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Abstract: The irregularity of a graph can be defined by different so-called graph
topological indices. In this paper, we consider the irregularities of graphs with re-
spect to the Collatz-Sinogowitz index [8], the variance of the vertex degrees [6],
the irregularity of a graph [4], and the total irregularity of a graph [1]. It is known
that these irregularity measures are not always compatible. Here, we investigate the
problem of determining pairs or classes of graphs for which two or more of the above
mentioned irregularity measures are equal. While in [17] this problem was tackled
in the case of bidegreed graphs, here we go a step further by considering tridegreed
graphs and graphs with arbitrarily large degree sets. In addition we pressent the
smallest graphs for which all above irregularity indices are equal.
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1 Introduction

Let G be a simple undirected graph of order n = |V (G)| and size m =
|E(G)|. The degree of a vertex v in G is the number of edges incident with
v and it is denoted by dG(v). A graph G is regular if all its vertices have
the same degree, otherwise it is irregular. However, in many applications and
problems it is of big importance to know how irregular a given graph is.
The quantitative topological characterization of irregularity of graphs has a
growing importance for analyzing the structure of deterministic and random
networks and systems occurring in chemistry, biology and social networks [7,
12]. In this paper, we consider four graph topological indices that quantify
the irregularity of a graph. Before we introduce those indices, we present
some necessarily notions and definitions.
A universal vertex is the vertex adjacent to all other vertices. We denote
by mr,s the number of edges in G with end-vertex degrees r and s, and by
nr the numbers of vertices n G with degree r. Numbers mr,s and nr are
referred as the edge-parameters and the vertex-parameters of G, respectively.
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The mean degree of a graph G is defined as d(G) = 2m/n. Graphs G1 and G2

are said to be edge-equivalent if for their corresponding edge-parameters sets
{mr,s(G1) > 0} = {mr,s(G2) > 0} holds. Analogously, they are called vertex-
equivalent if for their vertex-parameters sets {nr(G1) > 0} = {nr(G2) > 0}
is fulfilled.
A sequence of non-negative integers D = (d1, d2, . . . , dn) is said to be graph-
ical if there is a graph with n vertices such that vertex i has degree di. If
in addition d1 ≥ d2 ≥ · · · ≥ dn then D is a degree sequence. The degree set,
denoted by D(G), of a simple graph G is the set consisting of the distinct
degrees of vertices in G.
The adjacency matrix A(G) of a simple undirected graph G is a matrix
with rows and columns labeled by graph vertices, with a 1 or 0 in position
(vi, vj) according to whether vi and vj are adjacent or not. The characteris-
tic polynomial φ(G, t) of G is defined as characteristic polynomial of A(G):
φ(G,λ) = det(λIn − A(G)), where In is n × n identity matrix. The set of
eigenvalues of the adjacent matrix A(G) is called the graph spectrum of G.
The largest eigenvalue of A(G), denoted by ρ(G), is called the spectral radius
of G. Graphs that have the same graph spectrum are called cospectral or
isospectral graphs.
The four irregularity measures of interest in this study are presented next.
The first one is based on the spectral radius of graph. If a graph G is regular,
then it holds that the mean degree d(G) is equal to its spectral radius ρ(G).
Collatz and Sinogowitz [8] introduced the difference of these quantities as a
measure of irregularity of G:

CS(G) = ρ(G)− d(G).

The first investigated irregularity measure that depends solely on the vertex
degrees of a graph G is the variance of the vertex degrees, defined as

Var(G) =
1

n

n∑
i=1

d2G(vi)−
1

n2

(
n∑
i=1

dG(vi)

)2

.

Bell [6] has compared CS(G) and Var(G) and showed that they are not always
compatible. Albertson [4] defines the irregularity of G as

irr(G) =
∑
uv∈E

|dG(u)− dG(v)| .

In [1] a new irregularity measure, related to the irregularity measure by Al-
bertson was introduced. This measure also captures the irregularity only by
the difference of vertex degrees. For a graph G, it is defined as

irrt(G) =
1

2

∑
u,v∈V (G)

|dG(u)− dG(v)| .
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Very recently, irr and irrt were compared in [9].

These irregularity measures as well as other attempts to measure the irregu-
larity of a graph were studied in several works [2,3,5,13–15]. It is interesting
that the above four irregularity measures are not always compatible for some
pairs of graphs. The main purpose of this paper is to determine classes of
graphs for which two or more of the above mentioned irregularity measures
are equal.

