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Abstract: This paper presents the solution of multi-objective optimization of the production 

process of an automated assembly line model, where combination of conventional 

mathematical methods and methods of artificial intelligence is used. Paper provides the 

description of methods used in this process, modifications that were realized in the 

computational process of NSGA - II evolutionary algorithm as well as the solution of the 

production process optimization respecting all the defined constraints. The first part of the 

solution, the definition of the set of non-dominated (Pareto optimal) alternatives, is realized 

by the modified NSGA – II evolutionary algorithm. From the Pareto optimal solutions, 

choosing the best solution using various mathematical metrics is presented. Approach for 

the synthesis of the results obtained from various mathematical metrics used to resolve the 

task is also mentioned with the scope of objectivization of the optimization process. 
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1 Introduction 

The optimization process is usually used for choosing the best possible solution of 

a particular task. To ensure that this solution can be found in a qualified manner, it 

is necessary to create a mathematical model as accurately as possible in order to 

describe the optimization task properly. The model itself includes quantifiable 

parameters (objective functions) for measuring the rate of success of optimized 

criteria (e.g. profit). The model may also contain constraints (e.g. maximum 

amount of invested capital). Modelling is followed by finding a solution for a 

given optimization task using a suitably chosen algorithm. It is also necessary to 

verify and evaluate the obtained solution (whether it is a valid solution to the 

resolved task) and to interpret the result correctly. 
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Methods of mathematical programming are used to solve optimization tasks with 

one objective function. Depending on the type of objective function, these 

methods can be divided into linear or non-linear programming methods, integer 

programming methods, parameter programming methods, stochastic programming 

methods, etc. The overview of optimization algorithms for solving various 

optimizaiton tasks can be found in [24]. 

In the process of optimization of production lines, one of the main requirements is 

the definition of optimization goals, what may include the minimizing number of 

workstations (posts), minimizing the time of production cycle, maximizing 

production line efficiency, cost minimization, maximizing profit, maximizing or 

minimizing the various factors affecting operations performed at a weak spots of 

the production line. Each of these objectives should be defined by an objective 

function, which values should be minimized or maximized (depending on the goal 

of the optimization process). [3] 

In most cases, there is more than one objective, which should be optimized to 

satisfy the needs of the decision-maker. There are two basic types of methods used 

for resolving multi-objective optimization (MOO) tasks: 

 Conventional methods – these are represented by mathematical metrics for 

choosing the best solution within the defined portfolio of alternative solutions 

 Methods of artificial intelligence (AI) - represented by a number of 

algorithms VEGA (Vector Evaluated Genetic Algorithms) group, mostly used 

for defining the set of non-dominated solutions. 

For defining the Pareto optimal set of solutions, conventional approaches 

aggregate the objective functions into a simple parametrized objective function. 

Several runs with different parameters of this objective function are realized in 

order to approximate the Pareto front. [31] 

Except for conventional methods, artificial intelligence methods (especially 

evolutionary and genetic algorithms) are also used to solve the problems of MOO. 

Evolutionary algorithms represent the approach for finding the best solutions with 

trying a relatively small number of possible solutions, as the scope of possible 

solutions is very extensive in many cases. Some evolutionary algorithms from this 

group can cope with various forms of objective functions and resolve tasks with 

complicated Pareto sets (MOEA/D or NSGA-II) [18]. This complexity was one of 

the reasons for choosing the NSGA-II algorithm for finding the Pareto optimal 

solutions. The evolutionary algorithm is based on the population of individuals. 

This population usually contains more individuals, often hundreds or even 

thousands. The first population is typically generated randomly. This population is 

then reproduced and the best individuals are kept in the evolutionary process, 

while the worst are excluded. [5] 

For solving multi-objective optimization problems, VEGA (Vector Evaluated 

Genetic Algorithms) are used. Closer description of this group of algorithms can 
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be found in [5] and [1]. The motivation for choosing the combination of 

conventional and AI methods to solve the MOO problem of the production 

process on assembly line model placed within Center of Modern Control 

Techniques and Industrial Informatics (CMCT&II) within DCAI FEEI TUKE 

arose seeing the wide application potential of these methods. In system reliability, 

redundancy allocation problem was resolved using the NSGA algorithm in [28]. 

