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Abstract: Most of the discretization approaches for uncertain linear systems make use of 

the series representation of the matrix exponential function and truncate the summation 

after a certain order. This usually leads to discrete-time uncertain polytopic models 

described by polynomial matrices with multiple indexes, which usually means that the 

higher the order used in the approximation, the higher the number of linear matrix 

inequalities (LMI) needed. This work, instead, proposes an approach based on a grid of the 

possible values for the matrix exponential function and an application of the tensor product 

model transformation technique to find a suitable polytopic model. Numerical examples are 

presented to illustrate the advantages and the applicability of the proposed technique. 
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1 Introduction 

Ever since efficient interior-point methods for semi-definite programming [1] 

made the use of Linear Matrix Inequalities (LMIs) computationally tractable, it 

has been extensively used for the robust control of linear systems [2], [3]. 

Despite the fact that many systems are described as continuous-time systems by 

differential equations, most controllers are implemented in a digital form. 

The importance of digitally implemented controllers is corroborated by its 

extensive use in industrial applications, with various advantages, such as 

flexibility, ease of implementation of complex digital control laws, possibility of 

existence of interfaces with the users (including web interfaces), lower power 

consumption, greater reliability [4], [5]. 
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Therefore, it is interesting to find an appropriate discrete-time representation of 

these systems that can be used in their analysis and synthesis of digital controllers. 

The main hurdle in this direction is that, while there are exact discretization 

formulas for linear systems (see, for instance, [4], [6], [7] and references therein), 

the same is not true for uncertain linear systems, and approximations are used 

instead to deal with the exponential of an uncertain matrix. 

For instance, one can cite the work in [8] where the state space matrices of the 

continuous-time systems are supposed to be interval matrices and, by employing 

the Chebyshev quadrature formula and interval arithmetic, a discrete-time 

representation of the system is acquired. 

As main drawback of this approach, is the fact that it cannot treat systems 

described by uncertainties lying in a polytope with an arbitrary number of vertices. 

To deal with uncertain network-induced delay, the authors in [9] performed a 

discretization of a switched system. 

Others [10]-[13], as a primary approximation of the uncertain continuous-time 

systems, employ a first-order Taylor series expansion technique to represent the 

discrete-time systems. 

However, such choice implies that the model becomes increasingly inaccurate 

with the augmentation of the sampling time. 

Finally, in [14], the authors proposed a technique to discretize the uncertain 

system by applying a Taylor series expansion of a fixed order, resulting in a 

discrete-time model composed of homogeneous polynomial matrices plus an 

additive norm-bounded term that represents the discretization residual error. 

Such representation produces polynomial matrix systems with multiple indexes, 

which usually means that the number of LMIs to be solved increases with the 

chosen order by the designer. 

In order to avoid the aforementioned difficulties, this work proposes an approach 

based on a grid of the possible values for the matrix exponential function and an 

application of the tensor product model transformation technique to acquire a 

suitable polytopic model. 

In this paper, we consider continuous-time uncertain linear systems described by 

polytopic models (which can also be regarded as linear differential inclusions [2]). 

These models represent the uncertain system as the convex sum of known linear 

models, whose weights are unknown. With that in mind, we consider that the 

models are written as 

𝒙̇(𝑡) = 𝐴(𝜶)𝒙(𝑡) + 𝐵(𝜶)𝒖(𝑡), 

𝒙̇(𝑡) = ∑ 𝛼𝑖(𝐴𝑖𝒙(𝑡) + 𝐵𝑖𝒖(𝑡))𝑟
𝑖=1  
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in which 𝒙(𝑡) ∈ ℝ𝑛 is the state vector, 𝒖(𝑡) ∈ ℝ𝑚is the control input, 𝑟is the 

number of vertex linear models, and 𝜶𝒊are the convex weights, such that 

𝛼𝑖 ∈ [0,1] ,    ∑ 𝛼𝑖
𝑟
𝑖=1 = 1.      

