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Abstract: The automated assessment of ultrasound images for speech processing is a 

difficult process. The number of frames processed, amounts to several hundred thousand, 

this makes assessment nearly impossible to process manually. Tongue contour tracking is 

indispensable for the dynamic modelling of articulation. The difficulty of the task lies in the 

fact that the images have a noisy background and the contour curve is discontinuous. An 

algorithm based on dynamic programming has been developed to track the movement of 

the back of the tongue. With an extreme size edge enhancing and averaging construction, 

the procedure addresses the problems of break of discontinuity and noise, simultaneously. 

In the image obtained after smoothing, the brightest curve is sought, from the left to the 

right edges of each image. The points of the curve thus obtained, follow the uneven line of 

the tongue contour. To smooth the curve, filtering based on Discrete Cosine 

Transformation (DCT) is applied. With the appropriate selection of universal parameters 

and processing the signals of several speakers in an identical way, the accuracy of edge 

detection can be enhanced considerably. We have optimized and qualified the results, 

comparing them with manual contour tracking. The accuracy of contour tracking may be 

improved by applying speaker-specific adjustments. The results of this analysis define 

temporary data for articulation key frames for visual speech synthesis (a talking head). 

Beyond the static analysis, we also investigate the trajectories of articulation features over 

time. We refined our previously created dynamic model, in order to construct a full dataset 

for the articulation. 

Keywords: ultrasound imaging; tongue contour tracking; dynamic programming; image 

preprocessing; visual speech synthesis 

1 Introduction 

Several studies reliably prove that the visual information obtained involving the 

physiological processes of human speech, greatly promotes the understanding of 

the complex mechanism of speech formation, and through this, the efficient 

development of speech synthesis methods [1]. Radiological and monitoring 
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processes currently available, like magnetic resonance imaging (MRI), computer 

tomography (CT), ultrasound, electropalatography (EPG), electromagnetic 

articulography (EMA) or electroglottography (EGG) are indispensable in getting 

to know the dynamic features of articulation. Using the morphological and 

geometric data obtained with the help of imaging techniques, it is possible to 

explore the articulatory movements belonging to a particular speech sign, which is 

of crucial importance in parametrizing a talking head, imitating articulation. In 

this research quantitative data from a series of MRI and ultrasound images have 

been derived. Thus, we provided appropriate parameters for our animation 

algorithm. The main feature of this application is to show the tongue movements 

in a transparent-faced talking head training to improve the speech production of 

deaf and hard of hearing children. Such a system can well be used in, for example, 

speech therapy, in the elaboration of non-native language learning training or in 

the construction of synthesizers necessary to convert articulation features into 

silent speech [2] [3] [4]. 

This paper is concerned with automated tongue contour tracking on the basis of 

the processing of ultrasound images. The ultrasound is a method comfortably and 

simply accessible as in contrast to the MRI and CT equipment, limitedly available 

in medical centers, an ultrasound head fixed on a portable helmet is sufficient for 

the tests so the images and sound materials necessary for the analyses can be made 

flexibly without the speaker being adversely affected by any harmful radiation. 

The determination of the boundaries of objects may form the basis of the 

separation of objects or segmentation. Several image processing tasks are 

connected to segmentation, especially in medical imaging. Its use is widespread in 

the checking of blood vessels [5] [6] as well as in the measuring of bones [7]. The 

analysis of the changes in the brain [8], in the thyroid nodules [9], or the prostate 

gland [10] can be regarded as typical applications. The analysis of ultrasound 

image patches is also supported by universally applicable procedures [11] [12] 

[13]. 

