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Abstract: A novel automated framework is proposed in this paper to address the significant
but challenging task of multi-label brain tumor segmentation. Kernel sparse representa-
tion, which produces discriminative sparse codes to represent features in a high-dimensional
feature space, is the key component of the proposed framework. The graph-cut method is
integrated into the framework to make a segmentation decision based on both the kernel
sparse representation and the topological information of brain structures. A splitting tech-
nique based on principal component analysis (PCA) is adopted as an initialization compo-
nent for the dictionary learning procedure, which significantly reduces the processing time
without sacrificing performance. The proposed framework is evaluated on the multi-label
Brain Tumor Segmentation (BRATS) Benchmark. The evaluation results demonstrate that
the proposed framework is able to achieve compatible performance and better generalization
ability compared to the state-of-the-art approaches.
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1 Introduction

Brain tumor refers to uncontrollable cell proliferation in the brain. Even though
brain tumor is not a common disease, with prevalence of less than 0.1% in the west-
ern population, it results in high mortality [1]. The topic of brain tumor segmenta-
tion has long attracted researchers’ attention because of its value in medical diag-
nosis and treatment planning. Brain tumor segmentation intends to separate tumors
from non-tumor regions and classify brain tumor tissues according to predefined cri-
teria [2]. Manual segmentation done by experts is possible but impractical, since it
is tedious and time-consuming. Hence, semi-automated and automated approaches,
which require less or even no human intervention, are practical alternatives.

Magnetic resonance (MR) imaging is preferable in brain imaging due its advantages
of safety, better tissue contrast and fewer artifacts than computed tomography (CT).
This emphasizes the significance of efficient and effective frameworks for brain
tumor segmentation based on MR images. However, brain tumors exhibit a wide
range in shape, size as well as location, and share intensities with normal brain
regions in MR images. Besides, the structure of the tumor is usually complex.
Therefore, much effort has been expended in the development of semi-automated or
automated frameworks for brain tumor segmentation, especially multi-label brain
tumor segmentation.

The past few decades have witnessed significant advances in the field of brain tu-
mor segmentation. The approaches to brain tumor segmentation can be roughly
classified into two categories: generative methods and discriminative methods. In
generative methods, the anatomy and statistics of different brain tissues are explic-
itly modeled, while the features of task-relevant brain tissues are directly learned
from training sets in discriminative methods [3]. Generative methods, although
they have to deal with difficulties in modeling the prior knowledge of brain tissues
and elaborate non-rigid registration, usually have better generalization ability on un-
seen images. Discriminative methods, which avoid the difficulties in modeling and
registration, are sensitive to the amount and quality of training data.

The expectation-maximization (EM) algorithm usually plays an important role in
the generative methods. Based on the statistics of the healthy brain, an outlier de-
tection framework is proposed by Prastawa et al. [4] which treats brain tumor as
outlier and generates model of tumors for subsequent EM segmentation. Menze et
al. [5] incorporate multi-channel priors to augment the traditional atlas-based EM
segmentation. Khotanlou et al. [6] introduce a two-step segmentation procedure,
which includes tumor detection and initial segmentation refinement by fuzzy classi-
fication. Gooya et al. [7] describe a glioma growth model that is integrated with the
inference of patient specific atlas to guides the EM-based segmentation.

Much research has been done in advancing discriminative methods. The classic
level-set method [8, 9] is utilized due to its strength in following the change of ob-
ject topology. The success of the random forest algorithm, which is essentially an
ensemble classifier, in the multi-label Brain Tumor Segmentation (BRATS) chal-
lenge 2012 has boosted its popularity in the following years [10, 11].
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The fact that sparse or compressible representations for signals and images are em-
ployed in some predefined or learned representation systems, also known as dic-
tionaries, is the core of the well-known sparse coding algorithm. Compared to
predefined dictionaries, learned dictionaries usually provide better sparse repre-
sentations and hence more satisfying results [12]. Therefore, sparse coding and
dictionary learning are commonly used together. Applications based on sparse rep-
resentation using sparse coding and dictionary learning can be found in various
tasks, e.g., image classification [13]. Instead of the explicit raw representation of
data, kernel extension of sparse coding and dictionary learning work in an implicit,
high-dimensional feature space to achieve more discriminative sparse representa-
tion. Kernel sparse representation has been utilized in the brain tumor segmentation
task and its effectiveness in distinguishing tumor from normal brain regions has
been demonstrated [14, 15]. However, multi-label brain tumor segmentation, which
is more challenging compared to binary brain tumor segmentation, is not considered
in their frameworks.

