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Abstract: Experimental studies confirmed that only a small portion of software modules 
cause faults in software systems. Therefore, the majority of software modules are 
represented with non-faulty labels and the rest are marked with faulty labels during the 
modeling phase. These kinds of datasets are called imbalanced, and different performance 
metrics exist to evaluate the performance of proposed fault prediction techniques. In this 
study, we investigate 85 fault prediction papers based on their performance evaluation 
metrics and categorize these metrics into two main groups. Evaluation methods such as 
cross validation and stratified sampling are not in the scope of this paper, and therefore 
only evaluation metrics are examined. This study shows that researchers have used 
different evaluation parameters for software fault prediction until now and more studies on 
performance evaluation metrics for imbalanced datasets should be conducted. 
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1 Introduction 

Performance evaluation of machine learning-based systems is performed 
experimentally rather than analytically [33]. In order to evaluate analytically, a 
formal specification model for the problem and the system itself would be needed. 
This is quite difficult and inherently non-formalisable for machine learners, which 
are nonlinear and time-varying [40, 33]. The experimental evaluation of a model 
based on machine learning is performed according to several performance metrics, 
such as probability of detection (PD), probability of false alarm (PF), balance, or 
area under the ROC (Receiver Operating Characteristics) curve. As there are 
numerous performance metrics that can be used for evaluation, it is extremely 
difficult to compare current research results with previous works unless the 
previous experiment was performed by a researcher under the same conditions. 
Finding a common performance metric can simplify this comparison, but a 
general consensus is not yet reached. Experimental studies have shown that only a 
small portion of software modules cause faults in software systems. Therefore, the 
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majority of software modules are represented with non-faulty labels and the rest 
are marked with faulty labels during the modeling phase. These kinds of datasets 
are called imbalanced / unbalanced / skewed, and different performance metrics 
exist to evaluate the performance of fault prediction techniques that are built on 
these imbalanced datasets. The majority of these metrics are calculated by using a 
confusion matrix, which will be explained in later sections. Furthermore, ROC 
curves are very popular for performance evaluation. The ROC curve plots the 
probability of a false alarm (PF) on the x-axis and the probability of detection 
(PD) on the y-axis. The ROC curve was first used in signal detection theory to 
evaluate how well a receiver distinguishes a signal from noise, and it is still used 
in medical diagnostic tests [45]. 

In this study, we investigate 85 software fault prediction papers based on their 
performance evaluation metrics. In this paper, these metrics are briefly outlined 
and the current trend is reflected. We included papers in our review if the paper 
describes research on software fault prediction and software quality prediction. 
We excluded position papers that do not include experimental results. The 
inclusion of papers was based on the degree of similarity of the study with our 
fault prediction research topic. The exclusion did not take into account the 
publication year of the paper or methods used. We categorized metrics into two 
main groups: the first group of metrics are used to evaluate the performance of the 
prediction system, which classifies the module into faulty or non-faulty class; the 
second group of metrics are used to evaluate the performance of the system, which 
predicts the number of faults in each module of the next release of a system. 
Therefore, researchers can choose a metric from one of these groups according to 
their research objectives. The first group of metrics are calculated by using a 
confusion matrix. These metrics were identified through our literature review and 
this set may not be a complete review of all the metrics. However, we hope that 
this paper will cover the major metrics applied frequently in software fault 
prediction studies. This paper is organized as follows: Section 2 describes the 
software fault prediction research area. Section 3 explains the performance 
metrics. Section 4 presents the conclusions and suggestions. 

