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Abstract: Correct allocation of resources in Automated Manufacturing Systems (AMS) is 
very important, especially in order to avoid deadlocks and their consequences. Petri Nets 
(PN) are frequently used for modeling AMS. S3PR (Systems of Simple Sequential Processes 
with Resources) model of Resource Allocation Systems (RAS) based on PN are defined, 
analyzed and controlled here. S3PR are modeled by Ordinary PN (OPN). After defining and 
creation of such models the deadlock prevention will be performed by two deadlock 
prevention methods, namely (i) the method based on elementary siphons, and (ii) the method 
based on preventing strict minimal siphons from being emptied in another way (by means of 
circuits, holders of resources and complementary siphons). For illustration, two practical 
examples will be introduced. Both approaches are very useful not only for reliable deadlock-
free control of existing AMS, but also at design of new AMS of such kind. 
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1 Introduction 
Petri Nets (PN) in general are defined as follows. A Petri net is a four-tuple N = (P, 
T, F, W), where P and T are finite nonempty sets. P = {p1, p2, …, pn} is a set of 
places (|P| = n) and T = {t1, t2, …, tm} is a set of transitions (|T| = m). It is valid that 
P ∪ T ≠ ∅ and P ∩ T = ∅. F = (P × T) ∪ (T × P) is called a flow relation of the net. 
It is represented by directed arcs from places to transitions and from transitions to 
places. W : (P × T) ∪ (T × P) ⟶ N is a mapping that assigns a weight to an arc: 
W(f) > 0 if f ∈ F and W(f) = 0 otherwise. Here, N = {0, 1, 2, . . .}, containing natural 
numbers plus zero. 

N = (P, T, F, W) is ordinary net (OPN) denoted as N = (P, T, F), if ∀f ∈ F, W(f) = 
1. N is said to be a generalized net (GPN) if ∃𝑓𝑓 ∈ F, W(f) > 1. Consequently, PN 
marking M being an (n × 1) vector (frequently named also as the state vector) is 
evolved in the matrix/vector form as Mk+1 = Mk + [N].𝜎𝜎k, k ∈ N, with M0 being initial 
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marking, where [N] = [Post]T - [Pre] is the (n × m) incidence matrix based on the 
set F, and 𝜎𝜎k is a (m × 1) firing vector of transitions (frequently named also as 
control vector). More details about PN can be found in [1]-[4]. While the 
foundations of PN were laid by C. A. Petri in his PhD Thesis [1], many other authors 
have developed the PN theory into its present form. Among them we should 
mention at least [2]-[4]. Some particulars about PN were mentioned also in [5]-[7]. 

A PN marking M is usually understand as a vector. M(p) denotes the number of 
tokens in place p. For economy of space ∑𝑝𝑝 ∈𝑃𝑃 M(p)p is used to denote the vector 
M. Place p is marked at M if M(p) > 0. A subset S ⊆ P is marked (unmarked) at M 
if M(S) > 0 (M(S) = 0). If M0 is an initial marking of a net N, (N, M0) is called a 
marked net. A state machine is PN, where each transition has only one input and 
only one output place. PN where a place p is both an input and output place of a 
transition t is called self-loop PN. Here, in this paper, only PN without self-loops 
will be used. 

2 Preliminaries 
Resource allocation systems (RAS) represent a special class of automated 
manufacturing systems (AMS), where the attention is focused on resources. 
Resources are understood as a finite set of devices like robots, machine tools, 
automatically guided vehicles, transport belts, input/output devices, etc. Finite set 
of different processes of AMS (e.g. production lines) are competing each other for 
access to such resources. The competition may induce the existence of deadlocks. 
There exist several standard paradigms of RAS - see e.g. [8]-[11], where particulars 
about some of them are introduced, and [7], where a summary of most frequently 
used paradigms as well as their relation to PN in general are mentioned. In this 
paper, only one of them, namely S3PR, modeled by ordinary Petri nets, will be 
presented and investigated. More complicated paradigms of RAS, e.g. extended 
S3PR (ES3PR) or S4PR (Systems of Sequential Systems with Shared Process 
Resources), are modeled by means of generalized Petri nets. They will be 
investigated , the future. 