The rest of the paper is organized as follows: In Section 2 we investigate
tridegreed graphs that have equal two or more of the above presented regu-
larity measures. In Section 3 we consider the same problem but for graphs
with arbitrary large degree sets. The smallest graphs with equal irregularity
measures are investigated in Section 4. Final remarks and open problems are
presented in Section 5.

2 Tridegreed graphs

Most of the results presented in this section are generalized in Section 3.
However, due to the uniqueness of the related proofs and used constructions,
we present the results of tridegreed graphs separately.

2.1 An infinite sequence of tridegreed graphs with same irr and
irrt indices

Proposition 1. Let n be an arbitrary positive integer larger than 7. Then
there exists a tridegreed graph with n vertices J(n) for which irr(J(n)) =
irrt(J(n)) holds.

Proof. The graph J(n) can be constructed as J(n) = Cn−3 + P3, where
Cn−3 is a cycle on n − 3 vertices and P3 is a path on 3 vertices. It is easy
to see that the graph obtained is tridegreed if n is larger than 7, and it
contains one universal vertex, exactly. The vertex degree distribution of J(n)
is n5 = n − 3, nn−2 = 2 and nn−1 = 1. It can be shown that for J(n) the
equality irr(G) = irrt(G) holds. As an example graph J(9) is depicted in
Figure 1.

It is easy to show that for graph J(9) the corresponding edge parameters are:
m5,5 = 6,m5,7 = 12,m5,8 = 6,m7,8 = 2. Moreover, the equality irr(J(9)) =
irrt(J(9)) = 44 holds. �

2.2 Pairs of tridegreed graphs with same irr, irrt and Var indices

Theorem 1. Let Ga and Gb be connected edge-equivalent graphs. Then the
equalities irr(Ga) = irr(Gb), irrt(Ga) = irrt(Gb) and Var(Ga) = Var(Gb) hold.
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Fig. 1. The tridegreed graph J(9)

Proof. By definition, irr(G) depends solely on the edge parameters of G.
Since graphs Ga and Gb have same edge parameters, it follows that irr(Ga) =
irr(Gb). From the definitions of irrt(G) and Var(G) indices, we have

irrt(G) =
1

2

∑
u,v∈V (G)

|d(u)− d(v)| =
∑
r

∑
s<r

nrns(r − s),

Var(G) =
1

n

∑
u∈V (G)

d2(u)−
(

2m

n

)2

=
1

n

∑
r

nr

(
r − 2m

n

)2

.

So, irrt(G) and Var(G) depend only on the vertex parameters of G. Since

r · nr(G) =
∑
s 6=r

mr,s + 2mr,r,

it follows that if graphs Ga and Gb are edge-equivalent, then Ga and Gb
are necessarily vertex-equivalent as well, that is they have identical vertex-
parameter set. Then, it also holds that irrt(Ga) = irrt(Gb) and Var(Ga) =
Var(Gb). �

In Figure 2, two infinite sequences of pairs of tridegreed planar graphs that
satisfied Theorem 1 are depicted. For a fixed integer k ≥ 1, the graph Ga(k)
contains k hexagons, while the graph Gb(k) contains k quadrangles. Graphs
Ga(k) and Gb(k) have identical edge-parameters: m3,1 = 4, m3,2 = 4k,
m3,3 = k + 1, and n = 4k + 6, m = 5k + 5. This implies that Ga(k) and
Gb(k) have identical irregularity indices irr, irrt and Var.
In what follows, we will verify that the converse of Theorem 1 is not true.

Proposition 2. There exist tridegreed connected graphs with different edge-
parameter distributions but identical irr, irrt,Var and CS irregularity indices.

Proof. An example is given in Figure 3. It is easy to see that polyhedral
graphs (nanohedra graphs) depicted in Figure 3 are characterized by the
following fundamental properties:

i) Polyhedral graphs Gc and Gd have n = 8 vertices and m = 15 edges.
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1 2 k − 1 k

Ga(k)

Gb(k)

21 k − 1 k

Fig. 2. Edge-equivalent graphs Ga(k) and Ga(k)

Gc Gd

Fig. 3. Tridegreed polyhedral cospectral graphs [16] having identical degree se-
quence and different edge-parameter distribution, but identical irr, irrt,Var and CS
irregularity indices

ii) They have the same degree distribution: n3 = 4, n4 = 2 and n5 = 2. This
implies that Var(Gc) = Var(Gd), and their total irregularity indices are
equal, irrt(Gc) = irrt(Gd).

