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1 Introduction 

The technological development of high-performance computers and 

microprocessors allows for the usage of digital controllers [1], [2]. In real world 

applications, digital controllers have been widely used to control dynamical 

continuous-time systems, mainly due to their multiply advantages, such as, lower 

power consumption and fabrication costs, improved flexibility, ease in 

reprogramming the same device to deal with different control strategies and also 

implementation of complex digital control laws, the possibility of developing of 

interfaces with users (including web interfaces) and last, but not least, greater 

reliability [1], [3]. 
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There are three main techniques used to synthesize digital controllers [4], [5], [6]: 

(i) the emulation design approach, where a continuous-time controller is designed 

regardless of the sampling time and, then, the controller is sampled [7], [8]; (ii) the 

discrete-time approach, where the design is done from a discrete-time description 

of the process which represents its behavior only in the sampling times, which 

means that the intersampling behavior are neglected [9], [10]; and, finally, (iii) the 

sampled-data design, where the acquired controller is synthesized based on a 

discrete-time model that takes into account the system behavior at the sampling 

and also in the intersampling times [11], [12]. 

The discretized version of the continuous-time system can be obtained by 

employing, for instance, the Taylor series expansion to deal with the exponential 

of the system dynamic matrix. Nevertheless, such technique can be directly 

applied only for systems without uncertainties. However, it is well known that real 

systems are usually affected by uncertainties which denote, for instance, neglected 

dynamics, external disturbances, unknown parameters, noise associated with the 

collected information or measurements, or the inaccuracy of sensors and actuators 

[13], making the discretization procedure of an uncertain system, which requires 

to compute the exponential of an uncertain matrix, a hard problem to deal with. To 

overcome such challenge, several numerical strategies have been used, such as 

Chebyshev quadrature formula and internal arithmetic, Jordan decomposition, or 

the Cayley-Hamilton theorem [14], [15], or, as more frequently found, a first-

order Taylor series expansion technique [16], [17], [18]. All of these 

methodologies can be employed only for systems with a small number of vertices 

and, especially, the latter, yields an inaccurate discrete-time model, mainly for 

larger sampling times. 

A more recent result [9], uses a technique based on a Taylor series expansion of a 

fixed order to obtain the discrete-time representation of the continuous-time 

system, whose discrete-time model is composed of homogeneous polynomial 

matrices plus an additive norm-bounded term that represents the discretization 

residual error. Albeit, such procedure produces a more precise description of the 

systems dynamics, as a drawback, the discrete-time representation depends on 

multiple indexes increasing the number of Linear Matrix Inequalities (LMIs) to be 

solved, in the synthesis conditions, as the chosen order augments. In order to 

avoid the aforementioned problem, the work in [19] proposed an approach based 

on a grid of the possible values for the matrix exponential function and an 

application of the tensor product model transformation technique to acquire a 

suitable polytopic model, reducing the number of LMIs to be solved. However, 

the error committed by the discretization technique is ignored. 

The Tensor Product Model Transformation (TPMT) [20], [21], [22], [23], [24], 

[25] is a numerical technique that allows one to extract a convex representation, 

similar to a Takagi-Sugeno (TS) representation for a quasi-Linear Parameter 

Varying representation of a dynamical system. It makes use of the Higher-Order 

Singular Value Decomposition (HOSVD) to numerically extract a meaningful 
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representation from a sampled representation of a function over a grid of possible 

values. This convex representation allows the use of readily available Linear 

Matrix Inequality (LMI) conditions to be used for the synthesis of nonlinear 

systems in a systematic approach [24]. 

Several works in the literature focused on different applications of the TPMT to 

different control problems, and of special note is the work in [19], in which the 

authors made use of the Tensor Product Model Transformation to find a convex 

representation for the discretization of Uncertain Linear Systems. However, their 

work does not take into account the error made on this discretization procedure by 

using a grid of possible values for the discrete-time representation of the uncertain 

system. In that regard, this work extends the ideas introduced in [19], providing an 

analytical upper bound for the residual error norm and a discrete-time polytopic 

model for the continuous-time uncertain system. 

Notation 

In this paper, lowercase variables represent scalars, lowercase boldface variables 

represent column vectors, uppercase variables represent matrices and calligraphic 

uppercase variables represent tensors. 𝑆𝑇 denotes the transpose of matrix 𝑆, 𝑄 > 0 

(𝑄 ≥ 0) indicates that matrix 𝑄 is positive definite (positive semi-definite), and ⋆ 

indicates terms that can be inferred from symmetry on a symmetric matrix. 

