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Abstract: Discrete-Event Systems (DES) are systems that are discrete in nature. A next 

state of DES depends on the actual state and on the occurrence of a discrete event. DES 

are often modeled and controlled by Petri Nets (PN) of different kinds (place/transition PN, 

timed PN, etc.). However, not always real DES, are purely deterministic. In such cases, the 

PN-based model contains some uncontrollable and/or unobservable transitions or 

unmeasurable/unobservable places. In order to control DES with the partial non-

determinism, special kinds of PN and control methods/procedures have to be used. That's 

just it - applications of Interpreted PN (IPN) and Labeled PN (LbPN) for modeling 

analyzing and control of DES are investigated here. 

Keywords: control; discrete-event systems; modeling; non-determinism; Petri nets 

1 Introduction 

Discrete-Event Systems (DES) are systems where a next state depends only on the 

actual state and on the occurrence of a discrete event. It can be said that DES are 

systems discrete in nature. In other words, such a system persists in a state until it 

is not forced to change its state in consequence of a discrete event occurrence. 

Many kinds of real systems in practice have the character of DES - e.g. flexible 

manufacturing systems, robotized working cells, discrete production lines, some 

kinds of transport systems, communication systems etc. Here, discrete events have 

the character of starting or ending of particular operations, synchronization of 

several operations etc., but also external influences. The simple abstract 

illustrative example presenting the causal relation between the system states xi, 

i=1,…, 6 and the occurrence of discrete events uj, j=1,…, 5 is given in Figure 1. 

Here, the system response on the discrete event sequence {u1, u2, u3, u4, u5} is the 

sequence of states{x3, x1, x2, x5, x4, x6}, where x3 is the initial state. A view on DES 

and their history is presented in [6]. The global overview on modeling, analysis 

and control of DES is given in [7]. 
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DES are frequently modeled by means of different kinds of Petri Nets (PN) like 

Place/Transition PN (P/T PN) - alias ordinary PN, timed PN, hybrid PN, colored 

PN, etc. However, DES are not always purely deterministic. They can be partially 

nondeterministic. Some newer, specific kinds of PN, like Labeled PN (LbPN), 

Interpreted PN (IPN) are able to deal better with modeling, analyzing and control 

of DES with non-determinism like those mentioned above. 

 

Figure 1 

The evolution of states in DES 

Non-determinism in DES can be caused, in principle, by means of two different 

factors: (i) occurrence of silent events, that cause a change in the DES state and 

they are not observable by any external observer; (ii) indistinguishable events, 

whose occurrence at a given DES state yields two or more new states. 

1.1 Petri Nets 

Essentials of PN were defined by C.A. Petri in his PhD thesis [1] written in 

German. Later, some novels were brought in [2] - [4]. Nowadays, PN represent a 

huge variety of PN kinds and methods of their mathematical modeling, analysis 

and control. The very good survey of PN evolution since [1] is presented in [5]. 

In principle, P/T PN are bipartite directed graphs with two kinds of nodes and two 

kinds of edges. Nodes pi, i = 1, …, n, are named as places and represent 

elementary states of particular operations in modeled DES. Let P = {p1,…,pn} is 

the set of places. Edges tj,  j = 1, …, m, are named as transitions and model the 

discrete events. Let T = {t1,…,tm} is the set of transitions. The causality among the 

states and events is expressed by the sets F ⊆ P × T, G ⊆ T × P representing, 

respectively, the incidence of directed arcs from places to transitions and from 

transitions to places. Then, the structure of P/T PN can be formally expressed by 

the following quadruplet 

<P, T, F, G>                                                                                                         (1) 

The P/T PN have also their dynamics expressing the evolution of the state in the 

steps k = 0, 1, …, which can be described by the restricted discrete linear vector 

state equation as follows 
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xk+1 = xk  + B.uk  , k = 0, 1, …                                                                                (2) 

F.uk ≤ xk                                                                                                                 (3) 

Where, 

xk = (𝑥𝑝1, 𝑥𝑝2 , …, 𝑥𝑝𝑛)
T
 is the state vector with entries 𝑥𝑝𝑖 ∈  

{0, 1, … ,∞} being 

the states of particular places pi, i = 1, …, n, in the step k, namely 𝑥𝑝𝑖  represents 

the actual number of tokens in the place pi. The vector x0 is the initial state vector. 