The main goal of this paper is to find an approximate discrete-time polytopic 

model, such as 

𝒙[𝑘 + 1] = 𝐴̂(𝜷)𝒙[𝑘] + 𝐵̂(𝜷)𝒖[𝑘],  

𝒙[𝑘 + 1] = ∑ 𝛽𝑖(𝐴𝑖̂𝒙[𝑘] + 𝐵𝑖̂𝒖[𝑘])𝑟̂
𝑖=1  (1) 

in which 𝑟̂ is the number of vertex linear models and 𝛽𝑖 are the convex weights 

such that 

𝛽𝑖 ∈ [0,1],     ∑ 𝛽𝑖 = 1𝑟̂
𝑖=1   

This representation allows us to derive robust analysis and synthesis conditions for 

this type of discrete-time polytopic systems as optimization problems involving 

LMIs [15]-[19] 

If we consider that the uncertain weights α𝑖, as well as the control inputs, are 

constant over the sampling intervals, we know that the uncertain linear system can 

be discretized by [14], [20] 

𝒙[𝑘 + 1] = 𝑒𝐴(𝜶)𝑇𝑠𝒙[𝑘] + ∫ (𝑒𝐴(𝜶)𝜏𝑑𝜏)𝐵(𝜶)𝒖[𝑘]
𝑇𝑠

0
 (2) 

in which 𝑇𝑠 represents the constant sampling time. We can see that, under these 

assumptions, the discretization can be regarded as finding a polytopic 

representation for 

𝐴̂(𝛂) = 𝑒𝐴(𝛂)𝑇𝑠 ,     𝐵̂(𝛂) = ∫ (𝑒𝐴(𝛂)τ𝑑τ)𝐵(𝛂)
𝑇𝑠

0
. (3) 

Whereas some works consider a simple forward Euler approximation to find the 

discrete-time uncertain model [10]-[13] and others consider a truncation of the 

power series for the matrix exponential [14], we instead propose to find an 

approximation for the discrete-time model by a grid approximation (over the 

possible values of α𝑖). 

Given the values taken over the grid, one could simply consider that every grid 

point is a vertex of the discrete-time polytopic model. However, in order to find a 

reasonably good approximation, a high number of grid points is necessary and that 

would lead to a computationally untractable model for LMI approaches. 

Fortunately, the Tensor Product Model Transformation (TPMT) [21]-[23] is a 

technique that was proposed to find polytopic representations from grid values for 

a Linear Parameter Varying (LPV) model. In that regard, in this paper, we propose 

its use to find a suitable polytopic approximation for the discrete-time uncertain 

system in (2). 
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This paper is organized as follows: Section 2 presents some definitions and results 

used in this work. Section 3 presents the discretization methodology proposed in 

this paper. In Section 4, a numerical example is used to illustrate the proposed 

discretization strategy.} Section 5 draws some conclusions and proposes future 

works. 

Notation Throughout this paper, scalars are represented by lowercase variables, 

column vectors by lowercase boldface variables, matrices by uppercase variables 

and tensors by calligraphic uppercase variables. 𝐴𝑇 denotes the transpose of 

𝐴, 𝑃 > 0 (𝑃 ≥ 0) indicates that matrix 𝑃 is positive definite (semi-definite), and ∗ 

represents symmetric terms inside of a symmetric matrix. 𝒮 ×𝑛 𝑈 represents the n-

mode product between tensor 𝒮 and matrix 𝑈.𝒮 = 1 ⊠i=1
n 𝑈𝑖  is a shorthand 

notation for 𝒮 ×1 𝑈1 … ×𝑛 𝑈𝑛. For a detailed definition of the multilinear algebra 

operations used in this paper, we refer the reader to [24]. 

2 Background 

Throughout this paper, some results will be of fundamental importance to develop 

the discretization strategy proposed. One of these results, presented in Theorem 1, 

is the Higher Order Singular Value Decomposition, which allows the 

decomposition of a tensor into a product of a core tensor and a set of matrices. 

Theorem 1: Higher Order Singular Value Decomposition (HOSVD) [24, Theorem 

2] 

Every complex tensor 𝒜 ∈ ℝi1×…×il  can be decomposed as the k-mode product of 

tensor 𝒮 and matrices 𝑈𝑘, as 𝒜 = 𝒮 ×1 𝑈1 … ×l 𝑈l = 𝒮 ⊠𝑘=1
l 𝑈𝑘.  