In this paper, we propose a fully automated framework based on kernel sparse rep-
resentation for multi-label brain tumor segmentation. In the proposed framework,
superpixels are used as basic processing units instead of traditional pixels [14] or
patches [15]. A pixel-based framework involves much repeated effort in encoding
similar pixels. In contrast, patches usually exhibit obvious inhomogeneity, though
patch-based frameworks may be more efficient than their pixel-based counterparts.
In the proposed framework, the sparse representation of each superpixel is generated
in a high-dimensional feature space, where the nonlinear similarity among super-
pixels is more discriminative. Kernel dictionary learning is applied to learn class-
specific dictionaries based on superpixel-level features including histogram and spa-
tial location, while kernel sparse coding uses the learned dictionaries and features
to generate a sparse representation for a given superpixel. The graph-cut method,
which naturally take topological information into consideration, is employed in the
framework. Kernel sparse representation, together with the topological information
of brain tumor structure, is utilized by the graph-cut method to make the segmenta-
tion decision. The proposed framework is an enhanced version of the one introduced
in our previous work [16] by including a PCA-based splitting component, named
PCA-Split, to significantly speed up the processing procedure without affecting the
accuracy. Furthermore, the new framework has slightly improved results. The idea
of PCA-Split is driven by the fact that manipulation of a large matrix is of high com-
putational cost. PCA-Split replaces the original training features with more compact
and representative representations. Therefore, dominant features can be efficiently
preserved, though the size of the training matrix is significantly decreased and hence
processing time is reduced. The proposed framework is evaluated on 20 high-grade
glioma (HGG) cases provided by the multi-modal Brain Tumor Segmentation Chal-
lenges 2013 (BRATS2013). Results shows the enhanced framework achieves com-
parable performance compared to the state-of-the-art approaches. In addition, it
generalizes better on unseen images even though less training data is required.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the proposed framework for automated multi-label brain tumor segmentation.
PCA-Split, kernel sparse representation and the graph-cut method, which are the
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three main components of the proposed framework, are discussed in Section 3-5.
Evaluation results and comparison with the state-of-the-art approaches are reported
in Section 6. The paper is concluded in Section 7.

2 Overview
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Figure 1
Overview of the proposed automated framework for multi-label brain tumor segmentation.

An overview of the proposed automated framework for multi-label brain tumor seg-
mentation is shown in Figure 1. The proposed framework contains three main com-
ponents: initialization with PCA-Split, kernel sparse representation and segmen-
tation using graph-cuts. Given a set of training samples, PCA-Split initialization
finds more compact and representative representations by splitting the set into a
given number of subsets and replacing the raw representations with the centroids
of each subsets. Kernel sparse representation consists of kernel dictionary learning
and kernel sparse coding. In the training phase, kernel dictionary learning learns
class-specific dictionaries based on superpixel-level features of brain tissues, which
are used as representation systems for each task-relevant class. In the testing phase,
kernel sparse coding generates optimal sparse codes for unseen testing samples ac-
cording to the learned dictionaries and their superpixel-level features. The kernel
sparse representation is then utilized in the graph-cut method to make pixel-wise
segmentation decisions.

3 PCA-Split Initialization

Adequate and representative training samples are critical to the performance of
learning-based approaches. However, manipulation of a large matrix is of high com-
putational cost and the quality of the selected training samples is not guaranteed.
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Algorithm 1 PCA-Split

Input: A input set W = [wi]
N
i=1 and a desired number of subsets Q.