With images taken for the purpose of speech processing, it is advantageous, that 

with ultrasound imaging, images of high resolution (almost a thousand pixels in a 

radial section) and high speed (80-85 images per second) can be made. Good 

spatial resolution is indispensable for the shape of the tongue to be displayed as 

sharply as possible while good temporal resolution supports the possibility of 

studying the rapid co-articulation changes occurring during continuous speech in a 

reliable way. It should not be left out of consideration, either, that ultrasound is 

particularly suitable for analyzing continuous speech as the time necessary for 

scanning the vocal tract is only a fragment of the time required by e.g. MRI 

imaging. However, work is made more difficult by the circumstance that in 

contrast to the MRI and CT images helping collect three-dimensional 

morphological information, ultrasound only provides information about the 

position of the tongue in the two-dimensional midsagittal plane so the contour of 

the palate and the tip of the tongue are not displayed in the image. A further 



Acta Polytechnica Hungarica Vol. 18, No. 2, 2021 

 – 161 – 

technical problem is that the surface contour of the tongue should be defined with 

the greatest possible accuracy during post-processing, which is not a trivial task. 

During our work, the processing of the ultrasound images was carried out with the 

help of our software written in a MATLAB environment, in the course of which 

an auxiliary curve was fitted on the surface of the tongue, relying on dynamic 

programming. The verification of contour tracking results was performed on the 

basis of the article by Tamás Csapó and Steven Lulich [14]. During the 

movements of the tongue, the position of the auxiliary curve changes dynamically, 

therefore such a data set was obtained the elements of which varied in both space 

and time. 

One type of procedures tracking tongue contour requires training with the 

contours manually marked in a large number of images, involving the application 

of artificial intelligence methods. The number of training images is e.g. 5,000 [15] 

or 700 radiographs and 400 ultrasound images [16]. Mozzafari et al. use 80% of 

the ultrasound frames for training [17] [18]. The accuracy of solutions not 

requiring any training usually falls behind of methods that requires machine 

learning. We have developed such a tongue contour tracking procedure not 

requiring training, the accuracy of which is competitive with that of the 

procedures requiring it. 

2 The Method of Tongue Contour Tracking 

An algorithm based on dynamic programming, has been developed herein, to track 

the movement of the back of the tongue. In the ultrasound image, tongue contour 

is created by the radiation reflected at the boundary of the tongue and the air 

above it. The curve of the back of the tongue is detected at the lower boundary of 

the bright band, thus obtained. The analysis requires several steps. First, the 

preprocessing of the image is completed. The extreme size Prewitt kernel, 

addresses the problems of break of discontinuity and noise, simultaneously. In the 

image obtained after filtering, the curve which has a maximum accrued brightness 

from the left to the right edge of the image is identified. The points of the curve 

thus obtained, follow the uneven line of the tongue contour. To smooth the curve, 

filtering based on Discrete Cosine Transformation (DCT) is applied. The 

smoothing of the curve improves the continuity of the contour and makes 

comparison possible with the results of manual contour detection. 

2.1 Preprocessing Steps 

As a first step, the image is resampled forming radial sections starting from the 

center of a circle. By arranging the sections thus obtained in a Cartesian column 

graph, a matrix is gained. Sampling performed by quarter degree has been arrived 
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at through experience so that there should not be a bigger difference than two 

pixels between the neighboring columns in the contour. Figure 1 a) shows the 

detection of the center of the circle and the line of the radial sections. For the sake 

of clarity, sections are only represented by five degrees. The matrix obtained after 

sampling is shown in Figure 1 b). 

 
a) b) 

Figure 1 

a) Radial ultrasound image                                     b) Column graph after resampling 

Moving top-down, in a column of the image, a falling edge is searched for, where 

brightness decreases. In image processing, search for edges is made through 

examining the variation of the brightness of pixels and developing differences. 

With noisy images, however, enhancing differences leads to the improvement of 

noise. Noise removal and search for edges may be performed in one step in the 

way that the difference in brightness is not developed pixel by pixel but brightness 

is averaged for a bigger patch – thus noise reduction is performed – and the 

difference is developed for another patch of similarly averaged brightness. 

 
         K1                  K2                  K3 

 

Figure 2 

Prewitt kernels performing averaging and edge detecting for edges of different directions (above). 

Weighting functions of tri-directional edge enhancement (below). 