iii) Their edge-parameter distributions are different, namely for graphGc(m33 =
1,m34 = 4,m35 = 6,m45 = 4) and for graph Gd(m34 = 6,m35 = 6,m45 =
2,m55 = 1).

iv) Their Albertson indices are equal, irr(Gc) = irr(Gd) = 20. (This is an
interesting fact, because the edge-parameter distributions of graphs Gc
and Gd are different).

v) Gc and Gd are isospectral graphs (polyhedral twin graphs) [16] . This
implies that their Collatz-Sinogowitz indices are equal, as well. �
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2.3 Pairs of tridegreed graphs with same irr, irrt,Var and CS
indices

First, we state some necessary definitions and results needed for the derivation
of the main results of this section. A bipartite graph G is semiregular if every
edge of G joins a vertex of degree δ to a vertex of degree ∆. The 2-degree of
a vertex u, denoted by d2(u) is the sum of degrees of the vertices adjacent
to u [20]. The average-degree of u is d2(u)/d(u) and it is denoted by p(u). A
graph G is called pseudo-regular (or harmonic) if every vertex of G has equal
average-degree. A bipartite graph is called pseudo-semiregular if each vertex
in the same part of a bipartition has the same average-degree [20]. It follows
that semiregular graphs form a subset of pseudo-semiregular graphs.

Theorem 2 ( [20]). Let G be a connected graph with degree sequence (d1, d2,
. . . , dn).Then

ρ(G) ≥
√
d2(v1)2 + d2(v2)2 + · · ·+ d2(vn)2

d21 + d22 + · · ·+ d2n
,

with equality if and only if G is a pseudo-regular graph or a pseudo-semiregular
graph.

The following result is a consequence of Theorem 2.

Corollary 1 ( [20]). Let G be a pseudo-regular graph with d2(v) = p · d(v)
for each v ∈ V (G), then ρ(G) = p.

Theorem 3. There are infinitely many pairs of tridegreed pseudo-regular
graphs (G1, G2) for which irr(G1) = irr(G2), irrt(G1) = irrt(G2), Var(G1) =
Var(G2), and CS(G1) = CS(G2).

Proof. We prove the theorem by a construction. Let G(2, x, y) be a graph
with vertex set V (G(2, x, y)) = U ∪W ∪{z} with connectivity determined as
follows: vertex set U = {u1, u2, . . . , ux} induces connected 2-regular subgraph
(cycle c1c2 ·cx); W is comprised of y ·x pendant vertices such that each vertex
from U is adjacent to y vertices from W ; and the ‘central vertex’ z is adjacent
to each vertex from U . Two instances of such graphs, G1 = G(2, 7, 1) and
G3 = G(2, 13, 2), are depicted in Figure 4. The parameter 2 in the graph’s
representation indicates that the vertex set U induces connected 2-regular
subgraph. The average degree of a vertex from U is (2(3+y)+x+y)/(3+y).
The average degree of a vertex fromW is 3+y, which is also the average degree
of z. Thus, G(2, x, y) is pseudo-regular graph if (2(3 + y) + x+ y)/(3 + y) =
(3 + y), or if

x = y2 + 3y + 3. (1)
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Fig. 4. Pseudo-regular graphs G(2, 7, 1), G′(2, 7, 1), G(2, 13, 2), G′(2, 13, 2), with
ρ(G(2, 7, 1)) = ρ(G′(2, 7, 1)) = 4 and ρ(G(2, 13, 2)) = ρ(G′(2, 13, 2)) = 5

Next, consider a pair of edges (uiui+1, ujuj+1) such that (i mod x) + 2 < j.
We delete edges uiui+1 and ujuj+1 and add edges uiuj+1 and ui+1uj to G1,
obtaining a graph G′(2, x, y), which is edge equivalent (and therefore vertex
equivalent) to G(2, x, y). Also, the average degrees of the vertices of G′(2, x, y)
are equal to the average degrees of the vertices of G(2, x, y). By Corollary 1,
ρ(G(2, x, y)) = ρ(G′(2, x, y)) = 3 + y, for infinitely many integer solutions
(x, y) of (1). This together with the fact that G(2, x, y) and G′(2, x, y) are
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edge equivalent, gives that G(2, x, y) and G′(2, x, y) have equal irr, irrt, Var
and CS indices. �

Two pairs of pseudo-regular graphsG(2, 7, 1) andG′(2, 7, 1), and pairG(2, 13, 2)
and G′(2, 13, 2), for which Theorem 3 holds, are depicted in Figure 4. These
graphs corresponds to the first two smallest pairs of integers that solve the
equation (1).
Observe that the class of pair of graphs that satisfies Theorem 3 can be
extended by considering graphs G(k, x, y), k ≥ 2. These graphs are general-
ization of G(2, x, y) graphs, in such a way that the vertex set U induces a
k-regular subgraph.