2.1 S3PR Model of AMS 
A simple sequential process (S2P) [7], where a review of definitions published in 
[12]-[14] are introduced, is a Petri net N = (PA ∪ {p0}, T, F), where 

• PA  ≠ ∅ is called the set of activity places; ∅ is an empty set 
• p0 ∉ PA is called the idle process place 
• N is a strongly connected state machine 
• every circuit C  of N contains place p0. 
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A simple sequential process with resources (S2PR) is a Petri net N = ({p0} ∪ PA  
∪ PR, T, F) with PR being a set of resource places, such that 

• the subnet generated by X = PA ∪ {p0} ∪ T is a S2P 
• PR ≠ ∅ and (PA ∪ {p0}) ∩ PR = ∅ 
• ∀t ∈ ●p , ∀t' ∈ p●,  ∃rp ∈ PR , ●t ∩ PR = t' ● ∩ PR ={rp}, where ●p expresses 

all input transitions of the place p,  p● represents all output transitions of 
p; ●t expresses all input places of the transition t,  t' ● represents all output 
places of the transition t' 

• the following statements are verified 
1. ∀r ∈ PR , ●●r ∩ PA = r●● ∩ PA ≠ ∅ 
2. ∀r ∈ PR , ●r ∩ r● = ∅ 

• ●●(p0) ∩ PR = (p0) ●● ∩ PR = ∅ 

Here, ●r represent all input transitions of the resource place r, ●●r =  ⋃𝑡𝑡 ∈●𝑟𝑟  ●t  is 
the set of all input places of all input transitions of the place r, r●● =  ⋃𝑡𝑡 ∈𝑟𝑟● t● 
represents the set of all output places of all output transitions of the resource place 
r;  ●●(p0) expresses all input places of all input transitions of the place p0, (p0) ●● 
represents the set of all output places of all output transitions of the place p0.  

S3PR N is composed of n S2PR N1, N2, ..., Nn, i.e. O𝑖𝑖=1
𝑛𝑛  Ni. 

2.1.1 Composition of Two S2PR Into S3PR 

To illustrate the composition of two S2PR N1, N2 into S3PR N let us introduce the 
following. 

An initial marking M0 of S2PR N is called an acceptable initial marking for N if 

• M0(p0) ≥ 1 

• M0(p) = 0, ∀PA 

• M0(r) ≥ 1, ∀PR 

S2PR N with such a marking is said to be an acceptable marked. 

In Simple Sequential Processes with Resources S2PR N 

• PA = PA1 ∪ PA2 

• P0 = {𝑝𝑝10} ∪ {𝑝𝑝20} 

• PR = PR1 ∪ PR2 

• T = T1 ∪ T2 

• F = F1 ∪ F2 is also S3PR 
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S3PR N = N1 ° N 2 (where ° symbolizes the composition of nets) is acceptably 
marked when 

• ∀i ∈ {1,2}, ∀ p ∈ PA  ∪ {𝑝𝑝𝑖𝑖0}, M0(p) = M0i (p) 
• ∀i ∈ {1,2}, ∀ r ∈ PRi  \ PC, M0(r) = M0i (r), where PC = PR1 ∩ PR2 ≠ ∅ 
• ∀r ∈ PC, M0(r) = max{M01 (r), M02 (r)} 
• Places from PA symbolize activities - a token in a place p ∈ PA models an 

active process - e.g. a part being processed. Places from PR represent 
resources - e.g. a buffering capacity of resources, shared devices like 
robots and machines, etc. Tokens in a place r ∈ PR model the available 
buffering capacity of resource r. Markings represent states with a physical 
meaning. In this sense, only acceptable initial markings are considered.  
If the system is well defined and its initial marking is correct, all the 
markings that are reachable from it will represent possible states of the 
system and have physical meanings. 

In Figure 1 we can see the S2P N and two S2PR N1, N2 nets, while their composition 
S3PR net consisting of two S2PR nets is displayed in Figure 2. 

 
Figure 1 

S2P net (left) and two S2PR nets (middle and right) 

 

Figure 2 
S3PR net composed from two S2PR nets N1, N2, i.e. N = N1°N2 
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S3PR in Figure 2 has the set of places P0 = {𝑝𝑝10} ∪ {𝑝𝑝20} = {p3, p6},  PA = PA1 ∪ PA2 
= {p1, p2, p4, p5}, PR

 = PR1 ∪ PR2 = {p7, p8}. From Figure 2 is clear that ●p7 = {t2, t6} 
and ●●p7 = ●t2 ∪ ●t6 = {p1, p5, p8}, 𝑝𝑝7● = {t1, t5} and  𝑝𝑝7●● = {𝑡𝑡1● ∪  𝑡𝑡5●} = {p1, p5, p8}. 
Clearly, ●●p7 = 𝑝𝑝7●●. In S3PR, only one shared resource is allowed to be used at each 
stage in a job. 

2.2 Deadlocks, Petri Net Siphons, Traps and P-Invariants 
A deadlock in general is a state in which two or more processes are each waiting 
for the other one to execute, but neither can continue, , ,. Hence, deadlock is 
undesirable and rather bad phenomenon in PN models of real production processes. 