Task: Split a subset of the given input set with regard to its variance until the
desired number of subsets is reached.
Initialize: Number of subsets q = 1, subsets V = [V1, ...,Vi, ...,Vq] and V1 = W.
Procedure:
while q 6= Q do

for ∀ Vi ⊆ V do
δi = ∑{∀ j|w j∈Vi}(w j−µµµ i)

2.
end for
Sort all subsets in descending order according to δi.
Calculate covariance matrix ΣΣΣ1 = ∑{∀ j|w j∈V1}(w j−µµµ1)(w j−µµµ1)

T

Find out eigenvector eigmax which corresponds to the largest eigenvalue.
for all j ∈ {∀ j|w j ∈ V1} do

if 〈(w j−µµµ1),eigmax〉< 0 then
w j ∈ Vle f t

else if 〈(w j−µµµ1),eigmax〉 ≥ 0 then
w j ∈ Vright

end if
end for
q← q+1
Vq−1← Vle f t

Vq← Vright

for ∀ Vi ⊆ V do
µµµ i =

∑{∀ j|w j∈Vi}w j

|Vi|
end for

end while
Output: subsets V = [V1, ...,Vi, ...,VQ] and centroids U = [µµµ1, ...,µµµQ]

To address this problem, a principal-component-analysis-based (PCA-based) split-
ting technique is applied, which is named PCA-Split. The PCA-based splitting tech-
nique has been utilized in various applications, like codebook initialization for vec-
tor quantization [17] and hierarchical clustering [18]. The purpose of PCA-Split
is, in each iteration, to find an optimal splitting plane with respect to the variance
of a subset of the given data [17]. Splitting continues until the desired number of
subsets is achieved. The centroid of each subset is used to represent all data samples
that lie in the subset. The main properties of the subset are preserved by the cen-
troid, while “outliers” are eliminated. In this way, more compact and representative
representations of the dataset can be obtained.
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The procedure of performing PCA-Split is described as follows. Given an input set
W = [wi]

N
i=1, PCA-Split starts with only one subset V1 which contains the entire in-

put set. In each iteration, all subsets are sorted in descending order according to their
representation distortions calculated by the formulation δq = ∑∀ j|w j∈Vq(wi− µµµq)

2

with respect to the centroid µµµq. The subset with the largest representation distortion
is then selected to be split. The optimal splitting plane is the eigenvector corre-
sponding to the largest eigenvalue, which splits the subset into “left” and “right”
groups. Hence the number of subsets is increased by one in each iteration until the
preset number of subsets is reached.

The pseudo-code for PCA-Split is given in Algorithm 1, where 〈·, ·〉 denotes the
inner product, XT the transpose of X, |X| the number of elements in X.

4 Kernel Sparse Representation

4.1 Extraction and Fusion of Superpixel-Level Features

Superpixels that contain pixels with similar perceptual meaning are the basic pro-
cessing units in the proposed framework. The compact grouping of pixels is bene-
ficial to the achievement of better kernel sparse representation and faster segmenta-
tion. The contour relaxed superpixel (CRS) algorithm [19] is utilized for superixel
generation due to its flexibility in controlling the adaption to a complicated con-
tour with a single parameter κ . MR imaging provides multi-modal information,
like T1-weighted (T1), T2-weighted (T2), contrast-enhanced T1-weighted (T1c)
and FLAIR, which help to enrich our understanding of brain tumors. Due to their
higher spatial resolution and clearer display of brain tumor structure compared to
other modalities, T1c images are used as the reference in the generation of superpix-
els. Superpixel generation is restricted to the brain area only to avoid unnecessary
processing to the background area. CRS (κ = 0.01) partitions an input image into
a set of superpixels S = [s1, ...,st , ...sT ]. In order to fully utilize the multi-modal
information, the generated superpixel regions are applied to T1, T2 and FLAIR
modalities.

Superpixel-level features are extracted based on the generated superpixel regions
(Figure 2). For a superpixel st , 64-bin histograms from all four modalities are cal-
culated, which are denoted as ht(c) (c ∈ {T1,T2,T1c,FLAIR}). All histograms are
normalized to have ∑

r
j=1 ht(c)( j) = 1, where r is the number of pixels located in su-

perpixel st , to prevent bias induced by the difference in number of pixels. In addition
to histograms, spatial locations of superpixels are taken into consideration. The spa-
tial location of superpixel st is defined as its centroid lt = (xt ,yt). The mean values
of positions of all pixels in superpixel st in the x-axis normalized by the width of the
image and y-axis normalized by the height of the image correspond to the values of
xt and yt respectively. Therefore, the learned dictionaries are able to simultaneously
model both features including histogram and spatial location.