ℒ ×𝑛 𝑈 represents the n-mode product between tensor ℒ and matrix 𝑈. In order to 

get acquainted with the multilinear algebra operations used in this paper, we refer 

the reader to [20], [27]. 

2 Discretization Strategy 

Consider the uncertain linear system described by the polytopic model 

�̇� = 𝐴(𝛂)𝒙 + 𝐵(𝛂)𝒖 = ∑ α𝑖(𝐴𝑖𝒙 + 𝐵𝑖𝒖)𝑟
𝑖=1  (1) 

with 𝒙 ∈ ℝ𝑛 the system’s states, 𝒖 ∈ ℝ𝑚 the control inputs, 𝐴𝑖 ∈ ℝ𝑛×𝑛 and 𝐵𝑖 ∈
ℝ𝑛×𝑚 the system matrices and 𝛼𝑖 the uncertain convex weights of the model, such 

that: 

𝛼𝑖 ∈ [0,1], ∑ 𝛼𝑖 = 1𝑟
𝑖=1 . (2) 

In this paper, our aim is to find an approximate uncertain discrete time polytopic 

model, for this system, described by: 

𝒙𝒌+𝟏 = (�̂�(𝛃) + Δ𝐴)𝒙𝒌 + (�̂�(𝛃) + Δ𝐵)𝒖𝒌 

          = ∑ β𝑖((�̂�𝑖 + Δ𝐴)𝒙𝒌 + (�̂�𝑖 + Δ𝐵)𝒖𝒌)
�̂�
𝑖=1  (3) 

with �̂� the number of linear models composing the uncertain discretized system, 𝛽𝑖 

the unknown convex weights with: 
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𝛽𝑖 ∈ [0,1], ∑ 𝛽𝑖 = 1�̂�
𝑖=1  (4) 

and Δ𝐴 and Δ𝐵 norm bounded uncertainties with: 

||Δ𝐴||2 ≤ 𝜂𝑎,   ||Δ𝐵||2 ≤ 𝜂𝑏. (5) 

By considering that the uncertain convex weights 𝛼𝑖 are constant over time and 

that the control inputs are constant over the sampling period, the system described 

in (1) can be exactly discretized by: 

𝒙𝒌+𝟏 = 𝑒𝐴(𝜶)𝜏𝒙𝒌 + ∫ (𝑒𝐴(𝜶)𝑡𝑑𝑡)
𝜏

0
𝐵(𝜶)𝒖𝒌 (6) 

with 𝜏 the sampling period. Similarly to [19], our problem can be restated as 

finding a convex representation for: 

�̂�(𝜶) = 𝑒𝐴(𝜶)𝜏, �̂�(𝜶) = ∫ (𝑒𝐴(𝜶)𝑡𝑑𝑡)
𝜏

0
𝐵(𝜶), (7) 

and the Tensor Product Model Transformation (TPMT) [20], [21], [22], [23] can 

be employed to this end. Unlike [19] though, we explicitly consider the 

discretization error introduced by the sampling step of the TPMT, which are 

represented by Δ𝐴 and Δ𝐵 in (3). The main contribution in this paper can then be 

understood as analytical upper bounds on 𝜂𝑎 and 𝜂𝑏. 

2.1 Tensor Product Model Transformation (TPMT) 

In order to find a representation with the smallest �̂� (or the smallest number of 

linear systems composing the uncertain model), we define the matrix function: 

𝐻(𝜶) = [�̂�(𝜶) �̂�(𝜶)] (8) 

which will be approximated by the Tensor Product Model Transformation. This 

approach is common in the TPMT literature and allows for a smaller number of 

vertices found in the end, when compared against approximating the matrix 

functions separately and joining the convex models found afterwards. 

The TPMT can usually be divided into four steps: sampling, Higher Order 

Singular Value Decomposition (HOSVD), Convex Hull Manipulation and 

Interpolation [26]. 

2.1.1 Sampling 

If done on the usual approach, the sampling step would be performed by defining 

a regular sampling grid over the hyperrectangular domain 𝜶 ∈ [0,1]𝑟 and, if we 

considered sampling each 𝛼𝑖 with 𝑝 samples, storing it on a tensor ℋ ∈

ℝ𝑝×…×𝑝×𝑛×(𝑛+𝑚). 