There are four conditions for a deadlock occurring known as Coffman conditions 
[15]. A deadlock will never occur if one of these conditions is not satisfied. These 
conditions are the following: 

1. There is a resource that cannot be used by more than one process at the 
same time (i.e. the mutual exclusion condition) 

2. There are processes already holding resources are waiting for additional 
resources or may request new resources held by other processes (i.e. the 
hold and wait condition) 

3. No resource can be forcibly removed from a process holding it. Resources 
can be released only by the explicit action of the process (i.e. not using a 
preemption condition) 

4. Two or more processes form a circular chain where each process waits for 
a resource that the next process in the chain holds (the circular wait 
condition) 

Petri net siphons, traps and invariants are structural PN parameters. They are 
intensively used at the deadlocks prevention. A nonempty subset S ⊂ P is called a 
siphon if every transition having an output place in S has an input place in S.  
A nonempty subset Q ⊂ P is called a trap if every transition having an input place 
in Q has an output place in Q. 

If S has no token in a marking of N it remains without any token in each successor 
marking of N. If Q has at least one token in a marking of N it remains marked under 
each successor marking on N. If every non-empty siphon includes a marked trap, 
no dead marking is reachable. S is called an empty siphon at M0 if M0 (S) = ∑𝑝𝑝 ∈𝑆𝑆 
M0 (p) = 0. Such siphon is inclined to evocate deadlocks. The main aim of the 
deadlock prevention is the effort to prevent emptying siphons. 

An (n × 1) vector I is the P-invariant (place invariant) if and only if I ≠ 0 and IT. 

[N] = 0T, where [N] is the incidence matrix of N, 0 is zero vector. ||I|| = {p|I(p) ≠ 0} 
is called the support of I. ||I||+ = {p|I(p) > 0} is the positive support of I. 
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2.2.1 Illustrative Example 1 

The simple illustration of the siphon and trap is introduced in Figure 3. There, the 
siphon S = {p2, p4, p5, p6} and the trap Q = {p1, p3, p5, p6}. Alike, in Figure 2 the 
siphon S = {p2, p5, p7, p8} and the trap Q = {p1, p4, p7, p8}. 

 
Figure 3 

The siphon and trap in the S3PR N 

2.2.2 Minimal, Strict Minimal and Elementary Siphons 

If a siphon does not properly contain another siphon, it is called a minimal siphon. 
The set of minimal siphons is denoted by 𝛱𝛱. A minimal siphon S is called a strict 
minimal siphon (SMS) if there is no siphon contained in it as a proper subset.  
A strict minimal siphon is a siphon containing neither another siphon nor trap except 
itself. 

Having a matrix [𝜆𝜆] consisting of rows being strict minimal siphons, then the 
linearly independent rows of the matrix [𝜂𝜂] = [𝜆𝜆]. [N] point out on elementary 
siphons in [𝜆𝜆]. Denote 𝛱𝛱E as a set of elementary siphons. In general - see [13], | 𝛱𝛱E 
| ≤ min{|P|, |T|}. 

Other rows of [𝜂𝜂] point out on dependent siphons in [𝜆𝜆]. The dependent siphon may 
be strict (strongly) dependent or slack (weakly) dependent. It depends on whether 
the linear combination coefficients are all positive or not. 

A siphon S ∉ 𝛱𝛱E is called strongly dependent siphon with respect to (w.r.t.) 
elementary siphons if 𝜂𝜂S = ∑𝑆𝑆𝑖𝑖 ∈ 𝛱𝛱𝐸𝐸 ai.𝜂𝜂𝑆𝑆𝑖𝑖, where ai ≥ 0. A siphon S ∉ 𝛱𝛱E is called 
weakly dependent siphon w.r.t. elementary siphons if ∃A, B, A ≠ ∅,  B ≠ ∅,  A ∩
B = ∅  and   𝜂𝜂S = ∑𝑆𝑆𝑖𝑖 ∈ 𝐴𝐴 ai.𝜂𝜂𝑆𝑆𝑖𝑖  - ∑𝑆𝑆𝑆𝑆 ∈ 𝐵𝐵 bj.𝜂𝜂𝑆𝑆𝑆𝑆  , where ai, bj > 0. 



Acta Polytechnica Hungarica Vol. 20, No. 6, 2023 

‒ 85 ‒ 

3 Deadlock Prevention in S3PR Models of RAS 
There are several approaches to deadlock prevention [12]-[14], [16]-[23]. While in 
[12] elementary siphons are defined and their usage in the deadlock prevention is 
described, [13] is devoted to methods of the deadlock resolution in AMS. In [14] 
details of the supervisor synthesis for AMS are introduced. A survey of siphons is 
performed in [16], while a method of deadlock prevention without the need to 
enumerate complete set of siphons is presented in [17]. Different kinds of siphons, 
namely compound and complementary ones are analyzed in [18], while the control 
of elementary and dependent siphons is presented in [19]. The deadlock avoidance 
policy for AMS with assembly operations is described in [20]. Deadlock prevention 
methods depending on size of AMS are compared in [21]. Controllability for 
dependent siphons in S3PR based on elementary siphons are tested in [22].  
A practical usage of modeling and supervisory control in railway systems is 
presented in [23]. 

