
Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 47 –

Big Data Testbed for Network Attack Detection

Dániel Csubák, Katalin Szücs, Péter Vörös, Attila Kiss

Department of Information Systems, Eötvös Loránd University
Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
csuby@caesar.elte.hu, szucsk@caesar.elte.hu, vopraai@inf.elte.hu,
kiss@inf.elte.hu

Abstract: Establishing an effective defense strategy in IT security is essential on one hand,
but very challenging on the other hand. According to the 2014 Cyberthreat Defence Report
[1] that involved more than 750 security decision makers and practitioners, more than 60%
of organizations had been breached in 2013. Big data analytics in security provides the
possibility to gather and analyse massive amounts of digital information in order to predict
and prevent these attacks. However, since collecting the needed data in an efficient,
complete and reliable fashion encounters problems, the industry is lacking and could truly
benefit from a tool offering benchmark data, provided in a platform, which would allow
gauging and improving the effectiveness of security defence algorithms. To this end in this
paper we introduce a platform that allows one to generate large parametrized datasets of
simulated Internet traffic consisting of the combination of attack-free and malicious
network traffic patterns. For the simulations we use the ns3 discrete-event network
simulator. To make the resulting dataset appropriate for intrusion detection system
benchmarking purposes we investigate the statistical characteristics of normal and
intrusive traffic patterns. Finally we present a use case in which we validate our results.

Keywords: Network Traffic Simulation; Intrusion Detection; DDOS; NS-3

1 Introduction and Background
Internet traffic simulation has long been important for network intrusion detection
experiments. For testing the efficiency of a newly developed algorithm,
researchers are in need of an environment in which tests of an intrusion detection
system can be performed. The produced dataset should contain attack-free
background traffic as well as intentionally inserted malicious traffic. Many of the
intrusion detection evaluation experiments have been conducted on proprietary
datasets that are hard to access (due to privacy concerns) and hinder reproducible
research. A great effort has been made to reduce this problem in 1998 and 1999 by
MIT Lincoln Laboratory, under Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory (AFRL/SNHS) sponsorship, when
they created the IDEVAL benchmark datasets [2-3]. To generate a corpus they

D. Csubák et al. Big Data Testbed for Network Attack Detection

 – 48 –

followed the approach of recreating normal and attack patterns on a private
network using real hosts, live attacks, and live background traffic. The generated
data flow is similar to what can be seen between a small Air Force base and the
Internet. IDEVAL has been used extensively for many years as the largest publicly
available benchmark for intrusion detection system (IDS) performance evaluation,
although in 2000 McHugh [4] has reported some issues about it, such as the lack
of comparison of the benchmark data and real data. His suspicion that the dataset’s
statistical characteristics differ from live network traffic was later confirmed by
Mahoney et al. [5] in 2003.

Typically there are four approaches to use background traffic in IDS testing: using
no background traffic, using real traffic, using sanitized traffic and using simulated
traffic [6]. When the tests are conducted without using background traffic as a
reference condition, the IDS's hit rate can be determined, but nothing can be said
about the false positive rate. Another drawback of this scheme is the assumption
that the presence or the absence of background traffic does not change the
performance of the system being analysed. Injecting attacks in real background
traffic can overcome this difficulty, although, usually these experiments use a
small set of victim machines, the data may contain malicious traffic or anomalies
specific to the network, and even privacy concerns may arise. Sanitizing the real
traffic by removing any sensitive data (for example using only the TCP headers)
can reduce privacy problems, but it also can lead to unrealistic scenarios if too
much data is removed, or it can unintentionally cause privacy risk if sanitization
fails.

Using simulated traffic can overcome many of the above mentioned problems. It
can be freely distributed without privacy concerns and it surely does not contain
any unexplored attack. Another advantage is that the generated traffic can be later
replayed to repeat the experiment. However, providing a testbed environment that
is able to preserve all the important characteristics of real life Internet traffic is a
great challenge. In [7] Floyd and Paxon present a detailed description of these
simulation difficulties that are mainly present due to the heterogeneity and the
rapid change of the Internet.

In the literature we can find basically two ways of network traffic generation. One
of them is trace-based generation, where the generated traffic is the replication of
some previously recorded real traffic traces. Generators like this for example are
TCPReplay [8] and TCPivo [9]. The other solution is the analytical model-based
approach. It this scheme, the generation is based on statistical models. Some
widely used solutions like this are:

Traffic Generator (TG) that is capable to generate constant, uniform, exponential
on/off UDP or TCP traffic [10].