The proposed framework, instead of working on the raw representation of data, gen-
erates kernel sparse representation in a high-dimensional, implicit feature space F .
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Figure 2
Extraction and fusion of superpixel-level features.

Nonlinear similarities in F between samples are considered, which are more dis-
criminative compared to the linear similarity in the original space. In order to map
the raw representation to the feature space F , a nonlinear transformation Φ(·) is
applied. Hence, nonlinear similarity between two samples x and x′ can be mea-
sured by the inner product Φ(x)T Φ(x′). Nevertheless, Φ(·) can be intractable in the
high-dimensional, even infinite-dimensional, feature space F [14]. To address this
problem, the kernel trick is adopted, which replaces the intractable inner product
Φ(x)T Φ(x′) with a known kernel function K . With the knowledge of the ker-
nel and the samples, nonlinear similarity can always be calculated even though the
explicit formulation of Φ(·) is not known. To proceed with the replacement, the
chosen kernel function should satisfy Mercer’s theorem [20]. The well-known ra-
dial basis function (RBF) kernel is selected in our framework. The definition of the
RBF Kernel is K (x,y) = exp(−‖x−y‖2/2σ2)(σ = 1.5).

Given two matrices X = [xi]
N
i=1 and X′ = [x′i]Mi=1, a Gramian matrix K(X,X′) ∈

RN×M is defined such that its (n,m)-entry Kn,m corresponds to the nonlinear similar-
ity K (xn,x′m) between the nth element of X and the mth element of X′. All extracted
superpixel-level features are arranged in column vector manner into their corre-
sponding feature matrices (Figure 2). Specifically, in the training phase, the raw
representations of all features are substituted by the centroids of subsets obtained
by applying PCA-Splits to their corresponding feature matrices with a specified
number of substes Q. For histogram feature matrices, Gramian matrices KH(c) (c ∈
{T1,T2,T1c,FLAIR}) are obtained to represent the nonlinear similarities in a spe-
cific modality, while a Gramian matrix KSL is calculated for that of spatial location.
KH(c) (c ∈ {T1,T2,T1c,FLAIR}) and KSL are denoted as the following formula-
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tions:

KH(c)(i, j) = exp

(
−
‖hi(c)−h j(c)‖2

2

2σ2

)

KSL(i, j) = exp

(
−
‖li− l j‖2

2
2σ2

) (1)

Not only the sparse representation benefits from the kernel trick, the use of the the
kernel trick also facilitate the fusion of multi-features such that all the Gramian
matrices can be combined in an elegant way by simple Hadamard product. The
combination yields an ensemble matrix K, i.e., K = KH(T1)�KH(T2)�KH(T1c)�
KH(FLAIR). Learning of dictionary based on the ensemble Gramian matrix is more
efficient and effective since all five features are captured at one time. For simplicity,
the rest of the paper only focuses on the ensemble Gramian matrix for the generation
of kernel sparse representation, rather than the five Gramian matrices individually.

4.2 Kernel Sparse Coding and Kernel Dictionary Learning

Given a set of input data Y = [yi]
N
i=1,yi ∈ RM , the goal of dictionary learning is to

obtain an optimal overcomplete dictionary D ∈ RM×K to well model the given data
Y, so that each element yi ∈Y can be approximated by a linear combination of only
a few dictionary atoms dk,(k = 1,2, ...,K) via a code xi ∈RK . The code xi is sparse
since only a few entries are non-zero. The objective function of dictionary learning
is given by:

(X̂, D̂) = argmin
X,D
‖Y−DX‖2

F s.t. ‖xi‖0 ≤ T0,∀i (2)

where X = [xi]
N
i=1, ‖.‖F is the Frobenius norm, ‖.‖0 denotes the `0 norm and T0 the

sparsity level, which indicates the maximum number of non-zero entries in a sparse
code xi .