Two principled methods of deadlock prevention are presented and applied here on 
the S3PR PN model of a real system and illustrated by examples: (i) the approach 
based on elementary siphons; and (ii) the approach based on preventing SMS from 
being emptied by means of analyzing circuits of PN models and using 
complementary siphons and downstream and upstream siphons. 

3.1 Deadlock Prevention Method Based on Elementary 
Siphons 

This approach is based on elementary siphons and siphons dependent on them. Both 
kinds of siphons were defined above in the part 2.2.2. 

3.1.1 Illustrative Example 

Consider an AMS schematically displayed in Figure 4. 

 
Figure 4 

The scheme of the AMS structure 
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This AMS contains three machines M1 - M3, two robots R1, R2, two input devices 
I1, I2 and three output devices O1 - O3. 

The scheme of the technological process being under way in it is displayed in Figure 
5. Two types of parts P1 and P2 are processed as it is denoted by routing. 

P1 is taken from I1 by R1 and put either into M1 or into M2. After processing P1 

 
Figure 5 

The scheme of the technological process of the AMS 

by M1, P1 is moved to O1 by M1. After being loaded to M2, P1 is processed by M2 
and then moved from M2 to M3 by R2. After being processed by M3, P1 is finally 
moved to O2 by M3. In the production of P1, R1 and M1, or R1, M2, R2, and M3 
are used. Similarly, P2 is taken from I2 by M3, and after being processed by M3 it 
is moved from M3 to M2 by R2. Finally, after being processed by M2, P2 is moved 
to O3 by M2. To produce part type P2, M3, R2, and M2 are used. The S3PR N model 
of the AMS is in Figure 6. Places p7 and p2 represent the operations of R1 and M1, 
respectively, i.e. one sequence at producing of the part type P1. Similarly, p7 and 
p3, p5, p6 represent the operations of R1, M2, R2, and M3, respectively, i.e. another 
sequence at producing of the part type P1. For production sequence of part type P2 
p8, p4, p9 represent the operations of M3, R2, and M2, respectively. The number of 
tokens in p1, i.e., M(p1) = 5, represents the number of concurrent activities that can 
take place for P1. The number of tokens in p10, i.e., M(p10) = 3, represents the 
number of concurrent activities that can take place for P2. Places p11 and p15 denote 
the resources R1 and M1, respectively. Places p12 - p15 denote shared resources M2, 
R2, and M3, respectively. 
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Figure 6 
The S3PR PN model of the AMS 

Initial markings of p11, p13, and p15, are all one as robots can hold one part and M1 
can process one part at a time. Initial markings of p12 and p14 are two as either of 
M2 and M3 can process two parts at a time. 

The net has 10 minimal siphons. However, seven of them are equal to (i.e. contain) 
traps and ergo they are prevented from emptying. As it was pointed out in [6], [7], 
and also mentioned above, such siphons cannot be emptied. Namely, only siphons 
being inclined to be emptied are dangerous, because they may lead to deadlocks.  
It means that there are such 3 strict minimal siphons (SMS) here. Namely, 

S1 = {p4, p6, p13, p14}; S2 = {p5, p9, p12, p13}; S3 = {p6, p9, p12, p13, p14} 

or in the matrix form 

[𝑆𝑆𝑆𝑆𝑆𝑆] = [𝜆𝜆]𝑇𝑇 = �
0 0 0
0 0 0
0 0 0

    
1 0 1
0 1 0
0 0 1

    
0 0 0
0 0 1
0 0 1

    
0 0 0
0 0 1
0 0 1

    
1 1 0
1 0 0
1 1 0

� 

The incidence matrix of N displayed in Figure 6 is [N] = [Post] T- [Pre], where 
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[Pre] = 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

  

1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0

  

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

[Post]T =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

  

0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0

   

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 [𝜂𝜂]𝑇𝑇 =  [𝜆𝜆]𝑇𝑇 . [𝑁𝑁] =  �
 0    0 −1    1 0 0 0 −1    1 0 0
 0
 0