There are three basic kinds of places: (i) operation places (e.g. in models of 

flexible manufacturing systems (FMS) they reflect the progress of processing 

parts in particular steps) being not marked in the initial state, (ii) places 

representing presence of fix resources (e.g. machine tools, robots, conveyors, 

buffers, etc. in FMS) being marked in the initial state, (iii) places representing 

variable resources (e.g. availability of raw materials, semi-products in FMS). 

In PT/PN places can be observable/measurable. In IPN and LbPN some places 

may be unobservable/unmeasurable. 

uk = (𝑢𝑡1, 𝑢𝑡2, …, 𝑢𝑡𝑚)
T

 is the control vector with entries 𝑢𝑡𝑗 ∈  {0, 1} being the 

states of particular transitions tj,  j = 1, …, m, in the step k. They can be disabled 

or enabled - namely, when the transition tj is disabled (i.e. it cannot be fired) then  

𝑢𝑡𝑗 = 0, otherwise it is enabled (i.e. it may be, but not always has to be, fired) and 

then 𝑢𝑡𝑗 = 1. In P/T PN enabled transitions represent the occurrence of discrete 

events which can be observable and/or controllable. However, in IPN and LbPN 

some events may be spontaneous, i.e. the transitions which model them are 

uncontrollable and/or unobservable. 

B = G
T
 - F is the structural matrix with G being the incidence matrix 

corresponding to the set G and F being the incidence matrix corresponding to the 

set F. The term x0 is the initial state vector. 

Starting from x0 and firing an enabled transition the next state x1 can be reached. 

The reachability tree (RT) expresses all possible branches of the development of 

the system (1) - (2). When all transitions are observable and controllable and all 

places are measurable/observable, the system development can be controlled 

without greater problems. For example for a firing sequence of transitions ta, tb, 

…,tc, the state trajectory will be the following 𝐱0

𝑢𝑡𝑎
→ 𝐱1

𝑢𝑡𝑏
→ …  𝐱k-1

𝑢𝑡𝑐
→ 𝐱k. Such 

trajectories represent branches in RT. RT is a standard tree with nodes expressing 

state vectors xk, k = 0, …, K, where K is the global number of states. K may be 

infinite too. The states create the state space - the set ℛ = { 𝐱0, 𝐱1, …,  𝐱k} of 

reachable states. The edges of RT symbolize the PN transitions. 

In the PN theory the term marking M is used instead the term state x. Then, the 

above introduced trajectory in such a perception and symbolism has the form 

M0[𝑢𝑡𝑎> ⇒ M1[𝑢𝑡𝑏> ⇒ ⋯ ⇒ M k-1[𝑢𝑡𝑐> ⇒ Mk or M0[U> ⇒ Mk, where the set U = 

{𝑢𝑡𝑎, 𝑢𝑡𝑏 , 𝑢𝑡𝑐 }. 
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Unfortunately, in PN models of real DES the situation is not so simple because of 

the above mentioned silent and indistinguishable transitions. From the DES 

control point of view it is necessary a deeper view. Thus, it is needful to speak 

about uncontrollable and/or unobservable transitions and moreover, even about 

unmeasurable/unobservable places. Namely, when a controller is not allowed to 

affect some of transitions, the transitions become uncontrollable. Their firing 

cannot be either inhibited or allowed by any external action. A transition is named 

to be unobservable when its firing cannot be directly detected or measured. 

Unobservable transitions model internal events being not observable from outside. 

Any unobservable transition is implicitly uncontrollable. 

Analogically, the state (marking) of an unmeasurable/unobservable place cannot 

be detected or measured. In such a case the set of observable places is reduced. 

Thus, the reduced number of entries creates the output vector. It means that an 

output equation has to be added to the PN model (1), (2). 

Consequently, in order to model and control a real DES, new approaches to PN-

based modeling and control have to be found. LbPN and IPN are able to help us 

on such a way. 