In assembly line balancing, the use of multi-objective genetic algorithm (MOGA) 

is presented in [19], ant colony algorithms are described and applied in [2] and 

[25], tabu search algorithm is mentioned in [17]. Genetic algorithms can be also 

be used for solving assembly sequence planning, which is shown in [11]. Other 

application possibilities are mentioned in [14]. Other possibilities of using AI 

methods for optimization is described in [29], while the novel AI optimization 

approaches and algorithms are presented in [23], [27], [22]. 

The goal of the MOO process described in the paper is definition of the number of 

different types of products, satisfying the goals (maximizing profit and 

maximizing the amount of saved time) and respecting the constraints (limited 

supplies, limited storage capacity) of the optimization process. Combination of 2 

different approaches used for solving the MOO task, as well as synthesis of partial 

results obtaind by using different conventional methods is considered as a novel 

approach in the field assembly line optimization. 

 

Figure 1 

Schematic view on the assembly line model and the final product 

In the first phase of the multi-objective optimization, artificial intelligence 

methods were used, namely the modified NSGA-II evolutionary algorithm for 

specifying the Pareto front of this multi-objective optimization task. It is also 

possible to use conventional methods to identify the Pareto front, but especially in 

the complex types of objective functions, it is easier to use evolutionary 

algorithms. In the second phase, from the Pareto front solutions, the optimal 

solution to the MOO task is chosen using conventional methods. Since there are 

many optimal solution selection methods, synthesis of solutions obtained by 

various methods was realized and the optimal solution for this task was chosen. 
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Within the paper, methods used for solving MOO tasks are presented in the 

second chapter, where 2 main approaches are described: conventional 

mathematical approach and artificial intelligence approach. Using the combination 

of these approaches for solving the optimal production process of assembly line 

model is presented in the Chapter 3. 

2 Multi-Objective Optimization Task and Methods 

The optimization task generally has the form of minimizing (maximizing) an 

objective function 

1 2{ , , , }nf x x x 
        (1) 

while taking into account the restrictive conditions (constraints) 

 1 2, , , ,     1,2, ,i ng x x x for i n   
      (2) 

The multi-objective optimization (MOO) task is defined by the mathematical 

description of optimized system. This system is characterized by the functional 

J(x) = (J1(x), J2(x), ... , Jk(x)), where x= (x1, x2,….xn) is the vector of variables 

used to define the mathematical model of the system. Solution of the MOO task is 

x* ϵ {X}, which is the optimal solution of the functionals J1(x), J2(x), ... , Jk(x). 

2.1 Conventional Methods 

Conventional methods of MOO are closely described in [16]. Solving the MOO 

task using the conventional methods applied on the economical investments is part 

of [7]. 

2.1.1 Methods Defining the Set of Non-Improving Points 

In this group of methods there is no hierarchy of objectives. MOO task can be 

defined as minimization of vector J(x) - J(xα), where xα is the optimal solution of 

αth objective of MOO task. 

Quadratic Metric 

The most common decision parameter using this metric is minimum of the 

squared difference between values of objective functions for solution x and values 

of objective functions for ideal solution xα. 

   
1

2(( ) )
k

R x


 α α αJ x J x  α= 1,2,…,k    (3) 
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Frequently, the deciding parameter of this metric is furtherly divided by values of 

optimal solution, in order to get a result in dimensionless form. The formula for 

this metric is defined as: 

 
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Linear Metric 

This metric is defined as the sum of variations between the values of objective 

functions for every solution and optimal values of particular objective functions. 

Optimal value R(x) is counted as: 

     
1

(
k

R x


  α α αJ x J x       (7) 
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Generalized Metric 

The formula for finding the optimal value RL(x) is given as 

       
1

1

(
k

L L

LR x


  α α αJ x J x      (9) 

2.1.2 Compromising Methods 

This group of metrics is based on adding the weights of optimized objectives into 

the optimization process. The search for the optimal solution of the MOO task is 

realized by minimizing the function 

     1 1 2 2 k kJ J J   x x x                   (10) 

where β1, …,  βk are weight coefficients. It is recommended to set their values to 

β1=1/J10, β2=1/J20, …, βk=1/Jk0, where Jk0 are values reached by optimization of kth 

criterion. These metrics are used, if the decision maker is able to define the 

importance of optimized criteria before the start of optimization process. Weights 

of particular optimized criterion will be labelled as λ. [16] 
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Weighted Sum of Values of Objective Functions 

The metric is defined as 

   
1

 
k

opt R x opt


  α αλ J x
                  (11) 

Optimal solution is represented as the maximum or minimum of the weighted sum 

of values of all objective functions. 