2 Software Fault Prediction 

Software fault prediction is one of the quality assurance activities in Software 
Quality Engineering such as formal verification, fault tolerance, inspection, and 
testing. Software metrics [30, 32] and fault data (faulty or non-faulty information) 
belonging to a previous software version are used to build the prediction model. 
The fault prediction process usually includes two consecutive steps: training and 
prediction. In the training phase, a prediction model is built with previous 
software metrics (class or method-level metrics) and fault data belonging to each 
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software module. After this phase, this model is used to predict the fault-
proneness labels of modules that locate in a new software version. Figure 1 shows 
this fault prediction process. Recent advances in software fault prediction allow 
building defect predictors with a mean probability of detection of 71 percent and 
mean false alarm rates of 25 percent [29]. These rates are at an acceptable level 
and this quality assurance activity is expected to quickly achieve widespread 
applicability in the software industry. 

 
Figure 1 

The software fault prediction process [34] 

Until now, software engineering researchers have used Case-based Reasoning, 
Neural Networks, Genetic Programming, Fuzzy Logic, Decision Trees, Naive 
Bayes, Dempster-Shafer Networks, Artificial Immune Systems, and several 
statistical methods to build a robust software fault prediction model. Some 
researchers have applied different software metrics to build a better prediction 
model, but recent papers [29] have shown that the prediction technique is much 
more important than the chosen metric set. The use of public datasets for software 
fault prediction studies is a critical issue. However, our recent systematic review 
study has shown that only 30% of software fault prediction papers have used 
public datasets [5]. 

3 Performance Evaluation Metrics 

According to the experimental studies, a majority of software modules do not 
cause faults in software systems, and faulty modules are up to 20% of all the 
modules. If we divide modules into two different types, faulty and non-faulty, the 
majority of modules will belong to the non-faulty class and the rest will be 
members of the faulty class. Therefore, datasets used in software fault prediction 
studies are imbalanced. Accuracy parameter cannot be used for the performance 
evaluation of imbalanced datasets. For example, a trivial algorithm, which marks 
every module as non-faulty, can have 90% accuracy if the percentage of faulty 
modules is 10%. Therefore, researchers use different metrics for the validation of 
software fault prediction models. In this section, the metrics identified during our 
literature review will be briefly outlined. 
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3.1 Metrics for Evaluation of Classifiers 

Model validation for machine learning algorithms should ensure that data were 
transformed to the model properly and the model represents the system with an 
acceptable accuracy. There are several validation techniques for model validation, 
and the best known one is N-fold cross-validation technique. This technique 
divides the dataset into N number of parts, and each of them consists of an equal 
number of samples from the original dataset. For each part, training is performed 
with (N-1) number of parts and the test is done with that part. Hall and Holmes 
[17] suggested repeating this test M times to randomize the order each time [29]. 
Order effect is a critical issue for performance evaluation because certain 
orderings can improve / degrade performance considerably [13, 29]. In Table 1, a 
confusion matrix is calculated after N*M cross-validation. 

Table 1 
Confusion Matrix 

 NO (Prediction) YES (Prediction) 
NO (Actual) True Negative (TN) 

A 
False Positive (FP) 

B 
YES (Actual) False Negative (FN) 

C 
True Positive (TP) 

D 

Columns represent the prediction results and rows show the actual class labels. 
Faulty modules are represented with the label YES, and non-faulty modules are 
represented with the label NO. Therefore, diagonal elements (TN, TP) in Table 1 
show the true predictions and the other elements (FN, FP) reflect the false 
predictions. For example, if a module is predicted as faulty (YES) even though it 
is a non-faulty (NO) module, this test result is added to the B cell in the table. 
Therefore, number B is incremented by 1. After M*N tests, A, B, C, and D values 
are calculated. In the next subsections, these values (A, B, C, D) will be used to 
compute the performance evaluation metrics. 

3.1.1 PD, PF, Balance 

The equations used to calculate probability of detection (PD), probability of false 
alarm (PF), and accuracy metrics are shown in Formulas 1, 2, and 3 respectively. 
The other term used for PD metric is recall. 