This approach is usually employed with Linear Parameter Varying (LPV) and 

Takagi-Sugeno (TS) models, since it allows for a special structure in which the 

resulting weights can be decomposed as functions of a single scalar variable. 
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When such structure on the weighting functions is not needed, an approach similar 

to the 1-level Nested Tensor Product Model Transformation (NTPMT) [21] could 

be used instead, resulting in a tighter model with a smaller number of linear 

systems composing the desired model. 

We make use, instead, of the approach proposed in [19] since we have a particular 

structure on our domain. From (2) we know that: 

𝛼𝑟 = 1 − ∑ 𝛼𝑖
𝑟−1
𝑖=1  (9) 

and we need only to sample the first 𝑟 − 1 dimensions of 𝜶. In addition to this, we 

only consider valid samples as being those for which: 

∑ 𝛼𝑖 ≤ 1𝑟−1
𝑖=1 . (10) 

Inspired by the 1-level NPTMT, we store the valid samples on a tensor ℋ ∈

ℝ𝜅×𝑛×(𝑛+𝑚), with 𝜅 the number of valid samples taken and ℋ𝑖𝑗𝑘  the element in 

row 𝑗 and column 𝑘 from sample 𝑖. 

With this sampling, the matrix function can be represented as: 

𝐻(𝜶) = ℋ ×1 𝒘𝑇(𝜶) + Δ𝐻 (11) 

with 𝒘𝑻(𝜶) an interpolation function that assigns a weight to each sample 

depending on the value of 𝜶 and Δ𝐻 the interpolation/grid sampling error. While 

any interpolation strategy that yields convex weights could be used, like a finite 

element interpolation for instance, in this work we consider a nearest neighbor, or 

piecewise constant, interpolation to derive an upper bound on the norm of the part 

that compose Δ𝐻 (Δ𝐴 e Δ𝐵). 

2.1.2 Higher Order Singular Value Decomposition (HOSVD) 

By making use of the HOSVD [27] along the first direction of ℋ, it can be 

rewritten as: 

ℋ = ℒ ×1 𝑈1 (12) 

with ℒ ∈ ℝ𝑞×𝑛×(𝑛+𝑚), 𝑈1 ∈ ℝ𝜅×𝑞, and the equality is ensured in the equation 

above only on the cases in which no nonzero higher order singular values are 

discarded. In case nonzero higher order singular values are discarded, the 

approach presented in [26] can be used to find an extra uncertainty that needs to 

be considered in Δ𝐻. 

2.1.3 Convex Hull Manipulation 

In order for us to retrieve an interesting convex representation for function 𝐻(𝛼), 

it is necessary to impose some special properties upon matrix 𝑈1. The following 

properties are common in the TPMT literature: 

 Sum Normalization (SN): for every row of 𝑈1, the sum of its columns is 

equal to one 
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 Non Negative (NN): every element of 𝑈1 is nonnegative 

 Inverse Normalized (INO): the minimum of every column of 𝑈1 is the same 

and is equal to zero 

 Relaxed Normalized (RNO): the maximum of every column of 𝑈1 is the 

same 

 Close to Normalized (CNO): the simplex formed by the unitary vectors is the 

smallest volume simplex that covers the vectors formed by the rows of 𝑈1 

The SN and NN properties are the bare minimum to ensure that we retrieve a 

convex representation, but usually do not generate interesting models by 

themselves. The other properties are usually employed to guarantee that a “tight” 

representation is found, meaning that, in this case, they aim at representing the 

uncertain system with a small set. 

In the examples presented later in this work, we make use of the SN-NN 

transformation [22], followed by the RNO-INO transformation [28] and the CNO 

transformation. 