1.2 A Simple Example of P/T PN 

To illustrate the P/T PN structure and dynamics let us introduce a simple example. 

In Figure 2 the PN structure is presented while in Figure 3a, Figure 3b, 

respectively, the corresponding RT and RG. 

 

Figure 2 

A simple P/T PN 

The incidence matrices representing the PN structure are as follows 

F = 

(

 
 

1 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1
0 0 0
0 0 0

0 0 0
0 1 0
0 0 1

0 0
0 1
0 0)

 
 

;  G
T
  =  

(

 
 

0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 1
0 1 0
0 0 0
0 0 0

0 0 0
1 0 0
0 1 0

0 0
1 0
0 0)

 
 

   (4) 

and the initial state is 

x0  = (1 0 0 0 0)
T
 .                                                                                     (5) 



Acta Polytechnica Hungarica Vol. 17, No. 4, 2020 

 – 51 – 

By means of the model of dynamics development represented by (1) - (2) other 

four following states can be reached from the initial state 

x1  = (0 1 0 0 0)
T
; x2  = (0 0 0 1 0)

T
; x3  = (0 0 1 0 0)

T
 and 

x4  = (0 0 0 0 1)
T
 

Thus, the space of reachable states ℛ = { x0, x1, x2, x3, x4}. Corresponding RT 

represents causal relations among states, i.e. among nodes being the state vectors. 

Such a transit among states is ensured by particular transitions. For drawing P/T 

PN, analyzing their properties and drawing RT different kinds of graphical 

simulators can be used. Thus RT of this P/T PN is given in Figure 3. This RT and 

next RTs are outputs of the graphical simulator of PN. It affects their quality. The 

corresponding reachability graph (RG) arises by connecting RT nodes with the 

same name into one node - see Figure 3a. The adjacency matrices in the form A or 

Ad (expressing dynamic entries) are the same for both RT and RG, namely 

 A =  

(

 
 

0 1 1
0 0 1
0 1 0

0 0
1 0
0 1

1 0 0
1 0 0

0 0
0 0)

 
 
   or  Ad = 

(

  
 

    0     𝑢𝑡1 𝑢𝑡4
    0    0 𝑢𝑡7
    0      𝑢𝑡8 0

0 0
𝑢𝑡2 0

0 𝑢𝑡5
𝑢𝑡3      0     0

𝑢𝑡6      0     0
0    0
0    0 )

  
 

              (6)  

 

Figure 3a 

The corresponding RT (obtained from the graphic simulator of P/T PN) 

 

Figure 3b 

The reachability graph RG corresponding to RT                                                  

1.3 The Paper Organization 

While in this Section 1 the PN were defined, in the next Section 2 definitions of 

LbPN and IPN will be introduced. The particularities of such kinds of PN will be 

pointed out and shortly illustrated on corresponding examples. 

The Section 3 will bring the core issues of the paper concerning the usage of IPN 

and LbPN in DES modeling and control. Just practical examples of control of real 

DES working in nondeterministic conditions by means of such kinds of PN 

represent the main contributions of this paper. Namely, the IPN and LbPN models 
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of such kinds of complicated DES, containing uncontrollable/unobservable 

transitions and unmeasurable/unobservable places, are able in sequence to show 

(i) how to describe the non-determinism of such systems; (ii) how they make 

possible to analyze the nondeterministic DES; (iii) how to synthesize approaches 

for the control of such DES; (iv) how the control of such DES can be performed. 

In the section Conclusion the global evaluation of the paper contributions is 

introduced. 

Finally, the list of References is included. 

2 Labeled and Interpreted Petri Nets 

LbPN and IPN are purpose-built extended forms of P/T PN. They make possible 

to deal with the PN containing uncontrollable and/or unobservable transitions and 

unmeasurable/unobservable places. There are many definitions of LbPN - e.g. in 

[8]-[12], [14]-[16] - as well as of IPN - e.g. in [13]. It is necessary to say that the 

primal definition of IPN arose in the Mexican group in CINVESTAV Unidad 

Guadalajara, where many other papers about IPN besides [13] were written. 