PD = recall = 
DC

D
+

 = 
FNTP

TP
+

                   (1) 

PF = 
BA

B
+

= 
TNFP

FP
+

                             (2) 
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Accuracy = 
D)  C  B (A 

DA
+++

+           (3) 

Balance metrics is the Euclidean distance between (0, 1) and (PF, PD) points. PD, 
accuracy, and balance parameters should be maximized and PF metrics should be 
minimized for fault predictors. Menzies et al. [29] reported that the best fault 
predictors provide 71% of PD and 25% of PF values. They used PD, PF, and 
balance parameters as the performance evaluation metrics in this study. Turhan 
and Bener [38] showed that the independence assumption in the Naive Bayes 
algorithm is not detrimental with principal component analysis (PCA) pre-
processing, and they used PD, PF, and balance parameters in their study. 

3.1.2 G-mean1, G-mean2, F-measure 

Some researchers use G-mean1, G-mean2, and F-measure metrics for the 
evaluation of prediction systems, which are built on imbalanced datasets. 
Formulas 6, 7, and 8 show how to calculate these measures, respectively. Formula 
4 is used for precision parameter and True Negative Rate (TNR) is calculated by 
using Formula 5. The formula for recall is given in Formula 1. 

Precision = 
FPTP

TP
+

        (4) 

True Negative Rate (TNR) =
FPTN

TN
+

      (5) 

G-mean1 =  recall*Precision                     (6) 

G-mean2 =  TNRrecall *         (7) 

F-measure =  
Precision recall

 Precision)*(recall  2
+

                    (8) 

Ma et al. [26] used G-mean1, G-mean2, and G-mean3 to benchmark several 
machine learning algorithms for software fault prediction. They sorted algorithms 
according to their performance results for each metric and marked the top three 
algorithms for each metric. They identified the algorithm that provides G-mean1, 
G-mean2, and F-measure values in the top three. According to this study, 
Balanced Random Forests is the best algorithm for software fault prediction 
problems. Furthermore, they reported that boosting, rule set, and single tree 
classifiers do not provide acceptable results even though these algorithms have 
been used in literature. Koru and Liu [23] evaluated the performance of classifiers 
according to the F-measure value. Arisholm et al. [1] built 112 fault prediction 
models and compared them according to precision, recall, accuracy, Type-I error, 
Type-II error, and AUC parameters. The following sections will explain AUC, 
Type-I, and Type-II errors. 
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3.1.3 AUC 

Receiver Operating Characteristics (ROC) curves can be used to evaluate the 
performance of software fault prediction models. In signal detection theory, a 
ROC curve is a plot of the sensitivity vs. (1-specificity) and it can also be 
represented by plotting the probability of false alarm on the X-axis and the 
probability of detection on the Y-axis. This curve must pass through the points (0, 
0) and (1, 1) [29]. The important regions of ROC curve are depicted in Figure 2. 
The ideal position on ROC curve is (0, 1) and no prediction error exists at this 
point. A line from (0, 0) to (1, 1) provides no information and therefore the area 
under ROC curve value (AUC) must be higher than 0.5. If a negative curve 
occurs, this means that the performance of this classifier is not acceptable. A 
preferred curve is shown in Figure 2. The cost-adverse region has low false alarm 
rates and is suitable if the validation & verification budget is limited. In the risk-
adverse region, even though the probability of detection is high, the probability of 
false alarm is also high, and, therefore, cost is higher. For mission critical systems, 
a risk-adverse region is chosen and for business applications, a cost-adverse 
region is more suitable. 

 
Figure 2 

Regions of ROC curve [29] 