In order to illustrate the proposed strategy, a discrete-time LMI synthesis 

condition will be used to find a stabilizing digital controller for the continuous-

time system. Since it is not the focus of this paper, a simple robust condition, 

presented in Theorem 2, is used. Note that any other set of robust stabilizing 

synthesis condition could be used. 

Theorem 2: Discrete-Time LMI Synthesis Conditions [17] 

Given a system described by (1), a control law of the form  

𝒖 = 𝐾𝒙 

asymptotically stabilizes the system if there exists a symmetric matrix 𝑋 ∈ ℝ𝑛×𝑛, 

and a matrix 𝑌 ∈ ℝ𝑚×𝑛such that 

[−𝑋 𝐴𝑋 + 𝑋𝑇𝐴𝑇 + 𝐵𝑌 + 𝑌𝑇𝐵𝑇

∗ −𝑋
] <  0.  

In addition to this, the control gain matrix 𝐾 is found by 𝐾 = 𝑌𝑋−1. 
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3 Discretization Strategy 

As explained in the introduction, in this paper, we propose to use the tensor 

product model transformation, with slight modifications, to approximate the 𝐴̂(𝛂) 

and 𝐵̂(𝛂) matrix functions in (3). In order to find a representation with a smaller 

number of vertices, we first define the matrix function 

𝐿(𝜶) =  [𝐴̂(𝜶) 𝐵̂(𝜶)], 

and approximate this matrix function instead. Note that the image space of 𝐿(𝜶) is 

in ℝ𝑛×(𝑛+𝑚). 

3.1 Sampling 

Considering that we have r convex sum weights α𝑖 taking values in [0,1], in the 

usual tensor product model transformation, we would start by defining an hyper-

rectangular sampling grid over the [0,1]𝑟  space, with 𝑝𝑖  samples along the ith 

dimension (resulting in ∏ 𝑝𝑖
𝑟
𝑖=1  samples). Each sample taken from the grid would 

be stored in a tensor ℒ ∈ 𝑅𝑝1×…×𝑝𝑟×𝑛×(𝑛+𝑚).  This approach would, however, lead 

to some problems, since it does not take into account that the α𝑖 are convex 

weights and should always add up to one. 

In that regard, we propose the following approach: if there are 𝑟 ≥ 2 different 

α𝑖weights, we define a grid with p points in [0,1] for 𝑟 − 1of these weights. In 

addition, we only take samples from values on this 𝑟 − 1 dimensional grid if their 

sum is less than one. The remaining convex weight (the one not defined on the 

grid) is found by subtracting the sum of the current grid point from one (so that the 

sum of the weights is one). In addition, we store these samples in a ℒ ∈

ℝκ×𝑛×(𝑛+𝑚) tensor, in which κ is the total number of valid samples taken, and 

ℒ𝒾𝒿𝑘 represents the element in row j and column k from sample i. 

At this point, the matrix function can be represented as 

𝐿(𝛂) ≈ ℒ ×1 𝑤𝑇(𝛂)  

in which the function 𝑤𝑇(𝛂) is an interpolation function that assigns a convex 

weight to each sample depending on the current value of 𝛂. A nearest neighbor or 

a finite element interpolation would generate a suitable interpolation (though, it 

does not make much difference given we are not really interested in the 

approximation model found, but only on the convex vertices found). 

3.2 HOSVD 

By making use of Theorem 1, we can decompose tensor ℒ by its HOSVD along its 

first direction (since we are not interested in decomposing the last two) and 

rewrite it as 
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ℒ = 𝒮 ×1 𝑈1,  

with 𝒮 ∈ ℝ𝑞×𝑛×(𝑛+𝑚) and 𝑈1 ∈ 𝑅κ×𝑞 . 