2.1 Labeled Petri Nets 

In case of LbPN the term net N means the P/T PN structure. Besides N there are 

additional attributes - the alphabet ℒ = L ∪ 𝜀, where L expresses the observable 

events and 𝜀 represent unobservable events; the labeling function ℓ : T ⟶  ℒ 

assigning events to transitions; the set of reachable states ℛ; the set of finite states 

Fx ∈ ℛ (i.e. Fx ⊂ ℛ). It means that LbPN can be formally expressed as the 

following quintuple 

< N,  ℒ, ℓ, x0, Fx >                                                                                                 (7) 

There exist three kinds of labeled functions in LbPN, namely: (i) free labeling, 

when ℓ is a one-to-one mapping; (ii) 𝜆-free labeling, when two or more transitions 

share the same label; (iii) arbitrary labeling, when ℓ : T ⟶  ℒ  ∪ {𝜆} with 𝜆 being 

an empty string. 

Although this paper does not deal with the problem of LbPN diagnosability, it is 

necessary to say that (freely interpreted) the diagnosability of an LbPN, with 

unobservable transitions, implies [17] that each occurrence of a fault can be 

detected after a finite number of transition firings. 

2.1.1 Illustrative Example 

Consider the simple LbPN given in Figure 4. The transitions are labeled by 

assigned events a, b. The RT of this net is displayed in Figure 5. 
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Figure 4 

A simple LbPN 

Here, in the Figure 4, two kinds of mappings can be seen - namely free (at the 

transitions t1 and t3) and 𝜆-free (at the transitions t1 and t2).  The RT of the LbPN is 

given in Figure 5. As we see there, the RT contains ambiguities. Namely, there are 

two cycles there, pointing out to two ambiguous states x1 and x3. Namely, the set 

ℛ consists of the following states 

x0 = (1  0  0)
T
;  x1 = (1  𝜔  1)

T
;  x2 = (0  0  1)

T
;  x3 = (0  𝜔  1)

T
                             (8) 

where 𝜔 corresponds to the so called self-loops, i.e. when for p ∈ P,  t ∈ T , {(p, t) 

∈ B => (t, p) ∈ B}. Here the set B = F ∪ G corresponds to the matrix B. 

 

Figure 5 

The corresponding RT 

In our case the loops are represented by means of the pairs  (p1, t1) and (p3, t2). The 

analysis of RT, more precisely the coverability graph (CG) in this case, is much 

more complicated than the previous analysis of RT in Figure 3. Namely, the 

deploying of such CG to the labeled reachability graph (LbRG) leads to the 

infinite chain given in Figure 6. On the basis of such RT we can analyze the LbPN 

given on Figure 4 by means of the alphabet ℒ. When all events are observable (i.e. 

when no 𝜀 occurs in ℒ) the situation is relatively simple. 

 

Figure 6 

The CG deployed to LbRG 
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When we start from the initial state x0 = (1  0  0)
T
  by firing t3 the system 

development will be finished in the state x2 = (0  0  1)
T
. Suppose that x2 is the 

desired final state (i.e. x2 ∈ Fx  ⊂  ℛ). The final state can be reached from the 

initial, by the following firing sequences: {b}, {a, b, a}, {a, a, b, a, a}, {a a a b a a 

a}, etc. It means that formally written L = {a
m
 b a

m
 | m ≥ 0}. When an 

unobservable event 𝜀 occurs in the alphabet ℒ, i.e. when an unobservable 

transition occurs in the PN, the situation changes. During control synthesis it is 

necessary to deal with them. 

2.2 Interpreted Petri Nets 

In case of IPN the symbol N also means the P/T PN. Besides N there are the 

following additions here - the input alphabet Σ = {𝛼1, 𝛼2, …, 𝛼𝑟}  with the input 

symbols 𝛼𝑖, i = 1, …, r; the output alphabet Φ = {𝛿1, 𝛿2, …, 𝛿𝑠} with the output 

symbols 𝛿𝑗, j = 1, …, s; the labeling function of transitions 𝜆 = 𝑇 ⟶  Σ ∪  {𝜀} 

which assigns to each transition either 𝛼𝑖  ∈  Σ or an internal event. Here, a 

constraint asking that a unique label is assigned to each transition, i.e. ∀ tj, tk ∈ T,  

j ≠ k if ∀ pi F (pi, tj) = F (pi, tk) ≠ 0 and both 𝜆 (tj) ≠ 𝜀, 𝜆 (tk) ≠ 𝜀 then 𝜆 (tj) ≠ 

