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Abstract: Establishing an effective defense strategy in IT security is essential on one hand, 
but very challenging on the other hand. According to the 2014 Cyberthreat Defence Report 
[1] that involved more than 750 security decision makers and practitioners, more than 60% 
of organizations had been breached in 2013. Big data analytics in security provides the 
possibility to gather and analyse massive amounts of digital information in order to predict 
and prevent these attacks. However, since collecting the needed data in an efficient, 
complete and reliable fashion encounters problems, the industry is lacking and could truly 
benefit from a tool offering benchmark data, provided in a platform, which would allow 
gauging and improving the effectiveness of security defence algorithms. To this end in this 
paper we introduce a platform that allows one to generate large parametrized datasets of 
simulated Internet traffic consisting of the combination of attack-free and malicious 
network traffic patterns. For the simulations we use the ns3 discrete-event network 
simulator. To make the resulting dataset appropriate for intrusion detection system 
benchmarking purposes we investigate the statistical characteristics of normal and 
intrusive traffic patterns. Finally we present a use case in which we validate our results. 
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1 Introduction and Background 
Internet traffic simulation has long been important for network intrusion detection 
experiments. For testing the efficiency of a newly developed algorithm, 
researchers are in need of an environment in which tests of an intrusion detection 
system can be performed. The produced dataset should contain attack-free 
background traffic as well as intentionally inserted malicious traffic. Many of the 
intrusion detection evaluation experiments have been conducted on proprietary 
datasets that are hard to access (due to privacy concerns) and hinder reproducible 
research. A great effort has been made to reduce this problem in 1998 and 1999 by 
MIT Lincoln Laboratory, under Defense Advanced Research Projects Agency 
(DARPA) and Air Force Research Laboratory (AFRL/SNHS) sponsorship, when 
they created the IDEVAL benchmark datasets [2-3]. To generate a corpus they 
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followed the approach of recreating normal and attack patterns on a private 
network using real hosts, live attacks, and live background traffic. The generated 
data flow is similar to what can be seen between a small Air Force base and the 
Internet. IDEVAL has been used extensively for many years as the largest publicly 
available benchmark for intrusion detection system (IDS) performance evaluation, 
although in 2000 McHugh [4] has reported some issues about it, such as the lack 
of comparison of the benchmark data and real data. His suspicion that the dataset’s 
statistical characteristics differ from live network traffic was later confirmed by 
Mahoney et al. [5] in 2003. 

Typically there are four approaches to use background traffic in IDS testing: using 
no background traffic, using real traffic, using sanitized traffic and using simulated 
traffic [6]. When the tests are conducted without using background traffic as a 
reference condition, the IDS's hit rate can be determined, but nothing can be said 
about the false positive rate. Another drawback of this scheme is the assumption 
that the presence or the absence of background traffic does not change the 
performance of the system being analysed. Injecting attacks in real background 
traffic can overcome this difficulty, although, usually these experiments use a 
small set of victim machines, the data may contain malicious traffic or anomalies 
specific to the network, and even privacy concerns may arise. Sanitizing the real 
traffic by removing any sensitive data (for example using only the TCP headers) 
can reduce privacy problems, but it also can lead to unrealistic scenarios if too 
much data is removed, or it can unintentionally cause privacy risk if sanitization 
fails. 

Using simulated traffic can overcome many of the above mentioned problems. It 
can be freely distributed without privacy concerns and it surely does not contain 
any unexplored attack. Another advantage is that the generated traffic can be later 
replayed to repeat the experiment. However, providing a testbed environment that 
is able to preserve all the important characteristics of real life Internet traffic is a 
great challenge. In [7] Floyd and Paxon present a detailed description of these 
simulation difficulties that are mainly present due to the heterogeneity and the 
rapid change of the Internet. 

In the literature we can find basically two ways of network traffic generation. One 
of them is trace-based generation, where the generated traffic is the replication of 
some previously recorded real traffic traces. Generators like this for example are 
TCPReplay [8] and TCPivo [9]. The other solution is the analytical model-based 
approach. It this scheme, the generation is based on statistical models. Some 
widely used solutions like this are: 

Traffic Generator (TG) that is capable to generate constant, uniform, exponential 
on/off UDP or TCP traffic [10]. 