Matrix 𝑈1 acts like a weight matrix, since we can rewrite the matrix function as 

𝐿(𝛂) ≈ 𝑆 ×1 𝒘𝑇(𝛂)𝑈1 = 𝑺 ×1 𝒘ℎ
𝑇(𝛂)  

with 𝒘𝒉
𝑻(𝛂) = 𝒘𝑻(𝛂)𝑈1. One might be tempted to use the vertices in tensor 𝒮 as 

the vertex matrices in (1). Note, however, that since the 𝑈1 weight matrix is 

allowed to assume any values, even though the elements of 𝒘𝑇(𝛂) can be seen as 

convex sum weights, the elements of 𝒘ℎ
𝑇(𝛂) cannot. 

3.3 Convex Hull Manipulation 

With that in mind, we now seek to find a transformation for the 𝑈1 matrix and the 

corresponding transformation for the tensor 𝒮. In the tensor product model 

transformation literature several properties are proposed for the weight matrices 

(which might be interesting for the final representation found). The mains ones are 

 Sum Normalization (SN): every column of 𝑈1 adds up to one; 

 Non Negative (NN): there are no negative elements in 𝑈1; 

 Inverse Normalized (INO): at least one element of every column of 𝑈1 

is equal to zero; 

 Relaxed Normalized} (RNO): the maximum value of every column of 

𝑈1 is the same; 

 Close to Normalized (CNO): the simplex whose vertices are the unitary 

vectors is the smallest volume simplex that covers the vectors formed by 

the rows of 𝑈1. 

If the SN and NN properties are satisfied, we can guarantee that the transformed 

weight vector 𝒘𝒉
𝑻(𝛂) elements can be regarded as convex sum weights. The other 

properties aim at finding a ``tight'' representation (one in which the vertices found 

at the end represent the smallest uncertain set possible). In this work, we apply the 

SN-NN transformation [21], followed by the RNO-INO transformation [25], [26] 

and the CNO transformation [27]. 

We employ these transformations, because, as is known in the literature [30]-[33], 

the use of different representations usually makes a significant difference on the 

feasibility of LMI conditions (and usually the CNO transformation is the 

recommended one for the stabilization case). 

In order to apply these transformations, we note that, if 

𝑈1 = 𝑈1𝑇1  

𝑈1 = 𝑈1𝑇1
−1  
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which means that 

𝒮 ×1 𝑈1 = 𝒮 × 𝑈1𝑇1
−1  

= (𝒮 ×1 𝑇1
−1) ×1 𝑈1  

= 𝒮̃ × 𝑈1  

With that in mind, and 𝑈1 a CNO matrix, we can rewrite the matrix function 

approximation as 

𝐿(𝛂) ≈ 𝒮̃ ×1 𝑤𝑇(𝛂)𝑈1 = 𝒮̃ ×1 𝒘̃ℎ
𝑇(𝛂)  

and the desired 𝐴𝑖̂ and 𝐵𝑖̂ in (1) can be extracted from the 𝒮̃ tensor, with 𝐴̂ijk
 the 

element in 𝒮̃𝑖𝑗𝑘 and 𝐵̂ijk
 the element in 𝒮̃𝑖𝑗(𝑘+𝑛). 

3.4 Numerical Example 

We present two different examples and compare their results with the ones in [28]. 

The methods presented here were implemented in Matlab R2016 using YALMIP 

[29] and Mosek. 

Example 1: Consider the mass, spring, damper system presented in [28, Example 

1] 

𝑥̇ = 𝐴(𝑐1, 𝑐2)𝑥 + 𝐵𝑢  

with 

𝐴(c1, c2) =




























15.01.0
22

2.02.0

1000

0100

211

11

ccc

cc , B =



















0

1

0

0

,   

and 𝑐1 ∈ [1.6, 2.4], 𝑐2 ∈ [6.4, 9.6] (leading to a continuous-time polytopic 

representation with 4 vertices). The goal in this example is to find an approximate 

discrete-time polytopic model, and use the conditions in Theorem 2 to find a 

stabilizing discrete-time controller for the system. 