2.1.4 Interpolation 

If the combined transformations are such that: 

�̂�1 = 𝑈1𝑇1 ⇒ 𝑈1 = �̂�1𝑇1
−1 (13) 

with �̂�1 the matrix with the desired properties and 𝑇1 the nonsingular matrix that 

transforms the original matrix. Then by combining (11), (12) and (13) we get that 

𝐻(𝜶) = (ℒ ×1 𝑈1) ×1 𝒘𝑇(𝜶) + Δ𝐻 

            = (ℒ ×1 �̂�1𝑇1
−1) ×1 𝒘𝑇(𝜶) + Δ𝐻 

            = (ℒ ×1 𝑇1
−1) ×1 𝒘𝑇(𝜶)�̂�1 + Δ𝐻 

            = ℒ̂ ×1 �̂�𝑇(𝜶) + Δ𝐻 

            = ∑ 𝛽𝑖
�̂�
𝑖=1 [�̂�𝑖 �̂�𝑖]  + Δ𝐻 (14) 

with 𝛽𝑖 = 𝑤𝑖(𝜶), �̂�𝑖𝑗𝑘
= ℒ̂𝑖𝑗𝑘 and �̂�𝑖𝑗𝑘

= ℒ̂𝑖𝑗(𝑘+𝑛). Note that, even though we 

present a form to calculate βI since the values of 𝛂 are unknown, and we consider 

the values of βI to be unkown as well, they need not be determined. 

2.2 Analytical Upper Bound on the Grid Sampling Step 

By comparing (14) and (3), we get that the error in (14) can be rewritten as: 

Δ𝐻 = [Δ𝐴 Δ𝐵] (15) 
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Note that, since we are using a nearest neighbour interpolation these errors can be 

taken as the error in this kind of interpolation on the sampling grid. As such, 

consider that 𝜶 represents any point on the domain, while 𝜶𝒈 represents the 

nearest point on the grid. We get that the interpolation errors can be written as: 

Δ𝐴 = 𝑒𝐴(𝜶)𝜏 − 𝑒𝐴(𝜶𝒈)𝜏 (16) 

Δ𝐵 = ∫ (𝑒𝐴(𝜶)𝑡𝑑𝑡)
𝜏

0
𝐵(𝜶) − ∫ (𝑒𝐴(𝜶𝒈)𝑡𝑑𝑡)

𝜏

0
𝐵(𝜶𝒈) (17) 

Since 𝜶𝒈 represents the nearest point on the grid, (16) can be rewritten as: 

Δ𝐴 = 𝑒𝐴(𝜶𝒈)𝜏+𝐴(𝜹𝜶)𝜏 − 𝑒𝐴(𝜶𝒈)𝜏 (18) 

with 

𝐴(𝜹𝜶) = ∑ (𝛼𝑖 − 𝛼𝑔𝑖
) 𝐴𝑖

𝑟
𝑖=1  (19) 

From the definition of the matrix exponential with its Taylor series, we get that: 

Δ𝐴 =  ∑ (
(𝐴(𝜶𝒈)𝜏+𝐴(𝜹𝜶)𝜏)

𝑖

𝑖!
−

(𝐴(𝜶𝒈)𝜏)
𝑖

𝑖!
)∞

𝑖=0   

       = ∑
1

𝑖!

∞
𝑖=0 (∑ (

𝑖
𝑘
)𝑖

𝑘=0 (𝐴(𝜶𝒈)𝜏)
𝑘
(𝐴(𝜹𝜶)𝜏)𝑖−𝑘 − (𝐴(𝜶𝒈)𝜏)

𝑖
)  

       = ∑
1

𝑖!

∞
𝑖=0 (∑ (

𝑖
𝑘
)𝑖−1

𝑘=0 (𝐴(𝜶𝒈)𝜏)
𝑘
(𝐴(𝜹𝜶)𝜏)𝑖−𝑘) (20) 

By taking the norm on both sides, we can write that: 

||Δ𝐴||2 ≤ 𝜂𝑎 =  ∑ ∑
1

𝑖!

𝑖−1
𝑘=0 (

𝑖
𝑘
) ||𝐴(𝛼𝑔)||2

𝑘||𝐴(𝛿𝛼)||2
𝑖−𝑘𝜏𝑖∞

𝑖=0  (21) 

Once again, since 𝜶𝒈 represents the nearest point on the grid, (17) can be rewritten 

as: 

Δ𝐵 = ∫ (𝑒𝐴(𝜶)𝑡 − 𝑒𝐴(𝜶𝒈)𝑡𝑑𝑡)
𝜏

0
𝐵(𝜶) + ∫ (𝑒𝐴(𝜶𝒈)𝑡𝑑𝑡)

𝜏

0
(𝐵(𝜶𝒈) − 𝐵(𝜶)) (22) 