−1
−1

   1
   0    0  1

0
0

0
0

0
0

   0
−1

−1
   0

1
1

0
0
� 

The rank ([𝜂𝜂]) = 2, because only two of its rows are linearly independent. Namely, 
the third row is the sum of first and second one: 𝜂𝜂𝑆𝑆3 =  𝜂𝜂𝑆𝑆1  + 𝜂𝜂𝑆𝑆2. It means that 
there are two elementary siphons S1, S2 and one dependent siphon S3. To ensure the 
deadlock prevention in our S3PR model, we have to add two control places VS1 and 
VS2 in order to control S1 and S2, respectively. The strongly dependent siphon S3 can 
never be emptied in our case. Based on 𝜂𝜂𝑆𝑆1 and 𝜂𝜂𝑆𝑆2 we have the supervisor with the 
structure [N]S = [Post]S

T - [Pre]S resulting from [𝜂𝜂], where negative entries yield 
[Pre]S, while positive entries yield [Post]S

T. Namely, 

[Pre]S = �0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0

�  

[Post]S
T = �0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 1 0
� 

The first row of [Pre]S symbolizes directed arcs from VS1 to transitions of 
uncontrolled N displayed in Figure 6, while the first row of [Post]S

T symbolizes 
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directed arcs from transitions of N to VS1. Analogically, the second row of [Pre]S  
symbolizes directed arcs from VS2 to transitions of N, while the second row of 
[Post]S

T symbolizes directed arcs from transitions of N to VS2. Hence, we obtain the 
new net N1 displayed in Figure 7. It is composed of both the original uncontrolled 

net N displayed in Figure 6 and the supervisor NS. Its incidence matrix [N1] = �
[𝑁𝑁]
[𝑁𝑁]𝑠𝑠

�. 

 
Figure 7 

The controlled S3PR PN model of the AMS 

3.1.2 Setting the Marking of Monitors 

Now it is important to find a suitable marking of the control places (monitors) VS1 
and VS2. Namely, an inadequate setting of marking of these monitors may cause 
other deadlocks in the controlled plant. 

For setting the marking of monitors 𝑉𝑉𝑆𝑆𝑖𝑖 , i =1, nm (nm is a number of monitors) are 
valid the following general rules. Let S = {pi, pj, …, pk} be SMS of a net system (N0, 
M0), where N0 = (P0, T0, F0). Add a control place VS to N0 to make P-vector I = (0, 
…, 1i, …, 1j, …, 1k, …, 0, -1)T be a P-invariant of a new net system (N1, M1), where 
∀p ∈ P0\S, I(p) = 0, I(VS) = -1, ∀p ∈ P0, M1 (p) = M0 (p), and [N1]=[[N0]T |𝐿𝐿𝑉𝑉𝑠𝑠𝑇𝑇 ]T, 
where LVs is a row vector due to the addition of the place VS. Let M1(VS) = M0 (S) - 
𝜉𝜉S , where 1 ≤ 𝜉𝜉S  ≤ M0 (S). Then, S is an invariant-controlled SMS and hence 
always marked at any reachable marking of the net system (N1, M1). Namely, I is a 
P-invariant and ∀p ∈ (P0 ∪ {VS}|\S, I(p) < 0. Note than IT.M1 = IT.M0 = M0(S) - 
M1(VS) = 𝜉𝜉S > 0. Thus, S is an invariant-controlled siphon. 

To make a siphon S be always marked in a net system, we have to keep at least one 
token staying at S at any reachable marking of the net system. Suppose someway is 
found which controls S never to be emptied and the least number of tokens staying 



F. Čapkovič Petri Net-based S3PR Models of AMS with Resources and Their Deadlock Prevention 

‒ 90 ‒ 

at S is denoted as, say, 𝜉𝜉. As mentioned above, 𝜉𝜉 is called the siphon control depth 
variable. It is obvious the larger 𝜉𝜉 is, the more behavior of the modeled system will 
be restricted, which, in Petri net formalism, means more reachable states will be 
forbidden. Therefore, let the siphon control depth variable be as small as possible, 
i.e. 1, whenever possible. 

After N0 is extended by VS, the incidence matrix [N0] is extended by one row, 
denoted by LVs. Note that IT = (𝜆𝜆S

T-1) and I is a P-invariant of N1. Consequently, we 
have IT.[N1] = 0T and 𝜆𝜆S

T.[N0] - LVs = 0T. It means that 𝜆𝜆S
T.[N0] = LVs and [N1] = 

=[[N0]T | (𝜆𝜆S
T.[N0])T]T =[[N0]T | 𝜂𝜂S]T. We can see that LVs = 𝜂𝜂S

T. 