𝜆 (tk) has to be valid; the  labeling function of places Ψ = 𝑃 ⟶  Φ ∪  {𝜀} which 

assigns to each place either output symbol 𝛿𝑖 ∈  Φ or 𝜀 being a null output signal; 

the output function C : ℛ (IPN, x0) ⟶ ℤ≥0
𝑞×𝑛

 (here, ℤ is the set of integers) with q 

∈  ℤ>0 being the positive integer expressing the number of available output 

signals and n = |P| being the number of places, is the (q × n)-dimensional matrix 

of integers assigning the output vector to each marking ℛ (IPN, x0). Thus, the (q × 

n)-dimensional matrix C represents a relation between output vectors and state 

vectors of IPN. IPN can be formally expressed by means of the following sextuple 

< N, Σ , Φ , 𝜆 , Ψ , C >                                                                                           (9) 

Because the definition may seem too complicated, an illustrative example should 

be introduced for explanation. 

2.2.1 Illustrative Example 

In Figure 7 the simple example of IPN is displayed. There are two 

uncontrollable/unobservable places t3, t6 and two unmeasurable /unobservable 

places p3 and p5. Here, the input alphabet 𝚺 = {𝜶𝟏, …, 𝜶𝟒}, correspond to 

controllable transitions {t1, t2, t4, t5} assigned by the function 𝝀. By the same 

function the symbol 𝜺 is assigned to the uncontrollable/unobservable transitions   

{t3, t6}. The measurable places are {p1, p2, p4, p6}. They correspond with the 

output alphabet 𝚽 = {𝜹𝟏, …, 𝜹𝟒}. The symbol 𝜺 is assigned to the 

unmeasurable/unobservable places {p3, p5}. They yield the null output signal. The 

places {p7, p8} have the fixed marking because of the self-loops. Therefore, the 

following output equation 

yk = C. xk  , k = 0, 1, …, K                                                                                    (10) 
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extends the model (1), (2). In case of this illustrative IPN it means that 

C = (

1 0 0
0 1 0
0 0 0

0 0 0
0 0 0
1 0 0

0 0
0 0
0 0

0 0 0 0 0 1 0 0

)                                                                   (11)  

 

Figure 7 

The IPN with two uncontrollable transitions and two unmeasurable/unobservable places 

3 Interpreted and Labeled Petri Nets in DES Control 

As it was mentioned above, PN are used for modeling, analyzing and control of 

DES. PN models of real systems may comprehend uncontrollable and/or 

unobservable transitions and unmeasurable/unobservable places. Therefore, the set 

of transitions T consists of two subsets T = Tc ∪ Tu, where Tc includes all 

controllable transitions and Tu involves all uncontrollable transitions. Some of 

controllable transitions detecting their firing are named as the transition sensors. 

The set of places P also consists of two subsets P = Pm ∪ Pum, where Pm includes 

all measurable places and Pum involves all unmeasurable/unobservable places. 

Some places from Pm may represent the so called place sensors - see e.g. {p1, p2, 

p4, p6} in Figure 7. Such places creates the (q × n)-dimensional output vector yk in 

(10). 

3.1 The IPN View on the Problem of Control 

From the IPN point of view it is possible to utilize a general view. Consider the 

following simple introduction into the principle of the IPN based control. 

3.1.1 The Basic Principle of the IPN-based Control 

Consider a controlled segment of a plant. Its IPN model is displayed in Figure 8. 