By taking the norm on both sides of (22) and making use of the triangular 

inequality, we get that: 

||Δ𝐵||2 ≤ || ∫ (𝑒𝐴(𝜶)𝑡 − 𝑒𝐴(𝜶𝒈)𝑡𝑑𝑡)
𝜏

0
𝐵(𝜶)||2  

               + || ∫ (𝑒𝐴(𝜶𝒈)𝑡𝑑𝑡)
𝜏

0
(𝐵(𝜹𝜶))||2 (23) 

with 

𝐵(𝜹𝜶) = ∑ (𝛼𝑖 − 𝛼𝑔𝑖
)𝐵𝑖

𝑟
𝑖=1  (24) 

The first term on the right hand side of (23) can be upper bounded, by making use 

of the developments in (20), by: 
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|| ∫ (𝑒𝐴(𝜶)𝑡 − 𝑒𝐴(𝜶𝒈)𝑡𝑑𝑡)
𝜏

0
𝐵(𝜶)||2  ≤

 ∫ ∑
𝑡𝑖

𝑖!

∞
𝑖=0 (∑ (

𝑖
𝑘
)𝑖−1

𝑘=0 ||𝐴(𝜶𝒈)||2
𝑘||𝐴(𝜹𝜶)||2

𝑖−𝑘) 𝑑𝑡
𝜏

0
||𝐵(𝜶)||2 ≤

∑
𝑡𝑖+1

(𝑖+1)!

∞
𝑖=0 (∑ (

𝑖
𝑘
)𝑖−1

𝑘=0 ||𝐴(𝜶𝒈)||2
𝑘||𝐴(𝜹𝜶)||2

𝑖−𝑘) ||𝐵(𝜶)||2 (25) 

whereas the second term can be upper bounded by: 

|| ∫ (𝑒𝐴(𝜶𝒈)𝑡𝑑𝑡)
𝜏

0
(𝐵(𝜹𝜶))||2 ≤ ∫ ||𝑒𝐴(𝜶𝒈)𝑡||2||𝐵(𝜹𝜶)||2𝑑𝑡

𝜏

0
≤

∫ 𝑒||𝐴(𝜶𝒈)||2𝑡||𝐵(𝜹𝜶)||2𝑑𝑡
𝜏

0
=

||𝐵(𝜹𝜶)||2

||𝐴(𝜶𝒈)||2
(𝑒||𝐴(𝜶𝒈)||2𝜏 − 1) (26) 

By considering (25) and (26), we can write that: 

||Δ𝐵||2 ≤ 𝜂𝑏 (27) 

with 

𝜂𝑏 = ∑
𝑡𝑖+1

(𝑖+1)!

∞
𝑖=0 (∑ (

𝑖
𝑘
)𝑖−1

𝑘=0 ||𝐴(𝜶𝒈)||2
𝑘||𝐴(𝜹𝜶)||2

𝑖−𝑘) ||𝐵(𝜶)||2 +

∫ 𝑒||𝐴(𝜶𝒈)||2𝑡||𝐵(𝜹𝜶)||2𝑑𝑡
𝜏

0
=

||𝐵(𝜹𝜶)||2

||𝐴(𝜶𝒈)||2
(𝑒||𝐴(𝜶𝒈)||2𝜏 − 1) (28) 

Equations (21) and (28) allow us to find an upper bound on the grid sampling step 

and can be used to determine bounds for the norm-bounded uncertainty in (3). In 

order to make use of these equations, though, we need to be able to calculate 

||𝐴(𝜶𝒈)||2, ||𝐵(𝜶𝒈)||2, ||𝐴(𝜹𝜶)||2 and ||𝐵(𝜹𝜶)||2. 

To do so, we consider that the sampling grid is such that: 

|𝛼𝑖ℓ
− 𝛼𝑔𝑖ℓ

| ≤ ℎ (29) 

By using this limit, together with the fact that: 

∑ (𝛼𝑖 − 𝛼𝑔𝒊
)𝑟

𝑖=1 = 0 (30) 

and that the intersection of a polytope and a hyperplane is always a polytope, we 

can write: 

𝜶 − 𝜶𝒈 = ∑ 𝛾𝑘𝝂𝒌
𝑛𝜈
𝑘=1  (31) 

with 𝝂𝒌 the vertices of the intersection from the [−ℎ, ℎ]𝑟 polytope with the zero-

sum hyperplane and 

𝛾𝑘 ∈ [0,1], ∑ 𝛾𝑘 = 1
𝑛𝜈
𝑘=1  (32) 