It is easy to check from Figure 7 that I1 = p4 + p6 + p13 + p14 - 𝑉𝑉𝑆𝑆1  and I2 = p5 + p9 + 
p12 + p13 - VS2 are P-invariants of N1. Clearly, S1 = {p4, p6, p13, p14} is invariant- 
controlled by I1, since || I1 ||+ = S1 and I1

T.M1 = M1(S1) - M1(𝑉𝑉𝑆𝑆1) = 3 - 2 > 0, and S2 
= {p5, p9, p12, p13} is invariant-controlled by I2, since || I2 ||+ = S2 and I2

T.M2 = M2(S2) 
- M2(𝑉𝑉𝑆𝑆2) = 3 - 2 > 0. Here, || Ii ||+, i = 1, 2, are the positive supports of Ii. 

S3 is a redundant siphon. We can see that in uncontrolled net N the summary 
marking of S3 (the sum of marking of its places) is M0(S3) = 5 while the summary 
marking of S1 and S2 are M0(S1) = M0(S2) = 3. Here, M0(Si) means the marking of Si. 

Let 𝜉𝜉𝑆𝑆1 = 𝜉𝜉𝑆𝑆2 = 1, we have M0(S3) > M0(S1) + M0(S2) -  𝜉𝜉𝑆𝑆1 -  𝜉𝜉𝑆𝑆2. Thus, S3 can never 
be emptied after S1 and S2 are controlled via adding two control places (monitors) 
𝑉𝑉𝑆𝑆1 ,𝑉𝑉𝑆𝑆2 , as it is shown in Figure 7. 

It is easy to check that S1 and S2 can never be emptied. In such a way deadlocks in 
our S3PR net are prevented and controlled system can operate safely (without 
deadlocks) and reliably. 

3.2 Method Preventing Strict Minimal Siphons from 
Emptying 

This method, sometimes called as classical method, consists of the work with 
circuits, the set of holders of resources, and with complementary siphons. 

3.2.1 Circuits and Complementary Siphons in S3PR 

Let C  be a circuit of N and x and y be two nodes of C. Node x is said to be previous 
to y iff (if and only if) there exists a path in C  from x to y, the length of which is 
greater than one and does not pass over the idle process place p0. This fact is denoted 
by x ≺𝐶𝐶  y. In general, the symbol ≺ means a generic strict order relation, while ⊀ 
symbolizes the assertion 'does not precede'. 

Let x and y be two nodes in N. Node x is said to be previous to y in N iff there exists 
a circuit C  such that x ≺𝐶𝐶 y. This fact is denoted by x ≺𝑁𝑁 y. 
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Let x be a node and A ⊆ P ∪ T be a set of nodes in N. Then x ≺𝑁𝑁 A iff there exists a 
node y ∈ A such that x ≺𝑁𝑁 y and A ≺𝑁𝑁 x iff there exists a node y ∈ A such that y ≺𝑁𝑁 
x. 

For r ∈ PR, H(r) = ●●r ∩ PA (the operation places PA that use r), is called the set of 
holders of r. 

[S] = (⋃𝑟𝑟 ∈𝑆𝑆𝑅𝑅H(r)) \ S is called the complementary set of the siphon S. 

In the net N in Figure 6, C  = p1t1p7t2p3t3p5t4p6t5p1 is a circuit and the elementary 
path EP(p7, p6) = p7t2p3t3p5t4p6 is a path in C. The support of EP(p7, p6) is {p7, t2, p3, 
t3, p5, t4, p6} and the support of C  is {p1, t1, p7, t2, p3, t3, p5, t4, p6, t5}. Clearly, we 
have p7 ≺𝐶𝐶 p6 and p7 ≺𝑁𝑁 p6. 

Consider the same AMS with the same structure like that in Figure 4 - Figure 6, 
however, with another initial marking of resources, displayed in Figure 8 (left). 

 
Figure 8 

The uncontrolled S3PR PN model of the AMS (left) and thee monitors creating the controller (right) 

Circuits are structural parameters. Therefore, C  introduced above in connection 
with Figure 6 it is valid here too. There are 3 minimal siphons in the net introduced 
in Figure 8, namely, S1 = {p5, p9, p12, p13}, S2 = {p4, p6, p13, p14}, and S3 = {p6, p9, 
p12, p13, p14}. They are the same as those in connection with Figure 6. Their 
complementary siphons are [S1] = {p3, p4}, [S2] = {p5, p8}, and [S3] = {p3, p4, p5, 
p8}. 
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3.2.2 Downstream and Upstream Siphons in S3PR 

Let Δ+ (t) (Δ−(t)) denote the set of downstream (upstream) siphons of a transition t 
and PS denote the adjoint set of a siphon S in an S3PR N = O𝑖𝑖=1

