111.767 ≈ 108.972 109.142 ≈
13 0.09273 0.09273 ≈ 0.01049 0.01041 ≈
14 6670.66 6670.66 ≈ 43620 43410.6 ≈
15 100 100 ≈ 100 100 ≈

Table 10
Medians of function values from 51 runs for JADE and JADE-mut variants and the results of Wilcoxon
signed rank test for D = 50,100

D = 50 D = 100
F JADE JADE-mut Sign. JADE JADE-mut Sign.
1 7272.18 5756.84 ≈ 76376.1 86061.3 ≈
2 0 0 ≈ 0 0 ≈
3 20.3602 20.3676 ≈ 20.4627 20.4655 ≈
4 51.7394 57.042 - 154.44 157.685 ≈
5 3532.94 3486.93 ≈ 10313.6 10331 ≈
6 2661.89 2537.13 ≈ 11887.2 13762 ≈
7 42.5838 42.2447 ≈ 116.745 127.462 ≈
8 1197.8 1215.5 ≈ 3835.97 3945.31 ≈
9 102.66 102.765 ≈ 110.555 111.139 -

10 1760.11 1572.17 + 4361.36 4597.21 ≈
11 522.613 513.155 ≈ 1259.63 1298.47 ≈
12 116.342 116.451 ≈ 116.311 115.426 ≈
13 0.0255 0.02554 ≈ 0.0633 0.06324 ≈
14 52678.2 52680.6 ≈ 108881 108887 ≈
15 100 100 ≈ 101.302 101.463 ≈

– 176 –

Acta Polytechnica Hungarica Vol. 14, No. 5, 2017

Table 11
Medians of function values from 51 runs for jDE and jDE-mut variants and the results of Wilcoxon
signed rank test for D = 10,30

D = 10 D = 30
F jDE jDE-mut Sign. jDE jDE-mut Sign.
1 0 5.88E-08 - 34246.4 31656.3 ≈
2 0 0 ≈ 0 0 ≈
3 20.0689 20.0629 ≈ 20.3096 20.3108 ≈
4 5.45472 5.39326 ≈ 39.9106 40.8473 ≈
5 231.063 195.111 ≈ 2428.06 2422.21 ≈
6 9.86734 9.59008 ≈ 1018.45 1550.9 -
7 0.36721 0.36984 ≈ 8.56411 8.40703 ≈
8 0.47653 0.44016 ≈ 219.256 199.384 ≈
9 100.007 100.01 ≈ 106.102 106.072 ≈

10 141.618 141.548 ≈ 637.044 635.476 ≈
11 3.19005 3.18598 ≈ 404.124 408.696 ≈
12 112.458 112.554 ≈ 109.716 109.524 +
13 0.09273 0.09273 ≈ 0.01033 0.01035 ≈
14 6662.87 6662.87 ≈ 43419.2 43410.6 ≈
15 100 100 ≈ 100 100 ≈

Table 12
Medians of function values from 51 runs for jDE and jDE-mut variants and the results of Wilcoxon
signed rank test for D = 50,100

D = 50 D = 100
F jDE jDE-mut Sign. jDE jDE-mut Sign.
1 396624 374644 ≈ 1.43E+06 1.42E+06 ≈
2 0 0 ≈ 0 0 ≈
3 20.4252 20.4199 ≈ 20.6601 20.6526 ≈
4 83.9694 83.924 ≈ 225.627 199.583 +
5 4638.29 4641.82 ≈ 12710.9 12530.1 ≈
6 30558.7 38689.4 ≈ 188422 226244 -
7 43.0974 44.4463 ≈ 134.681 135.603 -
8 8003.51 9033.64 ≈ 79939.2 76601.8 ≈
9 102.194 102.199 ≈ 107.077 107.225 ≈

10 1428.24 1325.64 ≈ 3791.2 3863.28 ≈
11 488.976 467.289 ≈ 1079.89 946.754 ≈
12 116.835 116.831 ≈ 114.994 114.9 ≈
13 0.02497 0.02491 ≈ 0.06174 0.0619 ≈
14 52661 52661 ≈ 108887 108887 ≈
15 100 100 ≈ 100 100 ≈

– 177 –

Petr Bujok On Modification of Population-based Approach Used in Adaptive DE

Table 13
Medians of function values from 51 runs for SaDE and SaDE-mut variants and the results of Wilcoxon
signed rank test for D = 10,30

D = 10 D = 30
F SaDE SaDE-mut Sign. SaDE SaDE-mut Sign.
1 0 0 ≈ 7216.46 7438.64 ≈
2 0 0 ≈ 0 0 ≈
3 20.0823 20.0842 ≈ 20.385 20.3967 ≈
4 4.83555 4.44725 ≈ 34.7638 33.6348 ≈
5 180.634 161.037 ≈ 2674.22 2725.79 ≈
6 4.68252 6.05311 ≈ 1255.06 1457.19 ≈
7 0.38712 0.33234 ≈ 8.19227 8.09298 ≈
8 1.26452 1.11676 + 302.761 410.456 ≈
9 100 100 ≈ 106.853 106.519 ≈
10 141.655 143.109 ≈ 814.879 798.48 ≈
11 3.16052 3.18455 ≈ 417.978 426.424 ≈
12 111.984 111.979 ≈ 109.505 109.614 ≈
13 0.09273 0.09273 ≈ 0.01044 0.01041 ≈
14 6677.01 6670.66 ≈ 43610.6 43806.1 ≈
15 100 100 ≈ 100 100 ≈