There is (i) a control specification represented by the subnet {p4; t3}and; (ii) the 

model of a segment of the plant (to be controlled) represented by the subnet {p1, 

p2, p3; t1, t2}. The place p2 is unmeasurable/unobservable and t2 is 

uncontrollable/unobservable. 
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Figure 8 

The principle of IPN-based control 

Here, on the one hand, the controllable transition t1 representing a discrete event in 

the plant is enabled by means of the self-loop with the sensor place p4 of the 

control specification. On the other hand, the measurable place (sensor) p3 of the 

plant becomes active by means of the self-loop with t3. In such a way the 

uncontrollable transition t2 (being an internal spontaneous discrete event) and the 

unmeasurable/unobservable place p2 are bypassed. Thus, the transition t2 (labeled 

practically by 𝜀) can spontaneously fire or not. No interference from outside to t2 

is possible. In spite of this, the situation (i.e. the system dynamics development) is 

under the control. The RT of the IPN has only one branch - 𝐱0

𝑢𝑡1
→ 𝐱1

𝑢𝑡2
→ 𝐱2

𝑢𝑡3
→ 𝐱3. In 

spite of this the control system is not able to force transition t2 directly. However, 

it is pent inside the control loop and it cannot influence another parts of plant. Of 

course, the control specifications have to respect the prescribed manufacturing 

system technology (i.e. the technological process). 

The best way how to present the approaches to the real DES control are examples. 

3.2 Example 1 

Consider the example of the real DES given in Figure 9 being a complex FMS. 

Here, activities of two automatically guided vehicles AGV 1, AGV 2 are modeled. 

The activity of AGV 2 is modeled by means of the upper PN subnet {p1, p2, p3, p4; 

t2, t3, t4, t5} and the activity of AGV 1 is modeled by means of the lower PN 

subnet {p6, p7, p8, p9; t6, t7, t8 }. AGVs cooperate in FMS in such a way that: (i) the 

role of AGV 2 is to carry two different parts A, B from two input conveyors (each 

of them feeds the corresponding kind of parts) into a transship center Transfer; (ii) 

the role of AGV 1 is to carry these products to a robot R which put the parts (by 

means of its gripper) on a pressure plate of a compactor machine where the parts 

are pressed down altogether into a final product C (i.e. C = A + B). The PN model 

of the FMS to be controlled is displayed in Figure 10. 

The attendance of both vehicles in marginal points of their movements is checked 

by sensors indicating these locations on both sides of their runways - in case of 

AGV 2 at the conveyors (S2b, S2c) as well as at the transship center (S2a) and in 

case of AGV 1 at the transship center (S1b) as well as at the robot (S1a). 

The place p1 represents AGV2 being right, while p4 represents AGV 2 being left. 

The place p5 represents AGV1 being left, while p7 indicates AGV 1 being right. 
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The place p6 denotes activities of the robot gripper. Unfortunately, there are 

unmeasurable/unobservable places {p2, p3, p8, p9} in the PN model. They 

represent states of the unmeasurable/unobservable movements of AGVs on their 

runways. The place p9 ensures repeating the working cycle. 

The transition t1 represents a start of the whole process. The sensors S2b, S2c 

correspond, respectively, to t2, t3. Sensors S2ab, S2ac correspond, respectively, to 

transitions t4, t5 depending on the fact whether AGV 2 arrives from S2b or from 

S2c. The transition t6 presents the sensor S1a, t7 denotes the sensor Spl of placing 

parts on the pressure plate, t8 denotes the sensor S1b. Finally, t9 is getting to be 

practically uncontrollable because of unobservable places p8, p9 - it has only 

deterministic information that AGV 2 is left while information from p8, p9 being 

important for its firing is nondeterministic. 

Moreover, while AGV 1 has an ambiguity consisting in p1 (to fire either t2 before 

t3 or contrariwise) in AGV 2 no such ambiguity occurs. These facts have to be 

taken into account too. 

 

Figure 9 

The rough scheme of the real FMS 

 

Figure 10 

The PN model of the uncontrolled FMS 

The RT of the PN model of such a system with controllable and observable 

transitions and measurable places is displayed in Figure 11. 

Of course, building the IPN based model of DES itself is not sufficient. To ensure 

a desirable behavior of DES, it is necessary to synthesize the control specification 

able to deal with the non-determinism without affecting the technological process. 
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Consider that the system behavior under the control should be as direct as 

possible, it means without any unnecessary turns, but in keeping within the 

technological process, of course. In such a case, the proposed controller 

corresponding to demands is added as it is apparent in Figure 12. The system 

behavior corresponds to the RT displayed in Figure 13. 