MGEN is both a command line and GUI traffic generator. It provides programs for
sourcing/sinking real-time multicast/unicast UDP/IP traffic flows [11].

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 49 –

RUDE/CRUDE: RUDE stands for Real-time UDP Data Emitter and CRUDE for
Collector for RUDE. RUDE is a small and flexible program that generates traffic
to the network, which can be received and logged on the other side of the network
with the CRUDE. Currently these programs can generate and measure only UDP
traffic [12].

Distributed Internet Traffic Generator (D-ITG) is a platform capable to produce
traffic that accurately adheres to patterns defined by the inter departure time
between packets and the packet size stochastic processes [13].

Internet Traffic Generator (ITG) allows the reproduction of TCP and UDP traffic
and to accurately replicate appropriate stochastic processes for both Inter
Departure Time and Packet Size random processes. ITG achieves performance
comparable to that of RUDE/CRUDE, but additionally it makes available a greater
number of traffic source types [14].

2 Our Network Traffic Generator
Our goal was to build a parametrizable tool that is able to generate realistic attack
free HTTP traffic combined with DDOS attack traffic. To this end, we used the
widely known NS3 event based network traffic generation tool as the basic
environment. Since there is no generally accepted definition about how HTTP
traffic has to be like, different servers have different user habits (e.g. Facebook is
checked several times a day, while news are usually read in work after lunch) we
tried to make our solution as configurable as possible.

Our background traffic generation model relies on the work of Choi and Limb
[15]. This is one of the most wildly used traffic generation models. According to
their study, a web browsing user can be described by an on-off process. The “on”
stage starts as soon as the user requests a web page. Upon a request the main
object is downloaded that contains the basic structure of the web page and the
links to inline objects. The main object is followed by the inline objects that
actualize the embedded content of the page, these can be scripts, images, etc. The
“on” stage ends when all the elements of the requested page are downloaded. After
that, a silent “off” stage takes place while the user is reading the retrieved content.
Although the basic concept is still viable, the exact measurements of HTTP traffic
made by Choi and Limb are considered obsolete because since the time of their
research the nature of web traffic went through a significant change. The
appearance of social networks and multimedia streaming, the more complex
structure and the new services of web pages required new measurements to better
describe web browsing behaviour. The actual measurements we relied on for
DDOS detection system evaluation in Section 3 were conducted by Pries et al. in
[16]. The presented results are based on the top one million visited web pages. The
settings that we used are presented in Table 1.

D. Csubák et al. Big Data Testbed for Network Attack Detection

 – 50 –

Table 1

HTTP model parameters

Parameter Best fit

Main object size Weibull (28242.8,0.814944)

Number of main objects Lognormal μ = 0.473844; σ = 0.688471

Inline object size Lognormal μ = 9.17979; σ = 1.24646

Number of inline objects Exponential μ = 31.9291

Reading time Lognormal μ = 0.495204; σ = 2.7731

Several calculations have been made about the content of the configuration, as we
wanted to keep it simple, yet customisable enough to fulfil any need of HTTP
traffic. The resulted bunch of options is detailed in Table 2.

Table 2

Simulation parameters

numOfNodes
The number of nodes in the simulation, this
includes the server and the dos clients as well

numOfDosClients
The number of nodes that will generate DoS traffic
instead of general client behaviour

startTime
This parameter shows in which simulated second
the clients start their work (does not affect DoS
clients)

endTime Which simulated second the clients stop their work

dosStartTime
Which simulated second the DoS clients start their
work

dosStopTime
Which simulated second the DoS clients stop their
work

serverPort
Number of port which the server listens on, and
clients connect to

dataRate Global link speed

delay
Number of seconds required for the first bit of a
packet to arrive at the destination host

packetLoss
The probability that a packet gets lost while
transferring

inlineObjectSizeLogNormalVariable
Due to studies [16] the number of inline objects in
a mainline object is a Lognormal random variable.
This variable's two parameter can be set in.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 51 –

npageRequestsLogNormalVariable
Due to studies [16] the time between two mainline
object requests is a Lognormal random variable.
This variable's two parameter can be set in.

dosClient/
pageRequestsLogNormalVariable

The same as above, but it refers to DoS clients

avgClicks
sleepTimeBetweenClickings

These parameters work together. Legal clients after
the set number of average clicks will not request
any other object for an average of
SleepTimeBetweenClickings seconds.

A key in our data generator is to make it easy to use. We integrated our solution
into a minimalistic web service, which results in a user friendly interface where
without installing anything, a click is enough to start the simulation, and be able to
download your results. This solution also, disencumbers our developer computers
and puts the load to dedicated servers.