Upon obtaining the dictionary, D is fixed and sparse coding finds the optimal sparse
representation X′ for the testing data Y′ based on the learned dictionary D. The
optimization problem of sparse coding is expressed as:

(X̂′) = argmin
X′
‖Y′−DX′‖2

F s.t. ‖x′i‖0 ≤ T0,∀i (3)

To adapt the original optimization problem of sparse coding and dictionary learning
into feature space F , a nonlinear transformation Φ(·) is applied to both the data
matrix. Therefore, the kernel extensions of dictionary learning and sparse coding
are formulated as equations (4) and (5) respectively:

(X̂, D̂) = argmin
X,D
‖Φ(Y)−Φ(D)X‖2

F s.t. ‖xi‖0 ≤ T0,∀i (4)

(X̂′) = argmin
X′
‖Φ(Y′)−Φ(D)X′‖2

F s.t. ‖x′i‖0 ≤ T0,∀i (5)
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where Φ(Y) = [Φ(yi)]
N
i=1, Φ(Y′) = [Φ(y′i)]Pi=1 and Φ(D) = [Φ(di)]

K
i=1.

The dictionary in F can be represented by the linear combination of the input data
(i.e., Φ(D) = Φ(Y)A), since all dictionary atoms lie in the linear span of the input
data [12]. A ∈ RN×K is an atom representation dictionary and the optimal A is
directly related to the best dictionary D that can be achieved. The formulation of
kernel dictionary learning and kernel sparse coding can be re-written as equations
(6) and (7) respectively:

(X̂, Â) = argmin
X,A
‖Φ(Y)−Φ(Y)AX‖2

F s.t. ‖xi‖0 ≤ T0,∀i (6)

(X̂′) = argmin
X′
‖Φ(Y′)−Φ(Y)AX′‖2

F s.t. ‖x′i‖0 ≤ T0,∀i (7)

A kernel extension of the K-SVD type dictionary learning algorithm [12] is adopted
in our framework. Since learning of dictionary iteratively alternates between kernel
sparse coding and kernel dictionary learning until predefined criteria are met or
maximum iteration number is reached, we only focus on the optimization of kernel
dictionary learning (i.e., equation (6)) for simplicity.

In the kernel sparse coding step, the atom representation dictionary A is assumed
to be known and fixed. The sparse codes matrix X can be found by minimizing the
approximation error ‖Φ(Y)−Φ(Y)AX‖2

F subject to the sparsity constraint ‖xi‖0 ≤
T0,∀i. The penalty term can be decomposed and written as:

‖Φ(Y)−Φ(Y)AX‖2
F =

N

∑
i=1
‖Φ(yi)−Φ(Y)Axi‖2

2 (8)

Now, the “big” problem is separated into N “small” optimization problems:

min
xi
‖Φ(yi)−Φ(Y)Axi‖2

2 s.t. ‖xi‖0 ≤ T0 (9)

To facilitate optimization, the objective function is reconstructed with kernel func-
tion K to avoid the unknown nonlinear transformation Φ(·):

min
xi

K (yi,yi)−2K(yi,Y)Axi +xT
i AT K(Y,Y)Axi s.t. ‖xi‖0 ≤ T0 (10)

With the help of the kernel trick, this optimization problem can be solved by the
classic orthogonal matching pursuit (OMP) algorithm [21].

Once the sparse codes matrix is calculated, we update the all dictionary atoms ac-
cording to the projection error. In other words, kernel dictionary learning, with the
fixed X, searches for a new atom representation dictionary A to minimize ‖Φ(Y)−
Φ(Y)AX‖2

F .

First, the penalty term is rewritten as:

‖Φ(Y)−Φ(Y)
K

∑
j=1

a jxR
j ‖2

F = ‖Φ(Y)(I−∑
j 6=k

a jxR
j )−Φ(Y)(akxR

k )‖2
F (11)
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where ak and xR
k correspond to the kth column of A and the kth row of X respec-

tively. Contribution made by the kth dictionary atom to the estimated sample can
be obtained from akxR

k . For simplicity, we denote Ek = I−∑ j 6=k a jxR
j , which repre-

sents the approximation error between the estimated and original samples when the
kth dictionary atom is removed.