An alternative construction. Next, we will present a new construction,
that asserts the claim of Theorem 3. This construction is based on so-called
Seidel switching [19], which for a vertex v flips all the adjacency relationships
with other vertices, i.e, all of the edges adjacent to v are removed and the
edges that were not adjacent to v are added. In general, for a subset S
of V (G), the graph H is obtain from the graph G by switching about S if
V (H) = V (G) and E(H) = {uv ∈ E(G)|u, v ∈ S or u, v /∈ S} ∪ {uv /∈
E(G)|u ∈ S and v /∈ S}.

Construction by local switching.[ [11]] Let G be a graph and let π = (C1, C2,
. . . , Ck, D) be a partition of V (G). Suppose that, whenever 1 ≤ i, j ≤ k and
v ∈ D, we have

(a) any two vertices of Ci have same number of neighbors in Cj , and
(b) v has either 0, ni/2 or ni neighbors in Ci, where ni = |Ci|.

The graph G(π) formed by local switching in G with respect to π is obtained
from G as follows. For each v ∈ D and 1 ≤ i ≤ k such that v has ni/2
neighbors in Ci, delete these ni/2 and join v instead to the other ni/2 vertices
in Ci.

The property of the above construction that will be used here is the following
one.

Theorem 4 ( [11]). Let G be a graph and let π be a partition of V (G) which
satisfies properties (a) and (b) above. Then G(π) and G are cospectral, with
cospectral compilements.

The following construction is a special case of the construction by local
switching, and will be used to construct infinite series of pairs of graph with
the property stated in Theorem 3.

An example of the construction by local switching. A graph G is comprised
of k-regular graph H on even number of vertices and one additional vertex v
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adjacent to exactly half of the vertices of H. For π(V (H), {v}), we have that
G(π) is obtained by joining v instead to the other vertices of H.

In the above example, as it was mentioned in [11], if H has 2m vertices and
a trivial automorphism group, than all

(
2m
m

)
possible realisations of H are

non-isomorphic. By Theorem 4 the graphs G and G(π) are cospectral. G and
G(π) have also same degree set D(G) = D(G(π)) = {k, k+1,m}. The number
of edges with endvertices with degrees m and k in G is the same as in G(π).
The same holds for edges with endvertices with degrees m and k+ 1, and m
and m + 1. Thus, G and G(π) are edge equivalent, and irr(G) = irr(G(π)),
irrt(G) = irrt(G

(π)),Var(G) = Var(G(π)) and CS(G) = CS(G(π)). Note that
if H has less than 8 vertices, then G and G(π) are isomorphic. In Figure 5 an
example of Seidel switching for H = C8 (cycle with 8 vertices) is depicted.

Fig. 5. Seidel switching when H is a cycle with 8 vertices

3 Graphs with arbitrary large degree set and same
irregularity indices

3.1 An infinite sequence of graphs with same irr and irrt indices

A graph G is a complete k-partite graph if there is a partiton V1 ∪ · · · ∪ Vk =
V (G) of the vertex set, such that uv ∈ E(G) if and only if u and v are in
different parts of the partition.

Proposition 3. There is an infinite sequences of graphs G, such that for a
graph G ∈ G irr(G) = irrt(G) holds.