W2 W3 W1 
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In the top part of Figure 2, 12x12 pixel Prewitt kernels can be seen. Black stands 

for -1, white for +1 and grey for 0. The kernel performs averaging on the patch 

covered by the white area and then subtracts the mean of the patch marked with 

black from it. (The 1/144 multiplier to be applied for leaving the dynamic range 

unchanged is not included in the figure.) By applying the kernel (convolution), the 

difference between the averaged brightness of the two patches is obtained for a 

pixel of the image. Among the edge enhancement procedures, the Prewitt kernel 

proved to be the most effective in simultaneously handling noise and 

discontinuity. It can be observed in the ultrasound images, that on the left side of 

the image, the edges of the tongue contour are close to the direction of the minor 

diagonal of an imaginary square matrix, they are horizontal in character in the 

center of the image while on the right side of the image, they approximate the 

direction of the main diagonal. For each column, the result of the convolution 

performed with three kernels is weighted with the functions that can be seen in the 

bottom part of Figure 2. (W1: quarter-wave cos
2
, W2: full-wave raised -cos, W3: 

quarter-wave sin
2
. We have not examined any other weighting functions.) As a 

result, on the left side of the image, the edge enhancement performed with kernel 

K1, in the middle that performed with kernel K2 and on the right side that 

performed with kernel K3 is given greater weight. In the three weighted edge 

enhancement matrixes, the maximum is searched for each pixel, which is regarded 

to be the edge marker for each pixel. In comparison with W2, the weighting of W1 

and W3 has been developed as a result of optimization. 

After resampling, it is useful to apply vertical offset with the mean of the tongue 

contour measured in a lot of images in each column (Figure 3 a)). This step has a 

double role. 

1) The slope range of the edges decreases and thus the efficiency of edge 

enhancement improves. 

2) The area of the tendon, which might often lead to false edges, is shifted 

out of the image (see the thin white patch in the bottom third of image a) 

Figure 3). 

The white band that can be seen at about row 350 of part a), Figure 3 is caused by 

the reflection of the tendon. 

 

Figure 3 

a) Offset column graph                                b) The area to be processed 
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After this, it becomes possible to detect the region of interest (ROI) (Figure 3 b). 

The axes of the figure indicate the row number of the pixels and the serial number 

of the column. 

Performing convolution with the kernels in Figure 2 after the application of the 

relevant weighting, the edge enhancements distinguished by direction in Figure 4 

are obtained. In Figure 4 a), weighting enhances the left side of the image 

suppressing the right side and reinforcing the edges close to the direction of the 

minor diagonal. In Figure 4 b), the center of the image is enhanced, keeping the 

edges of the horizontal direction at the edge of the image, as well. In Figure 4 c), 

the weighting reinforces the edges characteristic of the right side of the image, 

close to the direction of the main diagonal, attenuating the false edges that may be 

obtained on the left side of the image. Figure 4 d) shows the edge marker derived 

by forming the maximum pixel by pixel. 

In part d) of Figure 4, especially in the third of the image on the left, the edge 

marker does not show continuity. We may improve continuity with a further 

averaging filter (11 x 11 matrix). Figure 5 shows the results. 

 
a) b) 

 
c) d) 

Figure 4 
The result of edge enhancement after the convolution performed with kernels 

a) K1 

b) K2 

c) K3 
d) The unified edge marker 
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In the image thus obtained, the curve with the highest cumulated brightness is 

searched for from the left to the right edge of the image. 

 

Figure 5 

The image of edge enhancement with improved continuity, obtained after further averaging 

The algorithm of dynamic programming has free end-to-end connectivity so it 

may start at any row of the first column and may end at any row of the last 

column. The cumulated sum should be defined for each pixel, moving from left to 

right. Cumulated brightness and the information from which pixel it has been 

accessed should be stored in each pixel. Therefore, it is examined for each pixel, 

which of the altogether five pixels among those in the preceding two rows and the 

following two rows in the previous column has the greatest cumulative brightness. 

You get the maximum brightness of the pixel being examined if the brightness of 

it is added to this sum. If you move on from the previous one or two rows of the 

previous column of the matrix representing the image, you go one or two rows 

downwards. If you obtain the maximum moving on from the following one or two 

rows of the preceding column, you go one or two rows upwards. You move on 

horizontally in the same row. If you find the maximum of the last column, the 

curve of the tongue contour may be reverse-engineered from this pixel. In Figure 

6, the tongue contour detected in the column graph is indicated with white dots. 