MGEN is both a command line and GUI traffic generator. It provides programs for 
sourcing/sinking real-time multicast/unicast UDP/IP traffic flows [11]. 
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RUDE/CRUDE: RUDE stands for Real-time UDP Data Emitter and CRUDE for 
Collector for RUDE. RUDE is a small and flexible program that generates traffic 
to the network, which can be received and logged on the other side of the network 
with the CRUDE. Currently these programs can generate and measure only UDP 
traffic [12]. 

Distributed Internet Traffic Generator (D-ITG) is a platform capable to produce 
traffic that accurately adheres to patterns defined by the inter departure time 
between packets and the packet size stochastic processes [13]. 

Internet Traffic Generator (ITG) allows the reproduction of TCP and UDP traffic 
and to accurately replicate appropriate stochastic processes for both Inter 
Departure Time and Packet Size random processes. ITG achieves performance 
comparable to that of RUDE/CRUDE, but additionally it makes available a greater 
number of traffic source types [14]. 

2 Our Network Traffic Generator 
Our goal was to build a parametrizable tool that is able to generate realistic attack 
free HTTP traffic combined with DDOS attack traffic. To this end, we used the 
widely known NS3 event based network traffic generation tool as the basic 
environment. Since there is no generally accepted definition about how HTTP 
traffic has to be like, different servers have different user habits (e.g. Facebook is 
checked several times a day, while news are usually read in work after lunch) we 
tried to make our solution as configurable as possible. 

Our background traffic generation model relies on the work of Choi and Limb 
[15]. This is one of the most wildly used traffic generation models. According to 
their study, a web browsing user can be described by an on-off process. The “on” 
stage starts as soon as the user requests a web page. Upon a request the main 
object is downloaded that contains the basic structure of the web page and the 
links to inline objects. The main object is followed by the inline objects that 
actualize the embedded content of the page, these can be scripts, images, etc. The 
“on” stage ends when all the elements of the requested page are downloaded. After 
that, a silent “off” stage takes place while the user is reading the retrieved content. 
Although the basic concept is still viable, the exact measurements of HTTP traffic 
made by Choi and Limb are considered obsolete because since the time of their 
research the nature of web traffic went through a significant change. The 
appearance of social networks and multimedia streaming, the more complex 
structure and the new services of web pages required new measurements to better 
describe web browsing behaviour. The actual measurements we relied on for 
DDOS detection system evaluation in Section 3 were conducted by Pries et al. in 
[16]. The presented results are based on the top one million visited web pages. The 
settings that we used are presented in Table 1. 
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Table 1 

HTTP model parameters 

Parameter Best fit 

Main object size Weibull (28242.8,0.814944) 

Number of main objects Lognormal μ = 0.473844; σ = 0.688471 

Inline object size Lognormal μ = 9.17979; σ = 1.24646 

Number of inline objects Exponential μ = 31.9291 

Reading time Lognormal μ = 0.495204; σ = 2.7731 

Several calculations have been made about the content of the configuration, as we 
wanted to keep it simple, yet customisable enough to fulfil any need of HTTP 
traffic. The resulted bunch of options is detailed in Table 2. 

Table 2 

Simulation parameters 

numOfNodes 
The number of nodes in the simulation, this 
includes the server and the dos clients as well 

numOfDosClients 
The number of nodes that will generate DoS traffic 
instead of general client behaviour 

startTime 
This parameter shows in which simulated second 
the clients start their work (does not affect DoS 
clients) 

endTime Which simulated second the clients stop their work 

dosStartTime 
Which simulated second the DoS clients start their 
work 

dosStopTime 
Which simulated second the DoS clients stop their 
work 

serverPort 
Number of port which the server listens on, and 
clients connect to 

dataRate Global link speed 

delay 
Number of seconds required for the first bit of a 
packet to arrive at the destination host 

packetLoss 
The probability that a packet gets lost while 
transferring 

inlineObjectSizeLogNormalVariable 
Due to studies [16] the number of inline objects in 
a mainline object is a Lognormal random variable. 
This variable's two parameter can be set in. 
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npageRequestsLogNormalVariable 
Due to studies [16] the time between two mainline 
object requests is a Lognormal random variable. 
This variable's two parameter can be set in. 

dosClient/ 
pageRequestsLogNormalVariable 

The same as above, but it refers to DoS clients 

avgClicks 
sleepTimeBetweenClickings 

These parameters work together. Legal clients after 
the set number of average clicks will not request 
any other object for an average of 
SleepTimeBetweenClickings seconds. 