The area under the ROC curve (AUC) is a widely used performance metric for 
imbalanced datasets. Ling et al. [25] proposed the usage of an AUC parameter to 
evaluate the classifiers and showed that AUC is much more appropriate than 
accuracy for balanced and imbalanced datasets. Van Hulse et al. [39] applied an 
AUC metric to evaluate the performance of 11 learning algorithms on 35 datasets. 
In addition to this metric, they also utilized Kolmogorov-Smirnov (K/S) statistics 
[18], geometric mean, F-measure, accuracy, and true positive rate (TPR) 
parameters. They stated that AUC and K/S parameters measure the capability of 
the classifier and showed AUC values of algorithms in tables. Li et al. [24], and 
Chawla and Karakoulas [7] used an AUC parameter for unbalanced datasets. For a 
competition in “11th Pacific-Asia Conference on Knowledge Discovery and Data 
Mining” (PAKDD2007), performance evaluations for an imbalanced dataset were 
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performed according to AUC values, and the model that provides 70.01% of AUC 
value was selected as the best algorithm. Catal and Diri [6] examined nine 
classifiers and compared their performance according to the AUC value. Mende 
and Koschke [28] used an AUC parameter to compare classifiers on thirteen 
datasets. 

3.1.4 Sensitivity, Specificity, J Coefficient 

El-Emam et al. [11] proposed the usage of the J parameter to measure the 
accuracy of binary classifiers in software engineering. The J coefficient was first 
used in medical research [41]; it is calculated by using sensitivity and specificity 
parameters. El-Emam et al. [12] used the J coefficient for performance evaluation 
of algorithms. Sensitivity, specificity, and the J parameter are calculated by using 
Formulas 9, 10, and 11 respectively. 

Sensitivity =  
DC

D
+

 = 
FNTP

TP
+

     (9) 

Specificity =  
BA

A
+

 = 
FPTN

TN
+

                 (10) 

J = sensitivity + specificity – 1                                (11) 

Sensitivity measures the ratio of actual faulty modules which are correctly 
identified and specificity measures the ratio of non-faulty modules which are 
correctly identified. 

3.1.5 Type-I error, Type-II error, Overall Misclassification Rate 

Some researchers used Type-I error and Type-II error parameters to evaluate the 
performance of fault prediction models [42, 15, 35, 1, 2]. The overall 
misclassification rate parameter takes care of these two error parameters. 
Formulas 12, 13, and 14 are used to calculate the Type-I error, Type-II error, and 
overall misclassification rate respectively. If a non-faulty module is predicted as a 
faulty module, a Type-I error occurs, and if a faulty module is predicted as a non-
faulty module, a Type-II error occurs. A Type-II error is more significant than a 
Type-I error because faulty modules cannot be detected in that case. 

Type-I error = 
DCBA

B
+++

 = 
TPFNFPTN

FP
+++

              (12)                     

Type-II error = 
DCBA

C
+++

= 
TPFNFPTN

FN
+++

             (13) 

Overall misclassification rate = 
DCBA

BC
+++

+                  (14) 
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3.1.6 Correctness, Completeness 

Correctness and completeness parameters were used for the evaluation of fault 
prediction models [4, 44, 9, 16, 27]. Formulas 15 and 16 show how to calculate 
correctness and completeness measures. 

Correctness = 
DB

D
+

 = 
TPFP

TP
+

                   (15) 

Completeness = 
DC

D
+

 = 
TPFN

TP
+

                 (16) 

3.1.7 FPR, FNR, Error 

The false positive rate (FPR), the false negative rate (FNR), and error parameters 
are used for performance evaluation [41, 43]. 

TNFP
FPFPR
+

=                     (17) 

TPFN
FNFNR
+

=                    (18) 

TNFNFPTP
FPFNError

+++
+

=                  (19) 

These three performance indicators should be minimized, but there is a trade-off 
between the FPR and FNR values. The FNR value is much more crucial than the 
FPR value because it quantifies the detection capability of the model on fault-
prone modules and high FNR values indicate that a large amount of fault-prone 
modules cannot be captured by the model before the testing phase. Therefore, 
users will probably encounter these problems in the field and the nondetected 
faulty modules can cause serious faults or even failures. On the other hand, a 
model having high FPR value will simply increase the testing duration and test 
efforts. 