 

Figure 6 

Uneven tongue contour obtained in the column graph 
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Figure 7 shows the contour projected back on the radial figure. The curve obtained 

follows the unevenness of the edge. The curve may be filtered with discrete cosine 

transformation. The smoothed curve is indicated with a line of white dots. 

 

Figure 7 

The uneven (thin grey) curve and the smoothed (thick, white) contour projected back on the radial 

image, enlarged 

2.2 Parameter Initialization 

In the ultrasound image, inaccuracy is not manifested in a little displacement of 

the edges but in some sections of the tongue contour, the search algorithm “gets 

lost” and finds an alien edge the brightest. Figure 8 gives examples for both 

correct and false edge detection, indicated the tongue contour found with a white 

curve. 

 
a) b) 

Figure 8 

a) Correct                                                      b)  False edge detection (< shift) 

In our procedure, the success of edge detection is influenced by four parameters: 

1) The size of the edge enhancing kernel. 

2) The weighting of W1 for the edges parallel with the minor diagonal. 
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3) The weighting of W3 for the edges parallel with the main diagonal.  

4) The size of the smoothing kernel. 

These features can be changed independently. The right size kernel results in more 

spectacular weighted edges that yields the most highlighted edge after smoothing. 

The optimization has been performed with a comparison with manual contour 

detection. 

2.3 Extending the Method to the Processing of MRI and CT 

Images 

The procedure described is not only suitable for the processing of ultrasound 

images but the borderlines of the objects may be detected with it in images 

obtained with other imaging procedures, too. During the processing of the MRI 

and CT images, the difference is only that resampling is performed with a 

different center and radius, and moving upwards from the bottom, in contrast to 

ultrasound images it is not increasing (rising edge) but decreasing (falling edge) 

brightness transitions that are searched for. Part a) of Figure 9 shows the original 

MRI image while in Figure b), the radiuses of the radial resampling can be seen. 

(For the sake of traceability, radiuses are plotted by 10° while resampling is 

performed by 1°.) 

 

a) b) 

Figure 9 

a) The original MRI image                                           b) Resampling radiuses 

In image a), Figure 10, the resampled image is shown spread in the Cartesian 

coordinate system The detected contour is indicated with white dots. In Figure b), 

tongue contour can be traced projected back on the original image. 
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a) b) 

Figure 10 

a) The spread image with the white contour      b) The tongue contour detected in the original image 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

Figure 11 

a) CT image      b) The enlarged area of the tongue with the white contour 

 

Steps of the applied contour tracking procedure: 
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3 Results 

The verification of the results of tongue contour tracking was performed on the 

same set of ultrasound images on which Tamás Csapó and Steven Lulich [14] had 

compared contour tracking processes. Two female (F1, F2) and two male speakers 

(M1, M2) said the sentence ‘I owe you a yoyo’ twice, one after the other, in the 

recording. Figure 12 shows the variation in the tongue contour sharpness of the 

four speakers. 
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Figure 12 

Ultrasound images of the four speakers in the middle of the first ‘o’ sound of the word ‘yoyo’ (From 

left to right: top: F1, F2, bottom: M1, M2) 

It can clearly be seen that the sharpness of tongue contour is different for the four 

speakers. The success of manual and automatic contour tracking is strongly 

influenced by edge visibility. Csapó and Lulich [14] performed manual contour 

detection with seven volunteers. Mean Absolute Error was used to characterize 

manual contour detection (Table 1). The table confirms the visual qualification of 

the tongue contours in Figure 5. During the assessment of automatic tongue 

contour detection, the accuracy that can be expected depends on image quality, 

which can be characterized with the mean error of manual processing. 