Weighted Sum of Deviations 

Using this metric, the formula for calculating the R(x) parameter is defined as: 

     
1

* (
k

R x


  α α α αλ J x J x                  (12) 

while the optimal solution is the minimum of the R(x): 

 
 

   
1

  min *  (
k

X
opt R x






 
  

 
 α α α α

x   
λ J x J x                (13) 

Some other mathematical metrics with their description and usage can be found in 

[7] and [30]. 

2.2 Methods of Artificial Intelligence 

When solving multi-objective optimization problems, an evaluation function is 

used which returns a real number representing the suitability of the solution. The 

higher the value, the better the solution. This function corresponds to the objective 

function of mathematical methods. This function can represent a number of 

criteria, which are frequently in conflict. In this case, the goal is to find the Pareto-

optimal front, which consists of a set of non-dominated solutions. 

Basic evolutionary algorithm process is shown in Fig. 2. 

 

Figure 2 

Fundamental evolutionary algorithm scheme 

In this part of paper, NSGA-II algorithm is presented as algorithm chosen for 

defining the set of non-dominated solutions. This genetic algorithm was developed 

as an improved version of the NSGA genetic algorithm. The algorithm, compared 
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to its ancestor, is characterized by lower computational demands, better 

convergence and diversity. These improvements are reached by non-dominant 

sorting, elitism and crowding distance operations. [30] 

2.2.1 Non-dominated Sorting 

Non-dominated sorting is an operation sorting the chromosomes from the 

population into non-dominant fronts. The non-dominant front is a set of 

chromosomes that do not dominate each other. The dominance of the chromosome 

x above the chromosome y occurs when the value of all evaluation functions for 

the chromosome x is better than for the chromosome y. In the original NSGA 

algorithm, the sorting method was implemented in a way that all possible pairs of 

chromosomes were compared and the first non-dominant queue was found. These 

chromosomes were excluded from the population and the whole process was 

repeated without them. However, this method is computationally demanding. In 

the NSGA-II algorithm, queuing is accomplished by fast, non-dominant sorting - 

FNDS (closer description of the iterational process of FNDS can be found in 

[30]). Result of the process of FNDS is shown on Fig. 3. 

 

Figure 3 

Diagram showing the results of fast non-dominated sorting 

2.2.2 Crowding Distance 

In the NSGA-II algorithm, the crowding distance is used to compare the 

chromosomes within one front. Crowding distance sorts the chromosomes 

according to their diversity (the chromosome most different from the others is 

considered the best). Procedure for implementing this part of the algorithm: 

For each queue with the number of individuals n, individuals of every front are 

sorted according to the value of the mth objective function 

 ( , )iI sort F m                    (14) 
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An infinite distance is assigned to the boundary chromosomes (first and last 

chromosome according to the sorting): 

1( ) ; ( )nI d I d                      (15) 

For other individuals (k = 2,3,…,n-1) the following formula is used: 

   
   1 1

 
 

k k max min

m m

I k m I k m
I d I d

f f

  
 



                (16) 

, where I(k)m is the value of the mth objective function of the individuals in sorting 

I. The metric by which chromosomes are organized, is defined as the sum of the 

chromosome’s distances from the next chromosomes within the queue. Crowding 

distance is used in selecting chromosomes into a new generation, preferring 

chromosomes with the highest value of crowding distance. Results of applying the 

crowding distance are shown in Fig. 4. 

 

Figure 4 

Diagram showing the results of rowding distance 

2.2.3 Elitism 

The principle of elitism keeps the chromosomes with the best results in the 

iteration process. The new generation is created by operations of crossing and 

mutation. Formulas used within the process of crossing and mutation are closely 

described in [6] and [26]. 