3.1.8 Cost Curve 

Jiang et al. [19] recommended adopting cost curves for the fault prediction 
performance evaluation. This is the first study to propose cost curves for 
performance evaluation of fault predictors and it is not yet widely used. However, 
it is not easy to determine the misclassification cost ratio and the selection of this 
parameter can make the model debatable. Drummond and Holte [10] proposed 
cost curves to visualize classifier performance and the cost of misclassification 
was included in this technique. Cost curve plots the probability cost function on 
the x-axis and the normalized expected misclassification cost on the y-axis. 
Details of this approach will not be given here due to length considerations, and 
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readers may apply to papers by Jiang et al. [19] or Drummond and Holte [10] to 
learn the details of this approach. However, this approach is not widely used in the 
software fault prediction research area. 

3.2 Metrics for the Evaluation of Predictors 

Some researchers predict the number of faults in each module of the next release 
of a system, and the modules’ classification is performed according to the number 
of faults. Modules are sorted in descending order with respect to the number of 
faults, and the modules which should be tested rigorously are identified according 
to the available test resources. 

3.2.1 Average Absolute Error, Average Relative Error 

Average absolute error and average relative error parameters have been used as 
performance evaluation metrics by numerous researchers for software quality 
prediction studies [22, 20, 21, 14]. Formulas 20 and 21 show how to calculate 
average absolute error (AAE) and average relative error (ARE) parameters, 
respectively. The actual number of faults is represented by yi, while yj represents 
the predicted number of faults, and n shows the number of modules in the dataset. 

AAE = ∑
=

−
n

i
ji yy

n 1

1                     (20) 

ARE =  ∑
= +

−n

i i

ji

y
yy

n 1 1
1                                  (21) 

3.2.2 R2 

R2 measures the power of correlation between predicted and actual number of 
faults [37]. Another term for this parameter is the coefficient of multiple 
determination, and this parameter is widely used in studies that predict the number 
of faults. Many researchers have applied this parameter in their studies [9, 36, 8, 
37, 31, 3]. This metric’s value should be near to 1 if the model is to be acceptable, 
and Formula 22 is used to calculate this parameter. The actual number of faults is 
represented by yi, iŷ  represents the predicted number of faults, and y shows the 
average of fault numbers. 

R2 = 
2

1

1

2

)(

)ˆ(
1

∑

∑

=

=

−

−
−

n

i

i

n

i

ii

y

yy

y

                   (22) 
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Conclusions 

The use of different evaluation parameters prevents the software engineering 
community from easily comparing research results with previous works. In this 
study, we investigated 85 fault prediction papers based on their performance 
evaluation metrics and categorized these metrics into two main groups. The first 
group of metrics are used for prediction systems that classify modules into a faulty 
or non-faulty module and the second group of metrics are applied to systems that 
predict the number of faults in each module of the next release of a system. This 
study showed that researchers have used numerous evaluation parameters for 
software fault prediction up to now, and the selection of common evaluation 
parameters is still a critical issue in the context of software engineering 
experiments. From the first group, the most common metric for software fault 
prediction research is the area under ROC curve (AUC). The AUC value is only 
one metric and it is not a part of the metric set. Therefore, it is easy to compare 
several machine learning algorithms by using this parameter. In addition to AUC, 
PD, and PF, balance metrics are also widely used. In this study, we suggest using 
the AUC value to evaluate the performance of fault prediction models. From the 
second group of metrics, R2 and AAE / ARE can be used to ensure the 
performance of the system that predicts the number for faults. We suggest the 
following changes in software fault prediction research: 

• Conduct more studies on performance evaluation metrics for software fault 
prediction. Researchers are still working on finding a new performance 
evaluation metric for fault prediction [19], but we need more research in this 
area because this software engineering problem is inherently different than 
the other imbalanced dataset problems. For example, it is not easy to 
determine the misclassification cost ratio (Jiang et al., 2008) and therefore, 
using cost curves for evaluation is still not an easy task. 

• Apply a widely used performance evaluation metric. Researchers would like 
to be able to easily compare their current results with previous works. If the 
performance metric of previous studies is totally different than the widely 
used metrics, that makes the comparison difficult. 
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