Since ns3 compiles for quite a long time, we wanted to give a solution which does
not require recompilation too often but also stays parametrizable. Not just to
fasten the simulations but to provide an easy summation of possible parameters,
we implemented a configuration parser, which works with an XML file, and
therefore does not require recompilation after a parameter changes.

2.1 Case Study

To show that our solution is easily configurable to generate any type of network
traffic we simulated our local web server, and generated simulated data with the
attributions of the original. In this section we are going to discuss the details of
this experiment.

To gather a fair amount of real network data we monitored all the packets received
by our local web server, for about a month-long period. Figure 1 shows the
frequency of page requests that arrived at our server during the monitored time
interval.

Figure 1

Main object requests per second in the real data

D. Csubák et al. Big Data Testbed for Network Attack Detection

 – 52 –

To estimate the necessary parameters for the simulation we filtered the data for the
http requests. We used R's “fitdstrplus” library to give the best estimation for the
distribution of the time between two main object requests, the average number of
consecutive main object requests and for the “sleepTimeBetweenClickings” that
corresponds to the time between two visits of the same client to the web page. The
results are presented in Table 3.

Table 3
Parameter estimates

Parameter Best fit

MainpageRequests Exponential μ = 857.5256

avgClick Pareto mean = 5; shape = 1.1; bound = 20

sleepTimeBetweenClickings Exponential μ = 20696.83

Figure 2 shows the frequency of the page requests in the simulated traffic with the
above configuration.

Figure 2
Main object requests per second in the simulated data

2.1.1 Self-Similarity and Long-Range Dependence

The distribution of traffic on the Internet commonly exhibits self-similarity. The
first observation of the phenomena was made by Leland and Wilson [17]. They
commented in detail on the presence of “burstiness” across an extremely large
range of time scales in the data collected at Bellcore Morristown Research and
Engineering Center on several Ethernet LANs. The first statistically rigorous
analysis was made in 1994 by Leland et al. [18] on the same dataset. Their
research pointed out that the Ethernet LAN traffic is self-similar, irrespective of
where and when the data were collected in the network. They showed that the
Hurst parameter better describes the fractal-like nature of the traffic and able to
capture its “burstiness”, when other methods (the index of dispersion, the peak-to-
mean-ratio or the coefficient of variation for inter arrival times) fail to do so. Their
observations have been supported by later research and their findings have led the
research community to make significant efforts towards developing appropriate
mathematical and statistical techniques that provide a network-related

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 53 –

understanding of the observed self-similar scaling behaviour [19-26]. A
mathematical description of self-similarity used by Bai and Shami in 2013 [27,
28] for network traffic simulation is the following:

Let Xi (i = 1, 2, …) be an increment process and Xj
(m) (j = 1, 2, …) be another

process, which is obtained by averaging the values in non-overlapped blocks of
size m in Xi, i.e.:

X j
(m)=

1
m

(X jm−m+ 1 +Xjm−m+ 2+…+X jm). (1)

The process Xi is said self-similar if Xj
(m) is similar in distribution to mH-1Xi,

where m (m ≥ 1) is the scale parameter and H is the Hurst exponent. In a more
understandable form it implies:

Var (X j
(m))=m2 H− 2 Var(Xi). (2)

Another wildly researched characteristic of network traffic is long-range
dependence (LRD). Its discovery in network traffic, has fundamentally changed
the conventional wisdom by stating that the correlation of packet inter arrivals
decays slower than in traditional traffic (e.g., Markov) models. LRD and self-
similarity are strongly related. From the definitions of [29] we use the inference
that LDR characterizes a time series if it holds for the Hurst exponent H that 0.5 <
H ≤ 1. As H approaches 1, the dependence becomes stronger.

During background traffic generation we found it important to test if the simulated
data preserved the LRD characteristics of the real data. To test LRD of the packet
arrivals we estimated the Hurst exponent using the aggregated variance method of
the fArma R library. The estimation of the real and the simulated traffic's Hurst
exponent satisfied our expectations since it resulted similar numbers, 0.57 and
0.52 respectively.

3 DDoS Detection

3.1 Brief introduction to DDoS Attacks

Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks are
attempts to make machines, and network-related resources or services (e.g.
Webserver) unavailable for its legal users.

DDoS attacks are launched by more than one hosts, but more often the attacker
uses botnets (network of zombie hosts, infected by some kind malware) and
thousands of hosts from all around the world. According to [30], in 2014 the
frequency of recognized DDoS attacks had reached an average rate of 28 per hour.