As can be seen in equation (11), the pair of unknown variables (ak,xR
k ) is expected

to be found to minimize the approximation error. This can be solve by the best
rank-1 approximation. Due to their trivial contribution to the optimization problem,
columns related to zero entries of xR

k in Ek and akxk are removed, which yields ERe
k

and akxRe
k respectively (xRe

k containing only non-zero weights of xR
k ). Singular value

decomposition (SVD) is applied to ERe
k and akxRe

k instead of Ek and akxR
k to preserve

the specified sparsity level and reduce computational cost.

The SVD decomposes Φ(Y)ERe
k into three parts:

Φ(Y)ERe
k = UΣΣΣVT (12)

Equating Φ(Y)akxRe
k to the rank-1 matrix, which corresponds to the largest singular

value σ1 = ΣΣΣ(1,1) of Φ(Y)ERe
k , gives the solution to the best rank-1 approximation.

Φ(Y)akxRe
k = u1σ1vT

1 (13)

where u1 and v1 are the first columns of U and V corresponding to σ1 respectively.
Thus, the solution can be calculated from the equations below:

Φ(Y)ak = u1

xRe
k = σ1vT

1
(14)

However, it is impractical to perform SVD on Φ(Y)ERe
k since the explicit formula-

tion of Φ(·) is unknown. Consequently, the kernel trick should be used again such
that the eigen decomposition of EReT

k Φ(Y)T Φ(Y)ERe
k , which is V∆∆∆VT , is calculated

to infer the unknown variables. As a result, V is obtained and σ1 can be deduced by
σ1 =

√
∆∆∆(1,1). An analytical solution is possible when the term for σ1 is substi-

tuted into equation (14):

ak = σ
−1
1 ERe

k v1 (15)

In each iteration, all the atoms of A are updated according to the manner stated
above followed by the search for new sparse codes based on the new dictionary.
This process alternates between kernel dictionary learning and kernel dictionary
learning till some preset conditions are satisfied.

5 Graph-Cuts

The pixel-wise segmentation decision is made by the graph-cut method based on
both kernel sparse representation and topological information of the brain struc-
tures. The task requires the proposed framework to classify pixels into five specific
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classes, which are non-tumor (label=0), necrotic core (label=1), edema (label=2),
non-enhancing core (label=3) and enhancing core (label=4). For each class, a dic-
tionary is learned by applying kernel dictionary learning to a set of training samples
as described in Section 4. These dictionaries should be able to model their own
classes well since they are optimized for the particular purpose, even though they
fail to approximate well the rest of the classes.

For a test superpixel st , the proposed framework computes five sparse codes x0,x1,x2,x3
and x4 with respect to the five dictionaries. The approximation errors between the
input sample st and the five approximations are denoted by est

0 ,e
st
1 ,e

st
2 ,e

st
3 and est

4 ,
and measured by:

est
i = ‖Φ(yst )−Φ(Di)xsi

i ‖
2
2, i = 0,1,2,3,4 (16)

Segmentation based on kernel sparse representation does not take topological in-
formation of the brain structure into consideration. The graph-cut method, which
naturally incorporates topological information, is a possible remedy. We propose
a variant graph-cuts [22, 23] to better adapt to our application. A graph should be
constructed to proceed with the variant graph-cuts. To facilitate graph construction,
a superpixel is first ungrouped into a set of pixels which form the superpixel. Then
these pixels are given the same approximation errors as the superpixel they belong.
The image is represented by a array which contains all its pixels z = (z1, ...,zl ...,zL),
assuming there are L pixels in total. The approximation errors assigned to pixel
zl are denoted by ezl

i (i = 0,1,2,3,4). These pixels, besides the approximation er-
rors, contains extra information in terms of different gray-level intensities in multi-
modalities. For pixel zl , gray-level intensities in the four modalities are defined as
gzl

T1,g
zl
T2,g

zl
T1c and gzl

FLAIR.