Proof. If every two vertices of G with different degrees are adjacent, then
irr(G) = irrt(G). Graphs that satisfy this condition are the complete k-partite
graphs. �

3.2 Pairs of graphs with arbitrary large degree set and same
irr, irrt, and Var indices

Proposition 4. There are infinitely many graphs G1 and G2 with same ar-
bitrary cardinality of their degree sets satisfying irr(G1) = irr(G2), irrt(G1) =
irrt(G2), and Var(G1) = Var(G2).
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Proof. Consider the graphs G1
csl(14, 2, 4) and G2

csl(14, 2, 4) depicted in Fig-
ure 6. The graphs are bidegreed edge-equivalent, belong to the so-called com-
plete split-like graphs, and were introduced and studied in [17]. Choose ver-

(a)
(b)

y1 y2
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x2
x3 x4 x5

x6

x7

x8

x9
x10

x11

x12

y1 y2

x1

x2
x3

x4
x5

x6 x7 x8 x9
x10
x11
x12

Fig. 6. Bidegreed edge-equivalent complete split-like graphs, (a) G1
csl(14, 2, 4) and

(b) G2
csl(14, 2, 4)

tices u ∈ V (G1
csl(14, 2, 4)) and u ∈ V (G2

csl(14, 2, 4)) such that d(u) = d(v).
Attach to u an arbitrary graph H obtaining a graph G1. Attach to v a copy
of H obtaining a graph G2. The graphs G1 and G2 are also edge-equivalent
and therefore, irr(G1) = irr(G2), irrt(G1) = irrt(G2), Var(G1) = Var(G2). �

Observe that in the construction, presented in the above proof, one instead
of G1

csl(14, 2, 4) and G2
csl(14, 2, 4) can use any edge-equivalent graphs, for

example graphs Ga(k) and Gb(k) in Figure 2.

3.3 Pairs of graphs with arbitrary large degree set and same
irr, irrt,Var and CS indices

The 0-sum of two graphs G and H is got by identifying a vertex in G with
a vertex in H. To obtain the result of this section, we will use the following
theorem and a corollary of it.

Theorem 5 ( [10]). Let F be a 0-sum obtained by merging v in G with v
in H, then the characteristic polynomial of F is

φ(F, λ) = φ(G,λ)φ(H \ v, λ) + φ(G \ v, λ)φ(H,λ)− λφ(G \ v, λ)φ(H \ v, λ).

Corollary 2 ( [10]). If we hold G and its vertex v fixed, then the character-
istic polynomial of the 0-sum of G and H is determined by the characteristic
polynomials of H and H \ v.

- 50 -



Acta Polytechnica Hungarica Vol. 11, No.4, 2014

u v

H

u v

G1 G2

G G

u v

Fig. 7. Two cospectral and edge-equvivalent graphs G1 and G2 obtained as 0-sums
of H and arbitrary graph G

Theorem 6. There are infinitely many graphs G1 and G2 with same arbi-
trary cardinality of their degree sets satisfying irr(G1) = irr(G2), irrt(G1) =
irrt(G2), Var(G1) = Var(G2), and CS(G1) = CS(G2).

Proof. Let G be an arbitrary graph. Consider the graph H in Figure 7. Let
G1 be a 0-sum of H and G, obtained by merging v in G with v in H, and G2

be a 0-sum obtained by merging u in G with u in H. Note that H \ v and
H \u are isomorphic, so φ(H \v, λ) = φ(H \u, λ). Together with Corollary 2,
we have that φ(G1, λ) = φ(G1, λ), or that G1 and G2 are cospectral. Also,
it is easy to see that G1 and G2 are edge-equivalent. Thus, G1 and G2 have
same irr, irrt, Var and CS indices. �

A generalization of the example from Figure 7 is given in Figure 8. The
graph H is comprised of three isomorphic subgraphs Ql, Qm, Qr, each of
order at least 3, and two vertices u and v. Between the vertex v and the
subgraph Qr, there are same number of edges as between the vertex u and
the subgraph Qm. Also, between the vertex u and the subgraph Ql, there are
same number of edges as between the vertex v and the subgraph Qm. The
number of the edges between v and subgraph Qm differs than the number of
the edges between v and subgraph Qr. We require these conditions to avoid
an isomorphism of graphs G1 and G2, obtained as 0-sums of H and arbitrary
graph G. The graphs G1 and G2 are constructed in the same manner as
above: G1 is a 0-sum obtained by merging v in G with v in H, and G2 be
a 0-sum obtained by merging u in G with u in H. From the construction it
follows that G1 and G2 are edge-equivalent. In this case also H \ v and H \u
are isomorphic, so φ(H \ v, λ) = φ(H \ u, λ). Together with Corollary 2, we
have that φ(G1, λ) = φ(G1, λ), or that G1 and G2 are cospectral. Thus, it
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G

u v

Qm Qr

G2

Ql

u v

Qm Qr

H

Ql

G

u v

Qm Qr

G1

Ql

Fig. 8. A generalization of the example from Figure 7

holds that irr(G1) = irr(G2), irrt(G1) = irrt(G2), Var(G1) = Var(G2), and
CS(G1) = CS(G2).