D. Csubák et al. Big Data Testbed for Network Attack Detection

 – 54 –

In this paper we focus on HTTP GET flood attacks [31]. It is an application layer
attack and in this case the attacker's hosts send seemingly legitimate HTTP GET
requests to the webserver that they aim to attack. These attacks do not use
malformed packets, or spoofing, and they require less bandwidth than other
attacks to bring down the targeted servers, but they require some understanding of
the targeted application. This type of attack is harder to detect than some others,
mainly because it uses valid HTTP GET requests, and it usually doesn’t generate
significant network traffic. These types of measurements don’t really affect DDoS
detection, that’s why we used the frequency of the page requests in our detector.

Figure 3

Packet per second rate of a generated DDoS attack

Figure 3 shows the packet per second rate of a generated DDoS attack. In this
case, we used the recorded traffic (~100 MB) of the server that was attacked by
some malicious clients between time 45 and 55, which is illustrated by higher
lines in the plot. The traffic before, and after the DDoS is normal.

3.2 Detecting DDoS attacks with Snort

Snort [32] is widely used, free and open source network intrusion detection
software. It is capable of real time traffic analysis and packet logging, and because
of its huge community, it is one of the most widely developed intrusion detection
systems in the world.

Snort has a set of rules defined by the user, and the network traffic is analysed
against these rule-sets. After the detection special actions can take place based on
what has been identified.

Snort has a built-in set of rules for DDoS detection, which could be used for
validation, but these rules were very generic, so we tried another approach.

Our approach consists of two parts:

 Analysis of a training set of normal traffic data

 Use the parameters from phase 1 to detect DDoS attacks with Snort

In the 1st phase we analysed normal traffic data for parameters which will be used
for detection. In this case we used only the packet/sec rate of the most active client
from the most loaded moment of the server. To achieve this we used a python and
the “dpkt” module (python-dpkt package on ubuntu 14.04) for “pcap” analysis.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 55 –

In the 2nd phase we used the parameter from above as a base threshold for a rate
limit-like approach. Furthermore we used a multiplier for the parameter, but its
value was decided by empirical methods for every unique case. We generated
rules for Snort, and after we started it with the given ruleset, Snort raises alerts if
any of the clients reaches the packet rate.

In the case of datasets larger than many gigabytes, it is hard to check the generated
traffic in the way we have done it in the case of Figure 3, so instead of wireshark,
we used Snort to check for DDoS attacks. Snort was able to analyze these pcap
files in reasonable time, with the method mentioned above, so we could easily
validate our generator.

Conclusions

We deeply studied the different types of web traffic, with outstanding attention to
the relation between HTTP and the many DoS/DDoS attacks. Simulations are
much cheaper, quicker and easier to use than real systems, so we considered the
need of a tool, which is able to generate valid and parametrisable HTTP traffic,
with customisable DDoS attackers.

We extended the existing NS3 with our classes, and implemented our own XML
configurable simulator and a webservice to make our simulator easy to use.

The simulator is perfect for generating hundreds of GB traffic. Since such volume
of data cannot be verified manually, we implemented a python script that is able to
generate Snort rules.

References

[1] CyberEdge: 2014 Cyberthreat Defence Report for North America &
Europe, a CyberEdge report sponsored by ForeScout Technologies, Inc.,
2014

[2] R. Lippmann, et al.: The 1999 DARPA Off-Line Intrusion Detection
Evaluation, Computer Networks 34(4) 579-595, 2000. Data is available at
http://www.ll.mit.edu/IST/ideval/

[3] Lippmann, Richard P., et al.: Evaluating Intrusion Detection Systems: The
1998 DARPA Off-Line Intrusion Detection Evaluation, DARPA
Information Survivability Conference and Exposition, 2000, DISCEX'00,
Proceedings. Vol. 2, IEEE, 2000

[4] McHugh, John: Testing Intrusion Detection Systems: a Critique of the 1998
and 1999 DARPA Intrusion Detection System Evaluations as Performed by
Lincoln Laboratory. ACM Transactions on Information and System
Security 3.4 (2000): 262-294

[5] Mahoney, Matthew V., and Philip K. Chan: An Analysis of the 1999
DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly
Detection. Recent Advances in Intrusion Detection. Springer Berlin
Heidelberg, 2003