Finally, with these definitions, we have that: 

||𝐴(𝜶𝒈)||2 ≤ max
𝑖

||𝐴𝑖||2 (33) 

||𝐵(𝜶𝒈)||2 ≤ max
𝑖

||𝐵𝑖||2 (34) 
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||𝐴(𝜹𝜶)||2 ≤ max
𝑘

|| ∑ 𝜈𝑘𝑖
𝑟
𝑖=1 𝐴𝑖||2 (35) 

||𝐵(𝜹𝜶)||2 ≤ max
𝑘

|| ∑ 𝜈𝑘𝑖
𝑟
𝑖=1 𝐵𝑖||2 (36) 

3 Illustrative Examples 

To illustrate the advantages of the proposed discretization procedure, we 

synthesize digital state feedback controllers based on the derived discretized 

model. For that, we adapted the controller design condition provided in [30], 

which is given in the following theorem. 

Theorem 1 (adapted from [30]). For given 𝜂𝐴 and 𝜂𝐵, if there exist positive 

definite matrices 𝑃𝑖 = 𝑃𝑖
𝑇 ∈ ℝ𝑛 ×𝑛, 𝑖 = 1,… , �̂�, matrices 𝐺 ∈ ℝ𝑛 ×𝑛, 𝑋 ∈ ℝ𝑚 ×𝑛, 

and a scalar 𝜇 such that: 

[
 
 
 
𝑃𝑖 − 𝐺𝑇 − 𝐺 ⋆ ⋆ ⋆

�̂�𝑖𝐺 + �̂�𝑖𝑋 −𝑃𝑖 + 𝜇(𝜂𝐴
2 + 𝜂𝐵

2)𝐼 ⋆ ⋆
𝐺 0 −𝜇𝐼 ⋆
𝑋 0 0 −𝜇𝐼]

 
 
 

< 0, ∀𝑖 (37) 

then there exists a digital state feedback controller given by 𝐾 = 𝑋𝐺−1 that 

asymptotically stabilizes system (1). 

We compare our discretization procedure with the ones of [10] and [30] in terms 

of the maximum sampling period and the bounds of the discretization error. 

Notice that our approach and the one of [30] provide distinct upper bounds for 

matrices �̂�(𝛽) and �̂�(𝛽), whereas the approach of [10] provides a single upper 

bound for both matrices. Two numerical examples are provided to this end. It is 

important to emphasize that all comparisons are performed among methods that 

provide a theoretical bound for the system’s discretization error. 

Example 1. Consider a linearized inverted pendulum on cart model given by 

equation (1) with: 

𝐴 =

[
 
 
 
 
0 1 0 0

0 −
𝑏(𝛼1)

𝑀(𝛼2)
−

𝑚𝑔

𝑀(𝛼2)
0

0 0 0 1

0
𝑏(𝛼1)

𝑀(𝛼2)𝑙

(𝑀(𝛼2)+𝑚)𝑔

𝑀(𝛼2)𝑙
0]
 
 
 
 

,    𝐵 =

[
 
 
 
 

0
1

𝑀(𝛼2)

0

−
1

𝑀(𝛼2)𝑙]
 
 
 
 

 (38) 

where 𝒈 = 𝟗. 𝟖m/s2 is the gravity, 𝒍 = 𝟎. 𝟒m is the length of the rod, 𝒎 =
𝟎. 𝟏𝟏kg is the mass of the pendulum (assumed concentrated at the end of the rod), 

𝒃(𝜶𝟏) ∈ [𝟎. 𝟎𝟒𝟕𝟓 𝟎. 𝟎𝟓𝟐𝟓]Ns/m is the friction coefficient of the cart, and 

𝑴(𝜶𝟐) ∈ [𝟎. 𝟖𝟗𝟔 𝟏. 𝟑𝟒𝟒]kg is the mass of the cart. 