Table 14
Medians of function values from 51 runs for SaDE and SaDE-mut variants and the results of Wilcoxon
signed rank test for D = 50,100

D = 50 D = 100
F SaDE SaDE-mut Sign. SaDE SaDE-mut Sign.
1 86925.6 89696.9 ≈ 419702 513455 -
2 0 0 ≈ 1.88E-06 2.22E-07 +
3 20.5758 20.577 ≈ 20.8954 20.9055 -
4 92.14 80.3453 + 262.669 190.037 +
5 6012.55 5785.05 ≈ 17364.8 17195.9 +
6 15052 16486.5 ≈ 84926.9 87087.2 -
7 49.6038 49.5846 ≈ 113.103 142.63 ≈
8 3334.2 3442.65 ≈ 26663 37648.8 -
9 102.431 102.334 + 108.714 108.285 +

10 1734.43 1879.22 ≈ 3801.22 4080.34 -
11 681.752 655.88 + 1860.02 1765.77 +
12 116.769 116.624 ≈ 115.608 115.312 +
13 0.02553 0.02545 ≈ 0.06383 0.06324 +
14 52698 52693.6 ≈ 108912 108895 +
15 100 100 ≈ 101.902 101.976 -

– 178 –

Acta Polytechnica Hungarica Vol. 14, No. 5, 2017

References

[1] J. Brest, S. Greiner, B. Boškovič, M. Mernik and V. Žumer: Self-adapting
Control Parameters in Differential Evolution: A Comparative Study on Nu-
merical Benchmark Problems, IEEE Transactions on Evolutionary Compu-
tation, vol. 10, pp. 646–657, 2006.

[2] P. Bujok and J, Tvrdı́k: A Comparison of Various Strategies in Differential
Evolution, In: R. Matoušek (Ed.) MENDEL 2011 - 17th International Con-
ference On Soft Computing, Brno, Czech Republic, pp. 48–55, 2011.

[3] S. Das and P. N. Suganthan: Differential evolution: A survey of the state-of-
the-art, IEEE Transactions on Evolutionary Computation, vol. 15, pp. 27–54,
2011.

[4] S. Das, S. S. Mullick, P. N. Suganthan: Recent advances in differential evo-
lution An updated survey, Swarm and Evolutionary Computation, Vol. 27,
pp. 1–30, 2016.

[5] J. J. Liang, P. N. Suganthan, and Q. Chen: Problem definitions and
evaluation criteria for the CEC 2015 competition on learning-based real-
parameter single objective optimization, Computational Intelligence Labo-
ratory, Zhengzhou University, Zhengzhou China and Nanyang Technological
University, Tech. Rep., 2014.

[6] R. Mallipeddi, P. N. Suganthan, Q. K. Pan and M. F. Tasgetiren: Differen-
tial evolution algorithm with ensemble of parameters and mutation strategies,
Applied Soft Computing, vol. 11, pp. 1679–1696, 2011.

[7] F. Neri and V. Tirronen: Recent advances in differential evolution: a survey
and experimental analysis, Artificial Intelligence Review, vol. 33, pp. 61–106,
2010.

[8] A. P. Piotrowski: Review of Differential Evolution population size, Swarm
and Evolutionary Computation, Vol. 32, pp. 1–24, 2017.

[9] W. Qian and A. Li: Adaptive differential evolution algorithm for multiob-
jective optimization problems, Applied Mathematics and Computation, vol.
201, no. 12, pp. 431–440, 2008.

[10] A. K. Qin, V. L. Huang, and P. N. Suganthan: Differential evolution algorithm
with strategy adaptation for global numerical optimization, IEEE Transac-
tions on Evolutionary Computation, vol. 13, no. 2, pp. 398-417, 2009.

[11] R. Storn and K. V. Price: Differential evolution - a simple and efficient heuris-
tic for global optimization over continuous spaces, Journal of Global Opti-
mization, vol. 11, pp. 341–359, 1997.

[12] Y. Wang, Z. Cai, Q. Zhang: Differential evolution with composite trial vector
generation strategies and control parameters. IEEE Transactions on Evolu-
tionary Computation, vol. 15, pp. 55-66, 2011.

– 179 –

Petr Bujok On Modification of Population-based Approach Used in Adaptive DE

[13] Y. Wang, Z.-Z. Liu, J. Li, H.-X. Li, G. G. Yen: Utilizing cumulative popula-
tion distribution information in differential evolution, Applied Soft Comput-
ing, Vol. 48, pp. 329–346, 2016.

[14] Y. Wang, Z.-Z. Liu, J. Li, H. X. Li and J. Wang: On the selection of solu-
tions for mutation in differential evolution. Frontiers of Computer Science.
In press, DOI: 10.1007/s11704-016-5353-5.

[15] D. H. Wolpert and W. G. Macready: No free lunch theorems for optimization,
IEEE Transactions on Evolutionary Computation, vol. 1, pp. 67–82, 1997.

[16] Z. Yang, K. Tang, and X. Yao: Self-adaptive differential evolution with neigh-
borhood search, IEEE Congress on Evolutionary Computation, CEC 2008,
pp. 1110–1116, 2008.

[17] A. Zamuda and J. Brest: Self-adaptive control parameters? randomization
frequency and propagations in differential evolution, Swarm and Evolution-
ary Computation, vol. 25, pp. 72–99, 2015.

[18] J. Zhang and A. C. Sanderson: JADE: Adaptive differential evolution with
optional external archive, IEEE Transactions on Evolutionary Computation,
vol. 13, pp. 945–958, 2009.

– 180 –