 

Figure 11 

The RT corresponding to the PN model in Figure 10 

 

Figure 12 

The IPN-based model of the controlled plant 
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Figure 13 

The RT corresponding to the IPN-based model of the controlled plant 

3.3 Example 2 

Let us introduce the example of DES where the situation is not so light. To 

illustrate problems, consider the real example of FMS consisting of two 

production lines L1, L2 producing mutually different parts P1, P2. The parts are 

assembled together into a final configuration P1 + P2. The robot R machines parts 

in both lines. The line L1 is modeled by the subnet {p1, p2, p3; t1, t2, t3}, while the 

line L2 by the subnet {p5, p6, p7; t4, t5, t6}. The activities of the robot R are 

modeled by the subnet {p9, p10, t7, t8}, while those of the assembly process by the 

subnet {p4, p8, t9}. Of course, the subnets are interconnected insomuch that it is 

impossible to strictly distinguish the confines among subnets. The PN model of 

the FMS is given in Figure 14. As we can see, firing t8 is uncertain, because the 

transition t8 is uncontrollable (it has the label 𝜀). We do not know whether it, being 

enabled, will be fired in an actual state k of the dynamics development or not. If 

not, t8 as if did not exist (𝑢𝑡8= 0) and the PN structure has changed - the branch  

p10 
𝑢𝑡8
→  p9 is as if dead, impassable, opaque. The RT of such PN structure is 

different from RT of the full structure together with t8. In comparison with the RT 

of the full structure it is cropped - all branches labeled by t8 are missing. Even, it 

contains a deadlock after the firing sequence t7, t4, t5, t6 starting from the initial 

state x0. Unfortunately, none of the trees can be introduced because of their size. 
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Non-determinism consists in the displeasing fact that we do not know whether the 

enabled transition t8 will be spontaneously fired - i.e. whether the process of the 

dynamics development will correctly continue, or not. 

 

Figure 14 

The P/T PN being the model of the FMS 

3.3.1 Using IPN-based Control 

Let us apply the IPN-based control of the plant given in Figure 14. Consider the 

same criterion for control as in the previous Example 1 (as direct as possible 

behavior of DES). Then, the PN model of the controlled plant is given in Figure 

15. RT appurtenant to this model is displayed in Figure 17 up. The picture is 

rotated left (counter clockwise) in order to save space. However, such IPN-based 

controller needs not be alone. Other schemata can exist too. For example, a 

counter of production cycles can be added as it can be seen in Figure 16. It is 

represented by the place p15. RT of such model is given in Figure 17 down. The 

picture is rotated left too because of saving space. 

As we can see, the transition t8 cannot be bypassed and it induces undesirable 

cycles in corresponding reachability trees - {x4, t8, x3, t7, x4} in Figure 17 (up) and 

{x15, t8, x14, t7, x15} in Figure 17 (down). It is necessary to say that there is no road 

to the satisfying solution in this case. 

Now, let us investigate a situation when different transitions are uncontrollable or 

unobservable. Consider the structure of the IPN model given in Figure 18 with the 

uncontrollable transitions t2 and t6. In principle it is intrinsic e.g. in this case of 

DES when the upper branch {p1, t1, p2, t2, p3, t3, p4} with the fix resource p9 

(expressing the presence of a robot) represents a production line and the lower 

branch {p5, t4, p6, t5, p7, t6, p8} with the fix resource p10 (expressing the presence of 

the same robot) represents another production line. Both lines are served by the 

same robot. While p2 models an activity of a machine in the upper line, {p6, t5, p7} 

models an activity of another machine in the lower line. There the places p13, p14 

are added to the IPN-based controller in order to define desired priorities of firing 

transitions - i.e. t1 > t7 and t8 > t9. 
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Figure 15 

The scheme of the IPN-based control 

 

Figure 16 

The scheme of the IPN-based control with the counter 

 

 

Figure 17 

RT of the model in Figure 15 (up) and RT (2 parts) of the model in Figure 16 (down) 

The global scheme of IPN-based control reflects a real situation, because finishing 

of the machining processes modeled by the PN subnets {t1, p2, t2, p9, t1} and {t4, 

p6, t5, p7, t6, p10, t4} is uncontrollable/unobservable because of the places p2 and 
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{p6, p7} being practically unmeasurable/unobservable during machining. The RT 

of such controlled plant is given in Figure 19. As we can see, no cycles containing 

t7 and t8 exist there. 