A key in our data generator is to make it easy to use. We integrated our solution 
into a minimalistic web service, which results in a user friendly interface where 
without installing anything, a click is enough to start the simulation, and be able to 
download your results. This solution also, disencumbers our developer computers 
and puts the load to dedicated servers. 

Since ns3 compiles for quite a long time, we wanted to give a solution which does 
not require recompilation too often but also stays parametrizable. Not just to 
fasten the simulations but to provide an easy summation of possible parameters, 
we implemented a configuration parser, which works with an XML file, and 
therefore does not require recompilation after a parameter changes. 

2.1 Case Study 

To show that our solution is easily configurable to generate any type of network 
traffic we simulated our local web server, and generated simulated data with the 
attributions of the original. In this section we are going to discuss the details of 
this experiment. 

To gather a fair amount of real network data we monitored all the packets received 
by our local web server, for about a month-long period. Figure 1 shows the 
frequency of page requests that arrived at our server during the monitored time 
interval. 

 

Figure 1 

Main object requests per second in the real data 
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To estimate the necessary parameters for the simulation we filtered the data for the 
http requests. We used R's “fitdstrplus” library to give the best estimation for the 
distribution of the time between two main object requests, the average number of 
consecutive main object requests and for the “sleepTimeBetweenClickings” that 
corresponds to the time between two visits of the same client to the web page. The 
results are presented in Table 3. 

Table 3 
Parameter estimates 

Parameter Best fit 

MainpageRequests Exponential μ = 857.5256 

avgClick Pareto mean = 5; shape = 1.1; bound = 20 

sleepTimeBetweenClickings Exponential μ = 20696.83 

Figure 2 shows the frequency of the page requests in the simulated traffic with the 
above configuration. 

 

Figure 2 
Main object requests per second in the simulated data 

2.1.1 Self-Similarity and Long-Range Dependence 

The distribution of traffic on the Internet commonly exhibits self-similarity. The 
first observation of the phenomena was made by Leland and Wilson [17]. They 
commented in detail on the presence of “burstiness” across an extremely large 
range of time scales in the data collected at Bellcore Morristown Research and 
Engineering Center on several Ethernet LANs. The first statistically rigorous 
analysis was made in 1994 by Leland et al. [18] on the same dataset. Their 
research pointed out that the Ethernet LAN traffic is self-similar, irrespective of 
where and when the data were collected in the network. They showed that the 
Hurst parameter better describes the fractal-like nature of the traffic and able to 
capture its “burstiness”, when other methods (the index of dispersion, the peak-to-
mean-ratio or the coefficient of variation for inter arrival times) fail to do so. Their 
observations have been supported by later research and their findings have led the 
research community to make significant efforts towards developing appropriate 
mathematical and statistical techniques that provide a network-related 
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understanding of the observed self-similar scaling behaviour [19-26]. A 
mathematical description of self-similarity used by Bai and Shami in 2013 [27, 
28] for network traffic simulation is the following: 

Let Xi (i = 1, 2, …) be an increment process and Xj
(m) (j = 1, 2, …) be another 

process, which is obtained by averaging the values in non-overlapped blocks of 
size m in Xi, i.e.: 

X j
(m)=

1
m

(X jm−m+ 1 +Xjm−m+ 2+…+X jm).  (1) 

The process Xi is said self-similar if Xj
(m) is similar in distribution to  mH-1Xi, 

where m (m ≥ 1) is the scale parameter and H is the Hurst exponent. In a more 
understandable form it implies: 

Var (X j
(m ))=m2 H− 2 Var(Xi).   (2) 

Another wildly researched characteristic of network traffic is long-range 
dependence (LRD). Its discovery in network traffic, has fundamentally changed 
the conventional wisdom by stating that the correlation of packet inter arrivals 
decays slower than in traditional traffic (e.g., Markov) models. LRD and self-
similarity are strongly related. From the definitions of [29] we use the inference 
that LDR characterizes a time series if it holds for the Hurst exponent H that 0.5 < 
H ≤ 1. As H approaches 1, the dependence becomes stronger. 