Our aim in this example is determine the maximum discretization period that 

ensures the closed loop system (with a digital controller) is asymptotically stable. 
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Applying the conditions of Theorem 1 with 111 points and a tolerance of 𝟏𝟎−𝟔 

provided a maximum period of 𝝉 = 𝟏𝟕𝟖ms with error bounds for the 

discretization procedure of 𝜼𝑨 = 𝟎. 𝟎𝟎𝟒𝟑 and 𝜼𝑩 = 𝟎. 𝟎𝟎𝟏𝟐. Contrast this 

sampling time with the maximum ones obtained by the methods of [30], 𝝉 =
𝟏𝟎𝟑ms, and of [10], 𝝉 = 𝟏𝟕𝟖ms, with error bounds of 𝜼𝑨 = 𝟎. 𝟎𝟒𝟓𝟗 and 𝜼𝑩 =
𝟎. 𝟎𝟎𝟓𝟏, and 𝜼𝑨 = 𝜼𝑩 = 𝟎. 𝟎𝟒𝟕𝟑, respectively. For the method of [30], a 

truncated 𝟖𝒕𝒉 order Taylor series expansion was adopted, polynomial matrices of 

degree 8 and 𝑳 = 𝟐𝟎𝟎 (a parameter used by [30] to calculate the discretization 

error); whereas, for the approach of [10], a truncated 𝟏𝟎𝒕𝒉 order Taylor series 

expansion is considered with affine-dependent optimization variables. Notice that 

our discretization period is about 1.7 times greater than the one of [30] whereas it 

is the same as [10]. Nevertheless, our approach does not require determining the 

Taylor series expansion of each matrix in order to obtain a discretized model and, 

furthermore, the analytic upper bound for the discretization error is about 10 times 

smaller than in the other methods. Table 1 summarizes the results attained for 

each aforementioned method. 

Table 1 

Summary of the discretization procedures results for the system of Example 1 

Method Max. Samp. Time 𝜼𝑨 𝜼𝑩 

Theorem 1 178 ms 0.0043 0.0012 

[30] 103 ms 0.0463 0.0051 

[10] 178 ms 0.0473 

To further illustrate the performance of our approach, a time simulation of the 

continuous system with the digital controller is performed and the attained results 

are depicted in Figure 1 and Figure 2. Starting from an initial condition of 𝒙𝟎 =
[𝟎 𝟎 𝝅/𝟔 𝟎]𝑻, the simulation was performed for 20 seconds and the 

controller synthesized for the largest attained sampling time was adopted. Notice 

that the closed-loop inverted pendulum system stabilizes in about 10 seconds and 

that the amplitude of the control signal presents reasonable bounds for a real 

implementation. 

 

Figure 1 

Evolution of the inverted pendulum states 
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Figure 2 

Digital control signal applied to the inverted pendulum system 

Example 2. In this example an open-loop stable system is considered, which is a 

simplified two-mass-spring system as proposed in [31] described by equation (1) 

with the following matrices: 

𝐴 =

[
 
 
 
 

0 0 1 0
0 0 0 1

−
𝑘(𝛼)

𝑚1

𝑘(𝛼)

𝑚1
0 0

𝑘(𝛼)

𝑚2
−

𝑘(𝛼)

𝑚2
0 0]

 
 
 
 

,    𝐵 =

[
 
 
 
0
0
1

𝑚1

0 ]
 
 
 

 (39) 

where 𝒎𝟏 = 𝒎𝟐 = 𝟏kg are the masses of carts 1 and 2, respectively, and 𝒌(𝜶) ∈
[𝟎. 𝟓  𝟐. 𝟎]N/m is the spring constant. 

The methods of [10] and [30] (using a truncated 𝟏𝟎𝒕𝒉 order Taylor series 

expansion) are once again applied to the above system and the attained results are 

compared to our proposed approach. These results are reported in Table 2. From 

the presented data, one can notice that the maximum sampling time attained by 

our approach is higher than both [10] and [30] and besides the discretization error 

is about 10 times smaller than the one provided by [10] and 4 times smaller than 

the one of [30]. 

Table 2 

Maximum sampling times and analytical error bounds for Theorem 1 and the methods of [10] and [30] 

Method Max. Samp. Time 𝜼𝑨 𝜼𝑩 

Theorem 1 1.217 0.0266 0.0056 

[30] 1.018 0.1909 0.0477 

[10] 1.112 0.0987 

Conclusions and Future Works 

In this work, we derived an analytical upper bound on the discretization approach 

proposed in [19]. In order to do so, we utilized a nearest neighbor interpolation in 

the TPMT and performed manipulations around the definition of the matrix 
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exponential function. The proposed bounds are considerably smaller than other 

analytical bounds available for other discretization approaches in the literature. 

In the future, we aim to develop tighter bounds for this error, possibly by using 

different interpolation strategies. Another interesting development would be the 

use of the NTPMT [21] for the discretization and comparing the results against the 

learnings in this paper. 
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