The energy function of graph-cuts is expressed by:

E( f ) = ∑
{p,g}∈N

Vp,q( fp, fq)+ ∑
p∈P

Dp( fp) (17)

where f is a label in a finite label set L , {p,q} a pair of pixels in the pixel set
P , and N a set of neighboring pixels. The first term in equation (17) is known as
the smoothness term, which encourages pairwise smoothness while preserving label
discontinuity on boundaries. The data term is the name given to the second term,
which measures the fit of label f to the observed data p.

Typically, the data term is formulated with negative log-likelihood. According to
the previous discussion, if a test sample belongs a specific class, the smallest ap-
proximation error can be achieve when the dictionary learned for this class is used
in kernel sparse coding. Therefore, the kernel sparse representation generated in the
previous step is utilized in the data term as the measurement of label appropriateness
as shown below:

L

∑
l=1

Dzl ( fzl ) =
L

∑
l=1

log(ezl
fzl
) (18)
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The smoothness term is defined as:

∑
{zl ,zq}∈N

Vzl ,zq( fzl , fzq) = θ ∑
{zl ,zq}∈N4

[ fzl 6= fzq ] exp−β‖zl− zq‖2
2 (19)

where θ is a constant controlling the degree of discontinuity preserving, N4 indi-
cates 4-way connectivity and [·] is a indicator function taking value 1 for true predic-
tion or 0 for false prediction. θ is empirically set to 50 according to the preliminary
experiments. The Euclidean distance between pixel zl and zq is given by:

‖zl− zq‖2
2 = ∑

c
(gzl

c −gzq
c )2, c ∈ {T1,T2,T1c,FLAIR} (20)

Though θ only has the control on overall smoothness, we have another parameter
β to prevent the tendency of being over-smooth on boundaries between different
classes. β is computed by:

β = (2 < ‖zl− zq‖2 >)−1 (21)

where < ·> denotes expectation over N4 neighborhood.

The optimization of the variant graph-cuts, depending on nonlinear feature similar-
ity and topological information, provides the best label configurations for all pixels.
We use the GCMex - MATLAB wrapper to implement the proposed variant graph-
cuts [23, 24, 25].

6 Experiment and Discussion

The proposed framework is evaluated on 20 real HGG cases in the training set of
BRATS2013 with two-fold cross validation (CV). In the training phase, the super-
pixels collected from the training set for each of the five classes (i.e., non-tumor(0),
necrotic core(1), edema(2), non-enhancing core(3) and enhancing-core(4)) are ini-
tialized for kernel dictionary learning by PCA-Split. The desired number of subsets
Q is empirically set to 512 considering the trade-off between good segmentation
result and less processing time. As a result, the dictionaries of the five task-relevant
classes are learned from their corresponding 512 PCA-Split centroids. For kernel
dictionary learning and kernel sparse coding, we fix the number of dictionary atoms
to 200 and the sparsity level to 5. The framework is implemented on MATLAB
using a computer with Intel processor (i7-3930K, 3.20GHz) and 32GB of RAM.

The following three regions are segmented and used for evaluation:

• Region 1: complete tumor (label 1+2+3+4)

• Region 2: tumor core (label 1+3+4)

• Region 3: enhancing core (label 4)

The performance of the proposed framework is reported via the Dice similarity co-
efficient, Jaccard index and sensitivity [3] on the aforementioned three regions.
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Even though the BRATS2013 dataset has been pre-processed with skull-striping and
co-registration, obvious intensity bias can still be observed. The intensity bias can
significantly worsen the segmentation accuracy since superpixel-level histograms
are intensively used in our framework. This requires further pre-processing steps in-
cluding bias field correction and intensity inhomogeneity correction. T2 and FLAIR
are exempted from bias field correction due to the fact that the correction decreases
their contrast. N4ITK [26] tool in Slicer3D is used for bias field correction, while
intensity inhomogeneity is adjusted by a learning-based two-step standardization
[27].

The segmentation result output directly from graph-cuts can be noisy. Therefore,
binary morphological processing and connected component analysis are applied as
post-processing steps.