Table 1 

Mean absolute error of manual contour detection (mm) 

Speaker F1 F2 M1 M2 

Mean Absolute Error 0.95 1.09 1.17 2.11 

Four free access methods were tested for automatic contour tracking. The best 

result was yielded by the AutoTrace3.5 setting. Images were divided into two 

parts, so that the sample sentence appeared once in every series of images. The 

two samples of the four speakers yield altogether eight series of images. In the 

case marked as AutoTrace3.5, training samples were represented by the average of 

the manual contour detections of seven image series and testing was performed on 

the eighth image series. When the speaker’s own image series was not involved in 

the training (AutoTrace3 but six image series from the other three speakers were 

used for training and the speaker’s own two image series were used for testing), 

the accuracy of contour tracking deteriorated drastically. Table 4 includes the 

Root Mean Square Error (RMSE) values for the different procedures. Averaging 

was performed on the logarithm of square error, and then the result was restored 

with an exponential function (logRMSE). Data are given in mm, in the 

enlargement applied in the images, 1 mm = 4.24 pixels. 
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In our approach, with optimizing the parameters of the proposed contour tracking 

algorithm, we strove for a universal setting: the four features listed in Section 2.2 

are identical for all the four speakers. This is presented next. 

Table 2 

logRMS error in contour tracking with the universal setting (mm) 

Speaker F1 F2 M1 M2 Mean 

logRMS error 0.66 0.88 1.10 2.13 1.19 

As an example, Figure 14 shows the impact of the size of the smoothing filter, 

apparently influencing the accuracy of contour tracking considerably. 

 

Figure 13 

Mean error for each speaker and for the mean of the four speakers as a function of the size of the 

smoothing screen 

With the setting yielding the smallest mean error, 11x11 pixels was the optimum 

size of the edge enhancing Prewitt kernel and 2.5 was the value of W1 and W2 

weighting. As Figure 13 testifies, for the four speakers, the optimum size of the 

smoothing filter ensuring the smallest mean error, regarding the average of the 

four speakers, was 14x14 pixels (vertical line). 

Performing the optimizing of parameters for each speaker after this, we obtained 

individual, speaker-specific settings with the speaker-specific selection of the edge 

enhancing kernel and the smoothing kernel. The result can be further improved by 

the individual setting of W1 and W2 weighting. Table 3 shows logRMS errors 

obtained with optimum settings for each speaker. The speaker selected for 

optimization is indicated in the ’Reference’ column. 

Table 3 

logRMS error of contour tracking with the individual settings (mm) 

Reference F1 F2 M1 M2 Mean 

F1 0.55 0.91 1.12 2.45 1.26 

F2 0.91 0.80 1.05 2.65 1.35 

M1 0.75 0.81 1.02 2.51 1.27 

M2 0.79 1.17 1.31 1.94 1.30 
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As regards the optimum size of the edge enhancing kernel, there was no 

considerable difference between the speakers. W1 weight had to be increased for 

speaker F1 and W2 weight for speakers F2 and M2. For the size of the smoothing 

kernel, for speaker F1 the optimum proved to be 11x11 pixels, for speakers F2 and 

M1 10x10 pixels and for speaker M2 24x24 pixels. The optimum values of 

universal parameters lie between the individual optimum values. 

Table 4 

logRMS errors of automatic contour tracking (mm) 

Speaker F1 F2 M1 M2 Mean 

AutoTrace3 5.85 7.06 5.59 9.94 7.11 

EdgeTrak 1.95 3.46 1.89 5.15 3.11 

TongueTrack 1.96 3.15 2.76 3.6 2.87 

AutoTrace3.5 1.15 1.93 1.78 2.19 1.76 

Proposed 0.55 0.80 1.02 1.94 1.08 

Logarithm formation compresses the dynamic range with the weight of 

outstandingly high errors decreasing. 

Figure 14 shows the values of Table 4 in graphic representation. 

 

Figure 14 

logRMS errors of the specific contour tracking procedures 

Table 5 presents the different means of the errors in proposed contour tracking as 

compared with the mean of manual contour detection (logRMSE, linear RMSE, 

Mean Absolute Error). 