D. Csubák et al. Big Data Testbed for Network Attack Detection

 – 56 –

[6] Hu, Vincent, et al.: An Overview of Issues in Testing Intrusion Detection
Systems (2003)

[7] Floyd, Sally, and Vern Paxson: Difficulties in Simulating the Internet.
IEEE/ACM Transactions on Networking (TON) 9.4 (2001): 392-403

[8] URL http://tcpreplay.synfin.net/

[9] URL http://www.thefengs.com/wuchang/work/tcpivo/

[10] URL http://www.postel.org/tg/

[11] URL http://www.nrl.navy.mil/itd/ncs/products/mgen

[12] URL http://rude.sourceforge.net/

[13] Avallone, Stefano, et al.: D-ITG Distributed Internet Traffic Generator.
Quantitative Evaluation of Systems, 2004, QEST 2004, Proceedings, First
International Conference on the. IEEE, 2004

[14] Avallone, Stefano, Antonio Pescape, and Giorgio Ventre: Analysis and
Experimentation of Internet Traffic Generator. Proc. of New2an (2004): 70-
75

[15] Choi, Hyoung-Kee, and John O. Limb "A Behavioral Model of Web
Traffic."Network Protocols, 1999 (ICNP'99) Proceedings Seventh
International Conference on. IEEE, 1999

[16] Pries, Rastin, Zsolt Magyari, and Phuoc Tran-Gia "An HTTP Web Traffic
Model based on the Top One Million Visited Web Pages." Next Generation
Internet (NGI) 2012 8th EURO-NGI Conference on. IEEE, 2012

[17] Leland, Will E., and Daniel V. Wilson: High Time-Resolution Measurement
and Analysis of LAN Traffic: Implications for LAN Interconnection,
INFOCOM'91, Proceedings, Tenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Networking in the 90s, IEEE,
1991

[18] Leland, Will E., et al.: On the Self-Similar Nature of Ethernet Traffic
(extended version) Networking, IEEE/ACM Transactions on 2.1 (1994): 1-
15

[19] M. E. Crovella and A. Bestavros: Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes, ACM SIGMETRICS, Vol. 24, No.
1, pp. 160-169, 1996

[20] P. Barford and M. Crovella: Generating Representative Web Workloads for
Network and Server Performance Evaluation, ACM SIGMETRICS, Vol.
26, pp. 151-160, 1998

[21] P. Barford, A. Bestavros, A. Bradley, and M. E. Crovella: Changes in Web
Client Access Patterns: Characteristics and Caching Implications, World
Wide Web, Special Issue on Characterization and Performance Evaluation,
Vol. 2, pp. 15-28, 1999

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 57 –

[22] C. R. Cunha, A. Bestavros, and M. E. Crovella: Characteristics of WWW
Client-based Traces, 1995, technical Report TR-95-010, Boston University
Computer Science Department

[23] T. Ott, T. Lakshman, and L. Wong: SRED: Stabilized RED, in IEEE
INFOCOM, 1999, pp. 1346-1355

[24] P. Barford and M. E. Crovella: A Performance Evaluation of HyperText
Transfer Protocols, in ACM SIGMETRICS, 1999, pp. 188-197

[25] Paxson, Vern, and Sally Floyd. "Wide Area Traffic: the Failure of Poisson
Modeling." IEEE/ACM Transactions on Networking (ToN) 3.3 (1995):
226-244

[26] Riedi, Rudolf H., and Walter Willinger.: Toward an Improved
Understanding of Network Traffic Dynamics. Self-Similar Network Traffic
and Performance Evaluation (2000): 507-530

[27] Bai, Xiaofeng, and Abdallah Shami.: Modeling Self-Similar Traffic for
Network Simulation. arXiv Preprint arXiv:1308.3842 (2013)

[28] P. Orenstein, H. Kim and C. L. Lau: Bandwidth Allocation for Self-Similar
Traffic Consisting of Multiple Traffic Classes with Distinct Characteristics,
IEEE GLOBECOM 2001, Vol. 4, pp. 2576-2580, December 2001

[29] Karagiannis, Thomas, Mart Molle, and Michalis Faloutsos.: Long-Range
Dependence Ten Years of Internet Traffic Modeling. Internet Computing,
IEEE 8.5 (2004): 57-64

[30] Preimesberger, Chris (May 28, 2014) "DDoS Attack Volume Escalates as
New Methods Emerge". Eweek

[31] Incapsula - DDoS Attack Glossary – HTTP Flood
http://www.incapsula.com/ddos/attack-glossary/http-flood.html

[32] Snort: - URL: https://www.snort.org