 

Figure 18 

The IPN-based control of the system with uncontrollable transitions t2, t6 

 

Figure 19 

The RT of the system with uncontrollable transitions t2, t6 

3.1 The LbPN View on the Problem of Control 

Consider the LbPN model of a kind of DES, representing the cooperation of two 

jobs by means of resources p5, p6 needed for performing both jobs, given in Figure 

20. Corresponding RT (provided that all transitions can be understood to be fired 

when they are enabled) is displayed in Figure 21. 
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Figure 20 

The LbPN model of DES 

 

Figure 21 

The corresponding RT 

The resources must be available to satisfy the needs of both jobs. It means that the 

components 𝑥𝑝5, 𝑥𝑝6 of any state vector xk, k = 0, 1, …, have to satisfy the 

following condition 

 𝑥𝑝5+ 𝑥𝑝6 ≤ 2                                                                                                       (12) 

i.e. L.xk ≤ 2, where L=(0 0 0 0 1 1) and xk is an arbitrary reachable state. Then, 

with respect to the controller synthesis [18], the controller structure Bc = -L.B. 

Hence, Bc = (-1 0 1 -1 0 1). Because Bc = Gc
T
-Fc, where Gc

T
= (0 0 1 0 0 1) and 

Fc= (1 0 0 1 0 0), the controller is represented by the place pc together with its 

interconnections with the uncontrolled model - i.e. directed arcs from pc to 

transitions of the uncontrolled model by means of Fc, as well as from transitions 

of the uncontrolled model to pc by means of Gc
T
. Consequently, the controlled 

LbPN model is given in Figure 22 and its RT is displayed in Figure 23. 
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Figure 22 

The LbPN model of DES 

 

Figure 23 

The RT of the LbPN model of DES 

As we can see, the controller is able (i) to react on unobservable transitions t3, t6 

when they are fired; (ii) to affect only the observable transitions t1, t4; (iii) to deal 

with the unobservable transitions t2, t5 when they are fired. Of course, the 

unobservable transitions cannot be either avoided or their influence eliminated. 

Moreover, both jobs are relatively autonomous - i.e. (i) 𝐱0

𝑡1
→ 𝐱1

𝑡2(𝜀)
→  𝐱3

𝑡3(𝜀)
→  𝐱0 and 

(ii) 𝐱0

𝑡4
→ 𝐱2

𝑡5(𝜀)
→  𝐱4

𝑡6(𝜀)
→  𝐱0. 

3.2 A Comment on Computational Complexity 

The computational complexity at using IPN and LbPN is nothing anomalous in 

comparison with P/T PN. Namely, the marking evolution of IPN and LbPN is the 

same like that of P/T PN and leads to computation of RT which may be a main 

source of problems concerning the computational complexity. Moreover, the 

structure of IPN and LbPN is prepared before the RT computation. The 

computational complexity of P/T PN is investigated in several papers concerning 

theoretical informatics - see e.g. [19]-[21]. For LbPN and IPN the total number of 

possible firing vectors is upper bounded by a polynomial function in k, i.e. O(k
b
), 

where k is the length of the sequence of labels and b is a parameter depending on 

the structure and the labeling function of the net. Namely b = c(d - 1), where c is 

the number of nondeterministic labels and d is the maximum number of transitions 

corresponding to a label in the net. 
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Conclusions 

This paper describes the possibility of how DES, with non-determinism, can be 

modeled and controlled by means of special kinds of PN, namely, IPN and LbPN. 

Such nets were defined and illustrative examples were introduced, in order to 

demonstrate their structure and dynamic behavior. The kernel of the paper is 

devoted, especially to the control synthesis of actual DES modeled, by means of 

these kinds of PN. It was shown, thru examples, that, in spite of non-determinism, 

real DES, in practice, can be controlled, albeit, with some limitations or 

restrictions. 
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