𝑛𝑛 Ni = (P0 ∪ PA ∪ PR, 
T, F). Then 

1. Δ+ : T ⟶ 2𝛱𝛱 (2𝛱𝛱 is the power set of the set 𝛱𝛱 being the set of minimal 
siphons) is a mapping defined as follows: If t ∈ Ti, then Δ+ (t) = {S ∈ 𝛱𝛱 | t 
≺

Ni  
 [S]i}. If S ∈ Δ+ (t) then the set [S]i is reachable from t, i.e., there 

exists a path in Ni   leading from t to an operation place p ∈ 𝑃𝑃𝐴𝐴𝑖𝑖  that is not 
included in S but uses a resource of S, where [S]=⋃𝑖𝑖=1

𝑛𝑛  [S]i, PA =⋃𝑖𝑖=1
𝑛𝑛  𝑃𝑃𝐴𝐴𝑖𝑖 , 

and [S]i =[S] ⋂ 𝑃𝑃𝐴𝐴𝑖𝑖. 
2. 2. Δ− : T ⟶ 2𝛱𝛱 is a mapping defined as follows: If t ∈ Ti, then Δ− (t)  =  

{S ∈ 𝛱𝛱 |  [S]i ≺
Ni  

 t}. 

3. ∀i ∈ Nn, ∀S ∈ 𝛱𝛱, PS
i = [S]i ∪ {p ∈ 𝑃𝑃𝐴𝐴𝑖𝑖  | p ≺

Ni  
 [S]i }, and PS = ⋃𝑖𝑖=1

𝑛𝑛 PS
i , 

where  Nn = {1, 2, …, n}.  

The downstream siphons are Δ+(t1) = Δ+(t2) = Δ+(t8) = {S1, S2, S3}, Δ+(t3) = {S2, 
S3}, and Δ+(t4) = Δ+(t10) = ∅. Analogically, upstream siphons are Δ−(t1) = Δ−(t2) = 
Δ−(t6) = Δ−(t7) = ∅ ,  Δ−(t3) = {S1}, Δ−(t4) = Δ−(t5) = {S1, S2, S3}. The adjoint sets 
are PS1 = PS1

1 ∪ PS1
2 = ({p3} ∪ {p7} ∪ {p4} ∪ {p8} = {p3, p4, p7, p8}, PS2 = PS2

1 ∪ 
PS2

2 = ({p5} ∪ {p7, p3} ∪ {p8} = {p3, p5, p7, p8}, and PS3 = PS3
1 ∪ PS3

2 = ({p3, p5} 
∪ {p7 } ∪ { p4, p8} = {p3, p4, p5, p7, p8}. 

3.2.3 Implementation of Monitors and Setting their Markings 

The net (NV, M0V) = (PA ∪ P0 ∪ PR ∪ PV, T, F ∪ FV, M0V) is the controlled system of 
the net (N, M0) iff: 

1. PV = {VS | S ∈ 𝛱𝛱} is a set of monitors and there is a bijective mapping 
between 𝛱𝛱 and PV (i.e. one-to-one and onto mapping; it can be inverted). 

2. FV = 𝐹𝐹𝑉𝑉1 ∪  𝐹𝐹𝑉𝑉2 ∪  𝐹𝐹𝑉𝑉3 with 
 𝐹𝐹𝑉𝑉1 = {(VS, t) | S ∈ Δ+(t), t ∈ P0●} 
  𝐹𝐹𝑉𝑉2 = {(t, VS) | t ∈ [𝑆𝑆]● , S ∉ Δ+(t)} 
  𝐹𝐹𝑉𝑉3 = ⋃𝑖𝑖=1

𝑛𝑛 {(t, VS) | t ∈ Ti \ P0●, S ∉ Δ−(t), ●t ∩ 𝑃𝑃𝐴𝐴𝑖𝑖   ⊆ PS
i
 , t ⊀ [𝑆𝑆]i}  

  3. M0V is defined as follows: 
• ∀p ∈ PA ∪  P0  ∪  PR, M0V(p); and  
• ∀VS ∈ PV, M0V(VS) = M0(S) - 1. 

In our example three monitors are needed to prevent three SMS from being emptied. 
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Take first the siphon S1 = {p5, p9, p12, p13} as an example. We can see that P0 = {p1, 
p10}. Thus, P0● = {t1, t8}. As a result, we have {(VS1, t1), (VS1, t8)} ⊆ 𝐹𝐹𝑉𝑉1. 