During background traffic generation we found it important to test if the simulated 
data preserved the LRD characteristics of the real data. To test LRD of the packet 
arrivals we estimated the Hurst exponent using the aggregated variance method of 
the fArma R library. The estimation of the real and the simulated traffic's Hurst 
exponent satisfied our expectations since it resulted similar numbers, 0.57 and 
0.52 respectively. 

3 DDoS Detection 

3.1 Brief introduction to DDoS Attacks 

Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks are 
attempts to make machines, and network-related resources or services (e.g. 
Webserver) unavailable for its legal users. 

DDoS attacks are launched by more than one hosts, but more often the attacker 
uses botnets (network of zombie hosts, infected by some kind malware) and 
thousands of hosts from all around the world. According to [30], in 2014 the 
frequency of recognized DDoS attacks had reached an average rate of 28 per hour. 
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In this paper we focus on HTTP GET flood attacks [31]. It is an application layer 
attack and in this case the attacker's hosts send seemingly legitimate HTTP GET 
requests to the webserver that they aim to attack. These attacks do not use 
malformed packets, or spoofing, and they require less bandwidth than other 
attacks to bring down the targeted servers, but they require some understanding of 
the targeted application. This type of attack is harder to detect than some others, 
mainly because it uses valid HTTP GET requests, and it usually doesn’t generate 
significant network traffic. These types of measurements don’t really affect DDoS 
detection, that’s why we used the frequency of the page requests in our detector. 

 
Figure 3 

Packet per second rate of a generated DDoS attack 

Figure 3 shows the packet per second rate of a generated DDoS attack. In this 
case, we used the recorded traffic (~100 MB) of the server that was attacked by 
some malicious clients between time 45 and 55, which is illustrated by higher 
lines in the plot. The traffic before, and after the DDoS is normal. 

3.2 Detecting DDoS attacks with Snort 

Snort [32] is widely used, free and open source network intrusion detection 
software. It is capable of real time traffic analysis and packet logging, and because 
of its huge community, it is one of the most widely developed intrusion detection 
systems in the world. 

Snort has a set of rules defined by the user, and the network traffic is analysed 
against these rule-sets. After the detection special actions can take place based on 
what has been identified. 

Snort has a built-in set of rules for DDoS detection, which could be used for 
validation, but these rules were very generic, so we tried another approach. 

Our approach consists of two parts: 

 Analysis of a training set of normal traffic data 

 Use the parameters from phase 1 to detect DDoS attacks with Snort 

In the 1st phase we analysed normal traffic data for parameters which will be used 
for detection. In this case we used only the packet/sec rate of the most active client 
from the most loaded moment of the server. To achieve this we used a python and 
the “dpkt” module (python-dpkt package on ubuntu 14.04) for “pcap” analysis. 
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In the 2nd phase we used the parameter from above as a base threshold for a rate 
limit-like approach. Furthermore we used a multiplier for the parameter, but its 
value was decided by empirical methods for every unique case. We generated 
rules for Snort, and after we started it with the given ruleset, Snort raises alerts if 
any of the clients reaches the packet rate. 

In the case of datasets larger than many gigabytes, it is hard to check the generated 
traffic in the way we have done it in the case of Figure 3, so instead of wireshark, 
we used Snort to check for DDoS attacks. Snort was able to analyze these pcap 
files in reasonable time, with the method mentioned above, so we could easily 
validate our generator. 

Conclusions 

We deeply studied the different types of web traffic, with outstanding attention to 
the relation between HTTP and the many DoS/DDoS attacks. Simulations are 
much cheaper, quicker and easier to use than real systems, so we considered the 
need of a tool, which is able to generate valid and parametrisable HTTP traffic, 
with customisable DDoS attackers. 

We extended the existing NS3 with our classes, and implemented our own XML 
configurable simulator and a webservice to make our simulator easy to use. 

The simulator is perfect for generating hundreds of GB traffic. Since such volume 
of data cannot be verified manually, we implemented a python script that is able to 
generate Snort rules. 
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