By employing the approach presented in this paper, with 20 points used in the 

discretization in each 𝛼𝑖 used, we end up with 6 nonzero singular values from the 

HOSVD step, given by 91.429, 3.6143,2.8729,0.010767,0.0021677, and 

0.0012893. Another vertex system had to be considered in order to enforce the 

SN condition, leading to a model with 7 vertices. By making use of the CNO 

transformation, in order to assure better stabilization results, we arrive at a model 

with 7 vertices with 
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Â1 =  



















0.80960.07340.9629-0.2961

0.14680.84860.57720.6201-

0.27840.0090.84960.0473

0.0180.28160.09310.9031

, (4) 

Â2 =



















0.69410.07661,6783-0.3161

0.15310.83750.59590.6916-

0.26640.00940.73220.0518

0.01890.28050.09990.8917

, (5) 

Â3 =



















0.80430.05680.9982-0.192

0.11350.88190.36280.4045-

0.27790.00730.84450.0304

0.01460.28510.05870.9375

, (6) 

Â4 =



















0.68760.06111.7211-0.2213

0.12230.86900.40020.4878-

0.26570.00780.72590.0361

0.01560.28370.06790.9242

, (7) 

Â5 =



















0.75650.05421.2986-0.1774

0.10850.88550.32360.3812-

0.27290.0071 0.79600.0284

0.01410.28540.05350.9412

, (8) 

𝐴̂6 =



















0.74950.06621.3398-0.2522

0.13240.86070.47550.5430-

0.27220.00830.78860.0407

0.01660.28290.07840.9156

, (9) 
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𝐴̂7 =



















0.741 0.07831.3911-0.3268

0.15650.83600.62680.7015-

0.27130.00960.77980.053

0.01910.28030.10330.8901

, (10) 

𝐵̂1 =



















0.009

0.2816

0.0008

0.0434

,  𝐵̂2 =



















0.0094

0.2805

0.0008

0.0433

,𝐵̂3 =



















0.0073

0.2851

0.0007

0.0436

, (11) 

𝐵̂4 =



















0.0078

0.2837

0.0007

0.0435

,  𝐵̂5 =



















0.0071

0.2854

 0.0006

0.0437

,𝐵̂6 =



















0.0083

0.2829

 0.0007

0.0435

, (12) 

𝐵̂7 =



















0.0096

0.2803 

0.0008

0.0433

. (13) 

By making use of Theorem 2, we get the control 

gains𝐾 =  2.4520-4.1497- 10.55463.7189- . 

Figure 1 shows the system's closed loop behavior with 𝒙𝟎 =

 
T

1321  and 𝛂 =  T0.27130.27180.09090.366 . 

 

(a) States evolution over time 

  

(b)Control input evolution over time 

Figure 1 

Closed loop behavior for the system in example 1 
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Example 2: Consider the 2 vertices system given in [28], described by 

𝑥̇ = ∑ α𝑖(𝐴𝑖𝑥 + 𝐵𝑖𝒖)2
𝑖=1 .  

with 

𝐴1 = 












15.21.3

8.08.1
, 𝐴2 = 













01.334.4

12.1a
  

𝐵1 = 








8.1

27.0
, 𝐵2 = 









4.2

b
  

The aim of this example is to search the parameter space of a and b and find the 

region under which we are able to find a stabilizing controller. We compare the 

region found with the one in [28] with l =  5. We make use of 100 sample points 

for α1. We can see, from Figure 2, that, even though we make use of a simple 

condition, we are able to get better results than the ones in [28] with 𝑙 =  5. 

 

Figure 2 

Stabilizable region for the a and b parameters in example 2. The asterisks determine the stabilizable 

region for [28] with a fifth order truncation. The asterisks and dots represent the region stabilizable for 

[28] with a fifth order truncation and linear search on the LMI conditions. The asterisks, dots and 

circles region represent the region stabilizable with the approach presented in this paper. 

Conclusions and future works 

This work proposed the use of the tensor product model transformation to 

approximate the matrix exponential function and find approximate uncertain 

discrete-time models for continuous-time uncertain systems with polytopic 

uncertainty. From the examples presented, we can see that the proposed 

methodology is a viable option, and allows the use of simpler LMIs for controller 

synthesis. 
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In the future, we aim to derive upper bounds on the approximation error during the 

sampling step of the tensor product model transformation and to make use of this 

upper bound in the control design in order to guarantee the continuous-time 

system stability when controlled by a digital controller tuned using the discrete-

time model. 
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