Table 5 

Different errors in proposed contour tracking (mm) 

Speaker F1 F2 M1 M2 Mean 

logRMSE 0.55 0.80 1.02 1.94 1.08 

linRMSE 0.63 0.99 1.24 2.36 1.31 

Mean Absolute Error 0.33 0.41 0.45 0.64 0.46 
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It is a significant result that our tongue contour tracking algorithm based on 

dynamic programming yielded a smaller error than the other procedures tested by 

Csapó and Lulich [14]. The mean error calculated for the four speakers also 

proved to be the smallest with the method developed by us. In addition, with the 

AutoTrace3.5 application, having proved the best, contour detection requires 

training. Researchers have not examined the number of training samples necessary 

for a reliable result. Our method, based on dynamic programming, only requires 

the detection of the region of interest to avoid false edges. 

As regards manual contour tracking, own logRMSE values for speakers F1 and F2 

are better than that of each assessor. For speaker M1, 2 manual assessors out of 

the seven gave a better result and five worse than the ones designated as 

’proposed’. With speaker M2, two assessors tracked tongue contour with a smaller 

while a third with identical error and four assessors achieved weaker tracking. 

In lack of the set of images examined, we are unable to compare our proposed 

results with other published data, furthermore, the measures of accuracy are 

different. Mean Sum of Distance (MSD) is an often applied distance measure, 

especially for curve pairs with different indexing. For each point, the formula 

takes into account the nearest point in the other curve. 

D(U, V) =
1

m
∑

min

j

m

i=1

|ui − vj| +
1

n
∑

min

j

n

i=1

|vi − uj| 
(1)

 

In calculating the absolute error in Table 6, we considered radial distances but 

nothing guarantees that this is also the nearest point. This way, the absolute error 

calculated by us cannot be smaller than MSD. 

In the relevant literature, Zhu et al. [15] specify the most favorable MSD error as 

0.85 mm. Xu et al. [19] obtained 0.87 mm MSD error for the most precisely 

tracked speaker. For ultrasound contour tracking, [20] reported an absolute error 

of 0.5 mm. Without providing the distance measure, Tang et al. [20] tracked 

tongue contour with a 3 mm mean error. Mozaffari et al. [17] published 0.91 and 

[18] 0.61 mm MSD errors. Jaumard-Hakoun et al. [22] reported a 0.67 mm MSD 

error. Roussos et al. [16] gave the RMS error of contour tracking in a graphic 

form, which shows a minimum 1.5 mm as can be read in the relevant figure. 

The description of tongue contour and the assessment of its data, cannot yet be 

regarded to be completely elaborated [23]. The results closest to the mean of 

manual detection were obtained by using the first seven coefficients of the discrete 

cosine transformation used for contour smoothing. Consequently, the complete 

tongue contour can be characterized with seven data but it is difficult to connect 

DCT coefficients with the geometric data. The detailed analysis of tongue 

contours requires further investigations. 

 

 



L. Czap  Impact of Preprocessing Features on the Performance of  
 Ultrasound Tongue Contour Tracking, via Dynamic Programming 

 – 174 – 

Conclusions 

In the field of speech processing, it is an immense advantage of the ultrasound 

imaging systems, of being suitable for tracking rapid movements, image and 

sound synchronization and it presents only a minimum inconvenience to the 

speaker, who is also not affected by any harmful radiation. Its disadvantage is that 

it does not provide a full three-dimensional image, but only shows either a 

longitudinal or transverse section and the tip of the tongue cannot be seen. The 

longitudinal (midsagittal) section is the most suitable for tracking tongue 

movements. 

In the course of preprocessing, we simultaneously cope with the problems of edge 

enhancement and noise removal, which are two contradicting required goals. The 

parameters of the pre-processing steps are of decisive importance. With their 

appropriate selection, contour tracking accuracy, surpassed all the other 

procedures investigated. Performance can be improved further with the 

application of speaker-specific settings. The results show that the analysis of the 

articulation on the basis of ultrasound images not only makes it possible to define 

the static data of tongue position but also offers the opportunity to perform a 

dynamic description of tongue movements [24]. 

Ultrasound and MRI tongue contour analysis has paved the way for the 

designation of a new research direction. We explore the possibility of combining 

the benefits of the two imaging methods: Good spatial and temporal resolution of 

the ultrasound recordings and the three dimensional representations of the tongue, 

by MRI imaging. 
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