2.2.4 Iterative Process 

The iterative process of the NSGA-II genetic algorithm can be described in the 

following steps: 

1. Half of the population from the first iteration is generated with random genes, 

the other half is generated from the first iteration using crossing and mutation. 

2. Chromosomes from the new population are sorted into non-dominant fronts 

by fast non-dominated sorting. 
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3. For the next iteration, half of the chromosomes with the best results are 

selected. 

4. The second half of the population for the next iteration is generated in 

crossover and mutation operations. 

The population is then again ranked and sorted etc. [12] 

2.2.5 Modifications Realized in NSGA-II Algorithm 

Fig. 5 shows the computational process of the modified NSGA-II algorithm (blue 

blocks represent the modified parts in comparison to the original NSGA-II 

computational process). 

 

Figure 5 

Algorithm of modified NSGA-II 
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For the proper functionality of the algorithm, several modifications were made to 

the computational process described in [13]. Modifications were made in order to 

modify the computational process of the NSGA-II algorithm for requirements of 

the resolved task: 

 the algorithm considers the values of selected mathematical method as a 

secondary sorting criterion, instead of original criterion – crowding distance; 

 it is necessary for the algorithm to work with integer values, since we are 

looking for number of products; 

 the algorithm must be able to control the fulfillment of all defined constraints. 

3 Solving MOO Problem of Assembly Line 

This part of the paper is focused on solving the task of defining the optimal 

production process of one of the assembly line models at the Department of 

Cybernetics and Artificial Intelligence (DCAI) FEEI TUKE. Schematic view of 

the assembly line model is shown in Fig. 1. 

3.1 Definition of MOO Task 

The production line from Fig. 1 (closer desription in [8]), is going to produce 4 

different product types (mosaic) made from 4 different types of colored squared 

pieces: blue, white, green and black (Fig. 1). 

The number of individual types of square pieces needed to manufacture the 

product is shown in Table 1, as well as the capacity of particular parts for one 

production cycle of this production line. 

Table 1 

Number of square pieces needed for manufacturing the products and their capacity 

Part/Product A B C D Capacity 

Blue 5 7 7 3 100 

White 3 4 2 4 80 

Green 4 6 3 2 90 

Black 5 5 6 6 120 

The profit obtained from each blue part contained in the mosaic is € 3, of a white 

cube it is € 5, profit of using every green part is a € 4 and profit from every black 

part is € 2. Production time also depends on the number of parts included in the 

mosaic (placing one part of the product lasts 1,6 seconds). In a single production 

cycle, a maximum of 24 products can be produced, because only 24 products can 
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be stored simultaneously. The purpose of this MOO task is to define the number 

of products manufactured during the production process, in order to fulfill all 

constraints and to maximize both of the objective functions (profit from the 

production process as well as the saved time during the production process). 

3.2 Definition of Objective Functions 

As mentioned in the MOO task, the goal is to maximize profit as well as to 

maximize time savings. For the purpose of calculating the profit function, it is 

necessary to calculate the profit for each product (formula (17)). 

1

,    1,2,3,4.
pv

i ij

j

z pk for i


                   (17) 

where zi is the profit from ith part, pkij is the number of parts of ith type in jth 

product and pv is the number of products. Using this formula, the profit from each 

type of product is obtained: 

Table 2 

Profit from manufacturing products 

Product A B C D 

Profit 56 € 75 € 55 € 49 €  

From these values we can then define the objective function to maximize profit as 

 1 1 2 3 456 75 55 49U x x x x max    x                 (18) 

For the second objective function, we need to know the value of the time that is 

saved by producing this product, compared to producing the product with the 

maximum number of parts. It is not possible to define this objective function as a 

minimization of production time, since the ideal value would be 0 (doing nothing), 

which would affect the results in an undesirable manner. Since the templates for 

mosaic production have a size of 5 rows with 5 columns, one product can contain 

a maximum of 25 parts 

1

,    1,2,3,4.
pv

ij

j

pk for i


                   (19) 

In (30), pkij the number of parts of the ith type in the jth product and pv is the 

number of products, we calculate the total number of parts used for each type of 

product. These values are listed in Table 3. 