Due to [S1] = {p3, p4}, [S1]● = {t3,t10}. We can see that S1 ∉ Δ+(t3) and S1 ∉ Δ+(t10). 
Consequently, {(t3, VS1), (t10, VS1)} ⊆ 𝐹𝐹𝑉𝑉2. Let us find the arcs related to VS1 in 𝐹𝐹𝑉𝑉3. 
Put 𝑇𝑇𝛼𝛼 = (T1\ P0●) ∪ (T2\ P0●); 𝑇𝑇𝛽𝛽 = {t| S1 ∉ Δ−(t), t ∈ T}; 𝑇𝑇𝛾𝛾 = {t| ●t ∩ PA1 ⊆ PS

1} ∪ 
{t| ●t ∩ PA2 ⊆ PS

2}; 𝑇𝑇𝛿𝛿  = {t| t ⊀ [S1]1} ∪ {t| t ⊀ [S1]2}. Hence, 𝑇𝑇𝛼𝛼 = {t2,t3,t4,t5, 
t6,t7,t9,t10,t11}; 𝑇𝑇𝛽𝛽 = {t1,t2,t6,t7,t8,t9}; 𝑇𝑇𝛾𝛾 = {t2,t3,t6,t9,t10}; 𝑇𝑇𝛿𝛿  = {t3,t4,t5,t6,t7,t10,t11}.  
It can be seen that 𝑇𝑇𝛼𝛼 ∩  𝑇𝑇𝛽𝛽 ∩  𝑇𝑇𝛾𝛾 ∩  𝑇𝑇𝛿𝛿  = {t6}. Thus, (t6, VS1) ∈ 𝐹𝐹𝑉𝑉3. For siphons S2, 
S3, monitors VS2, VS3 can be added where {(VS2, t1), (VS2, t8), (VS3, t1), (VS3, t8)} ⊆ 
𝐹𝐹𝑉𝑉1, {(t4, VS2), (t9, VS2), (t4, VS3), (t10, VS3)} ⊆ 𝐹𝐹𝑉𝑉2, and {t6, VS2), (t6, VS3)} ⊆ 𝐹𝐹𝑉𝑉3.  
The supervised system is displayed in Figure 8. 

As to marking of monitors M0(VS1) = M0(p4) + M0(p9) + M0(p12) + M0(p13) - 1 = 0 + 
0 +1 + 1 - 1 = 2 - 1 = 1; M0(VS2) = M0(p4) + M0(p9) + M0(p12) + M0(p13) - 1 = 0 + 0 
+1 + 1 - 1 = 2 - 1 = 1; M0(VS3) = M0(p6) + M0(p9) + M0(p12) + M0(p13) + M0(p14) - 1 
= 0 + 0 +1 + 1 + 1 - 1 = 3 - 1 = 2. 

Three monitors in Figure 8 (right) controlling the plant with the PN model (left) are 
drawn separately in order to avoid confusing at drawing crisscross mutual inter-
connections between the PN model of uncontrolled plant and monitors. In spite of 
the separate drawing, it is clear which monitors are connected with which 
transitions. 

Conclusions 

Process of dealing with the allocation of resources may complicate prevention of 
S3PR net systems from deadlocks. Two approaches to deadlock prevention of S3PR 
net systems modeling automated manufactory systems (AMS) containing common 
resources (e.g. competitively utilized several manufacturing devices or other kinds 
of resources, like buffers of parts, etc.) were presented in this paper. 

First of approaches is based on elementary siphons of the PN models of S3PR net 
systems, while the second one is based on preventing strict minimal siphons of such 
PN models from being emptied, in another way. The former approach is more 
analytical (better expressed in analytical terms) and more friendly for processing by 
computer because it uses linear algebra. The latter approach, based on preventing 
strict minimal siphons from being emptied, utilizes the analysis of circuits, 
computing the holders of resources and complementary siphons, what needs some 
preprocessing or more complicated algorithm able to handle operations from the set 
theory. On the other hand, also in the former approach the situation may be a little 
hindered by the needfulness to deal with strongly or weakly dependent siphons if it 
is necessary (i.e. if they are not automatically prevented before emptying already 
within the framework of preventing the elementary siphons). 

In any case, both approaches are very useful in the deadlock prevention in AMS 
with the requirement of correct resource allocation. Moreover, they are very useful 
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not only for reliable control of existing AMS, but also at the design of new 
deadlock-free AMS like those. 

For computing S3PR siphons and traps themselves, the MATLAB based tool 
GPenSIM [24] was used. MATLAB itself (or at least GNU Octave) is suitable also 
for computer application both of the deadlock prevention methods. 

Benefits following from the application of such deadlock prevention methods yield 
deadlock free RAS designed off-line (still before their actual deployment in 
practice). It means that such methods intensively help us at the AMS design. This 
at the least rapidly decreases a risk of defects in operation of real AMS as well as 
prevents their shutdowns. In such a way, it is possible to avoid significant economic 
losses. It is main advantage of the approaches presented in this paper. However, 
other external disturbances unrelated to deadlocks, cannot be prevented in such a 
way. 
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