T1c T1 T2 FLAIR Result Ground Truth

Figure 3
Three segmentation examples of the proposed framework. First column to sixth column correspond to

T1c images, T1 images, T2 images, FLAIR images, segmentation results and ground truths respectively.
The first row shows one slice of patient009, while the second row is a slice of patient015. The bottom

row demonstrates the performance of the proposed framework on the worst case-patine012.

Several segmentation examples generated by the proposed approach are shown in
Figure 3. In addition, we report the averages and standard deviations of the Dice
similarity coefficient, Jaccard index and sensitivity that achieved by the proposed
framework in Table 1. The performance of our previous method [16] is also con-
cluded in Table 1. For Region 2 and Region 3, we report the performance twice,
one including patient012 while the other excluding patient012, since the peculiarity
of patient012 significantly worsens the overall performance as can be seen from
Table 1. The reason why both our frameworks fail to give good segmentation
results for patient012 is probably because of the similar intensities shared by the
non-enhancing core and the edeme in all four modalites. Moreover, the tumor of
patient012 mainly consists of non-enhancing core and edema, which makes it ex-
tremely difficult for our approaches to make good segmentation decision. Hence,
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Table 1
Evaluation of performance on BRATS 2013 training cases (HGG)

Dice Jaccard Sensitivity

previous proposed previous proposed previous proposed

mean std mean std mean std mean std mean std mean std

Region 1 81.1 9.3 81.1 9.6 69.2 12.5 69.1 12.9 81.9 13.6 82.3 14.1

Region 2 62.9 17.6 63.3 22.1 48.0 17.3 49.5 21.0 69.3 22.4 71.1 25.2

Region 2(*) 65.3 14.2 66.5 17.1 50.0 15.2 52.0 18.2 72.4 18.2 74.8 19.6

Region 3 69.7 17.2 70.4 19.6 55.6 17.8 57.1 19.6 70.1 22.5 71.2 24.5

Region 3(*) 71.9 14.4 73.4 14.8 57.7 15.5 59.7 16.2 72.9 19.2 74.5 20.0

* denotes the scores are calculated excluding the result of patient0012.

the proposed framework easily mistakes the non-enhancing core for the edema and
results in very low scores in both Region 2 and Region 3. The average processing
time for one slice required by our previous framework and the proposed framework
are 8 seconds and 30 seconds. The comparison between our previous framework
and the proposed framework in terms of performance (Table 1) and processing time
clearly reveals the advantages of the proposed framework over the previous one.
The proposed framework, with exactly the same training and test set configuration,
achieves comparable scores in Region 1 and slightly outperforms the previous one
in both Region 2 and Region 3. The proposed framework (8 seconds) requires less
than one third of the average execution time for one slice of the previous method
(30 seconds).

We also show in Table 2 the performances of three state-of-the-art discriminative
approaches [28, 29, 30] evaluated on the same dataset. Scores are directly extracted
from their published papers. This table is for reference only due to the lack of their
training and testing set configurations. Nevertheless, we can conclude that our pro-
posed approaches achieves competitive performance compared to the state-of-the-
art approaches. In addition, better generalization ability of the proposed framework
is observed when we compare the CV type used in our framework to those in their
approaches (Table 3). This means, the proposed framework achieves comparable
performance with much less training cases, but still perform well on more unseen
images.

Conclusions
A novel automated framework for multi-label brain tumor segmentation is proposed
in this paper. As an enhanced version of our previous framework in [16], the pro-
posed framework has advantages in both performance and processing time. PCA-
Split initialization provides compact and representative training samples for kernel
dictionary learning, which significantly reduce training and processing time with-
out scarifying good models for related classes. Kernel sparse representation based
on kernel dictionary learning and kernel sparse coding is utilized in the graph-cut
method together with the topological information of brain structure to arrive at a
segmentation decision. The results show that the proposed framework gives a com-
parable performance while better generalization ability is observed when compared
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to the state-of-the-art discriminative approaches.

We plan to include topological information in the generation of sparse represen-
tation as an extra regularization term, instead of optimizing sparse representation
and graph-cuts separately, such that jointly optimization can be achieved and hence
better sparse representation and result are expected.
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