Table 3 

Number of parts used in manufacturing products 

Product A B C D 

Parts 17 22 18 15 
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The time savings obtained from the production of the product (coj) when 

compared to the product consisting of the maximum number of parts (25) can be 

defined by formula (20). The obtained values are written in Table 4: 

1,6 (25 )j jco pk                    (20) 

Table 4 

Amount of saved time by manufacturing products 

Product A B C D 

Saved time 12,8 s 4,8 s 11,2 s 16 s 

Based on these values, we can define a second objective function as: 

 2 1 2 3 412,8 4,8 11,2 16U x x x x max    x                (21) 

3.3 Definition of Constraints 

To define the constraints, we start from the Table 1, which lists the number of 

parts needed to produce each type of product, as well their capacity. Based on this 

table, we can define the following constraints for this task: 

1 2 3 45 7 7 3   100x x x x                      (22) 

1 2 3 43 4 2 4   80x x x x                      (23) 

1 2 3 44 6 3 2   90x x x x                      (24) 

1 2 3 45 5 6 6   120x x x x                      (25) 

Since the task is focused on one production cycle of the production line and the 

number of storage spaces is limited to 24, the number of products produced must 

not exceed this value: 

1 2 3 4   24x x x x                      (26) 

The last constraint results from the logical assumption that the number of each of 

produced products can not be negative: 

1 2 3 4, , ,   0x x x x                     (27) 

3.4 Definition of Parameters for Iteration Process 

To identify the Pareto front, we chose the NSGA-II algorithm, which was 

modified in order to deal with this MOO task. After defining of the Pareto front, 

the results will be sorted according to some of the mathematical methods in order 

to find the solution of the MOO task. Different mathematical metrics were used to 
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resolve the task and compare results, namely quadratic metric in a dimensionless 

form (metric 1), quadratic metric (metric 2 – chapter 2.1.1), weighted quadratic 

metric (w=[0.8;0.2]) (metric 3 – chapter 2.1.2), weighted linear metric 

(w=[0.2;0.8]) (metric 4 - chapter 2.1.2), linear metric (metric 5 - chapter 2.1.1) 

and percentual fulfillment of each objective function (metric 6 – chapter 3.5.2). 

The NSGA - II algorithm was configured to process 2 objective functions with 4 

variables, every population consisted of 200 individuals. 50 iterations were run 

with the crossing and mutation distribution parameter equaling 0. Vector of 

minimum parameter values was defined as [0,0,0,0] (minimum number of 

products) and vector of maximum parameter values was set as [24,24,24,24] 

(maximum number of products from each type). 

3.5 Solving the MOO Task 

3.5.1 Searching the Pareto Front Solutions 

After the computational process of the modified NSGA – II algorithm was 

implemented in MATLAB, all possible MOO solutions were found, sorted 

according to their membership to front. To find the solution, the first (Pareto) front 

is important. The Pareto front contains non-dominated solutions (solutions that are 

not inferior in both objective functions than any other solution). Therefore, we 

will choose the solutions from the Pareto front (Table 6). On the Fig. 6 ,objective 

values are negative because the algorithms was built to minimize the objective 

functions. This is why the functions were multiplied by -1. Pareto front members 

are shown by red dots, choromosomes from the second front are represented as 

green dots, third front has blue dots and other fronts are displayed by black dots. 

 

Figure 6 

Graph showing the individuals from different non-dominant fronts 
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3.5.2 Application of Mathematical Metrics 

Out of the individuals belonging to the Pareto front (listed in Table 6), we looked 

for the best possible solution of the MOO task. The solution using the percentual 

fulfillment of every objective function is shown closely. To calculate the 

percentual fulfillment of every objective function, we needed to know the 

maximum value of each of the objective functions. Values were calculated in the 

iterative process of the modified NSGA-II algorithm. 

Table 5 

Extreme values of objective functions 

extr U1(x) extr U2(x) 

-1245 -320 

For each individual from the Pareto front, the value of the percentual deviation 

was calculated from the ideal values and was realized using the formula 

min ( )     ( )
  ( )

min ( )

i i

i

i

U U
U

U





x x
x

x
                 (28) 

The sum of these deviations was then calculated according to (p is the number of 

objective functions): 

1

min ( )     ( )
  ( )

min ( )

p
i i

i

i i

U U
U

U





 

x x
x

x
                (29) 

The individual belonging to the Pareto front with the lowest value of the 

parameter ∑δUi(x) was chosen as the solution of the MOO task. In Table 6, Pareto 

front members are listed according to the parameter ∑δUi(x). 

3.5.3 Interpretation of Results 

The solution of the presented MOO task is represented by vector x = [12,0,0,10] 

This means that, according to the percentual fulfillment of each of the objective 

functions, the production line would have to produce 12 products of type A and 10 

products of type D. The profit from one production cycle would be € 1162 and a 

time saved compared to the production of products with 25 parts would be 313,6 

seconds. The deviation from the extreme values represents 6.67% from the 

maximum profit amount and 2% of the maximum saved time. Therefore, the 

deviation from the maximum values of the objective functions is 8.67%. 

Table 6 shows that vector [12,0,0,10] has the lowest value of deciding parameter. 

Therefore, it represents an optimal solution according to the chosen metric. 
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Table 6 

Pareto optimal solutions ordered by percentual fulfillment of objective functions 

x1 x2 x3 x4 U1(x) U2(x) δU1(x) δU2(x) ∑δUi(x) 

12 0 0 10 1162 313,6 0,066667 0,02 0,086667 

13 0 0 9 1169 310,4 0,061044 0,03 0,091044 

14 0 0 8 1176 307,2 0,055422 0,04 0,095422 

11 1 0 10 1181 305,6 0,051406 0,045 0,096406 

15 0 0 7 1183 304 0,049799 0,05 0,099799 

12 1 0 9 1188 302,4 0,045783 0,055 0,100783 

16 0 0 6 1190 300,8 0,044177 0,06 0,104177 

13 1 0 8 1195 299,2 0,040161 0,065 0,105161 

10 2 0 10 1200 297,6 0,036145 0,07 0,106145 

14 1 0 7 1202 296 0,034538 0,075 0,109538 

11 2 0 9 1207 294,4 0,030522 0,08 0,110522 

15 1 0 6 1209 292,8 0,028916 0,085 0,113916 

12 2 0 8 1214 291,2 0,0249 0,09 0,1149 

9 3 0 10 1219 289,6 0,020884 0,095 0,115884 

13 2 0 7 1221 288 0,019277 0,1 0,119277 

10 3 0 9 1226 286,4 0,015261 0,105 0,120261 

11 3 0 8 1233 283,2 0,009639 0,115 0,124639 

8 4 0 10 1238 281,6 0,005622 0,12 0,125622 

9 4 0 9 1245 278,4 0 0,13 0,13 

6 0 0 15 1071 316,8 0,139759 0,01 0,149759 

0 0 0 20  980 320 0,212851 0 0,212851 

         

3.5.4 Synthesis of Results Obtained by Using other Mathematical Metrics 

In Table 7 it can be seen that the choice of the best alternative depends on the 

chosen metric. Only the best solution for a particular MOO metric is displayed (M 

stands for metric and numbers corresponds with metrics mentioned in 3.4). It can 

be seen that the choice of the best alternative depends on the chosen metric. 

Table 7 

Best solutions using various mathematical metrics 

M x1 x2 x3 x4 U1(x) U2(x) δU1(x) δU2(x) ∑δUi(x) 

1 13 0 0 9 1169 310,4 0,0037 0,0009 0,0046 

2 13 2 0 7 1221 288 576 1024 1600 

3 11 2 0 9 1207 294,4 0,0007 0,0012 0,0019 

4 12 0 0 10 1162 313,6 16,6 5,12 21,72 

5 9 4 0 9 1245 278,4 0 41,6 41,6 

6 12 0 0 10 1162 313,6 0,066667 0,02 0,086667 

One way to realize the synthesis of the results of different MOO metrics is to sort 

out the alternatives according to their standings in the optimization process 
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realized by every one of the metrics (the best alternative for each of the metrics 

obtains 1 point, the worst obtains pv points) and realize the subsequent synthesis 

of this score by formula 

1

,    1,2, , 
pn

i ij

j

pb b for i pv


                    (30) 

where pbi is the result of alternative I, bij is the score of alternative I using the jth 

metric, pn is the number of metrics and pv is the number of alternatives. The 

results of Pareto front solutions according to this synthesis of results is in Table 8: 

Table 8 

Synthesis of solutions using various mathematical metrics 

i x1 x2 x3 x4 bi1 bi2 bi3 bi4 bi5 bi6 pbi 

1 10 2 0 10 9 11 1 9 11 9 50 

2 11 2 0 9 11 9 2 11 9 11 53 

3 14 1 0 7 10 10 3 10 10 10 53 

4 13 1 0 8 8 12 6 8 12 8 54 

5 16 0 0 6 7 13 8 7 13 7 55 

6 12 1 0 9 6 14 9 6 14 6 55 

7 11 1 0 10 2 16 13 4 16 4 55 

8 15 1 0 6 12 8 4 12 8 12 56 

9 15 0 0 7 5 15 12 5 15 5 57 

10 12 2 0 8 13 7 5 13 7 13 58 

11 14 0 0 8 3 17 15 3 17 3 58 

12 13 0 0 9 1 18 17 2 18 2 58 

13 9 3 0 10 14 5 7 14 6 14 60 

14 12 0 0 10 4 19 19 1 19 1 63 

15 10 3 0 9 16 1 11 16 4 16 64 

16 13 2 0 7 15 4 10 15 5 15 64 

17 11 3 0 8 17 2 14 17 3 17 70 

18 8 4 0 10 18 3 16 18 2 18 75 

19 9 4 0 9 19 6 18 19 1 19 82 

20 6 0 0 15 20 20 20 20 20 20 120 

21 0 0 0 20 21 21 21 21 21 21 126 

As can be seen in the Table 8 and Fig. 7, according to synthesis of the results, the 

option x=[10,2,0,10] seems to be the best solution, followed by vectors x= 

[11,2,0,9] and x =[14,1,0,7]. Winning solution from the percentual fulfillment of 

the objective functions (metric 6), x =[12,0,0,10] is only the 14th best option 

according to the synthesis of metrics. This fact can be considered as the proof that 

using more than one MOO method can result in defining solution, which is more 

complex when compared to the solution found using only one method. 
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Figure 7 

Graph of final score of alternatives using the synthesis of various mathematical metrics 

On Fig. 8, user interface developed within our research for resolving 

multiobjective optimization tasks using combination of modified NSGA – II 

algorithm and various mathematical methods, is presented. 

 

Figure 8 

User interface for solving MOO tasks 

Conclusions 

In the presented paper, multi objective optimization task of definition of the 

optimal production process of the assembly line model within Center of Modern 

Control Techniques and Industrial Informatics (CMCT&II) within the Department 

of Cybernetics and Artificial Intelligence of FEEI TUKE. For resolving the task of 

choosing the optimal production strategy of the automated assembly line, 
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combination of modified evolutionary algorithm NSGA-II and various 

mathematical metrics was used. In defining the set of Pareto optimal solutions, 

some modifications had to be realized in order to improve the computational 

process. From the Pareto optimal solutions, the best option for production process 

was chosen by the percentual fulfilment of every objective function. Another 

presented option involved the synthesis of the solutions from different 

mathematical metrics. 

In conclusion, the decision for choosing the metric used to define the order of the 

alternatives from the Pareto set should be realized with respect to the preferences 

of the decision-maker. Moreover, not all possible approaches can be used to solve 

a particular assembly line balancing problem. A survey of problems and 

applicable methods in this area can be found in [4]. Approaches focused on 

dealing with mixed-model assembly lines, which was also the model described in 

this paper, are available in [5]. Weighted objective functions can be used, if the 

decision-maker prefers one of the objectives over the others. Some of the methods 

for objectivization of the defined weights of objectives can be found in [9]. 

During the research in this area, we were focused on the optimization of the 

assembly lines, particularly on creating the simulation models of assembly lines 

with a focus on their time optimization [10], as well as solving the task of optimal 

assembly line configuration using the methods of the multi-criterial decision-

making [9]. Results obtained within the research are described in [6]. The MOO of 

the production process of the assembly line, which is closely described within this 

paper, is another task resolved in the assembly line optimization area, which 

contributes to the portfolio of problems resolved in this area within our 

department. 
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