4 Small graphs with identical irregularities

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. We said that G1 is
smaller than G2 if and only if |V1|+ |E1| < |V2|+ |E2|. Consequently, for two
pairs of graphs P1 = (G1, G2) and P2 = (G3, G4), we said that P1 is smaller
than P2 if and only if |V1|+ |E1|+ |V2|+ |E2| < |V3|+ |E3|+ |V4|+ |E4|. The
results in this section are obtained by computer search using mathematical
software package Sage [18].

Proposition 5. There are no two graphs, both of same order n ≤ 5, that
have identical irregularity indices CS,Var, irr and irrt.

Next the smallest example of pair of graphs will be given with equal CS,Var, irr
and irrt indices.

4.1 Graphs of order 6

The smallest pair of graphs with identical irregularity indices CS,Var, irr
and irrt is depicted in Figure 9. Both graphs are of order 6, but one is of
size 6 and the other of size 9. Their CS,Var, irr and irrt indices are 0.236068,
0.800000, 8, and 16, respectively. They have different spectral radii, namely

- 52 -



Acta Polytechnica Hungarica Vol. 11, No.4, 2014

Fig. 9. The smallest pair of (tridegreed) connected graphs with identical irregularity
indices CS,Var, irr and irrt

the smaller one has spectral radius 2.236068 and bigger one 3.236068. The
rest of the graphs of order 6, with identical irregularity indices CS,Var, irr
and irrt are given in Figure 10. The parameters of the graphs of order 6 with

(a) (b)

(d)(c)

Fig. 10. Besides the pair in Figure 9, there are three other pairs of connected graphs
of order 6 (a), (b), (c), and only one triple of graphs of order 6 (d) with identical
irregularity indices CS,Var, irr and irrt

identical irregularity indices CS,Var, irr and irrt are summarized in Table 1.
The graphs are enumerated with respect to their sizes, a smaller graph has
smaller associated number (G no). For a given graph, beside the values of the
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indices CS,Var, irr and irrt, its spectral radius ρ, degree sequence and graph6
code are given. There are 112 non-isomorphic connected graphs of order 6.

Table 1: All four pairs and the only triple of graphs of order 6 with
identical irregularity indices CS,Var, irr and irrt

tuple no G no graph6 degree sequence irr irrt CS Var ρ

1 10 E?]o [3, 3, 2, 2, 1, 1] 8 16 0.236068 0.800000 2.236068
77 E8]w [4, 4, 3, 3, 2, 2] 8 16 0.236068 0.800000 3.236068

2 36 EKNG [3, 3, 2, 2, 2, 2] 4 8 0.080880 0.266667 2.414214
37 E8NG [3, 3, 2, 2, 2, 2] 4 8 0.080880 0.266667 2.414214

3 40 E?∼o [4, 4, 2, 2, 2, 2] 16 16 0.161760 1.066667 2.828427
100 EK∼w [5, 5, 3, 3, 3, 3] 16 16 0.161760 1.066667 3.828427

4 90 EK∼o [4, 4, 3, 3, 3, 3] 8 8 0.038948 0.266667 3.372281
110 E]∼w [5, 5, 4, 4, 4, 4] 8 8 0.038948 0.266667 4.372281

5 54 EImo [3, 3, 3, 3, 2, 2] 4 8 0.065384 0.266667 2.732051
55 EJeg [3, 3, 3, 3, 2, 2] 4 8 0.065384 0.266667 2.732051
103 Ejmw [4, 4, 4, 4, 3, 3] 4 8 0.065384 0.266667 3.732051

4.2 Graphs of order 7

There are 853 non-isomorphic connected graphs of order 7. The pairs of
graphs of order 7 with identical irregularity indices CS,Var, irr and irrt are
given in Table 2. The smallest pair of connected graphs of order 7 with
identical irregularity indices is depicted in Figure 11.

Table 2: All pairs of graphs of order 7 with identical irregularity
indices CS,Var, irr and irrt.

pair no G no graph6 degree sequence irr irrt CS Var ρ

1 104 FK?}O [3, 3, 2, 2, 2, 2, 2] 6 10 0.057209 0.238095 2.342923
105 F8?}O [3, 3, 2, 2, 2, 2, 2] 6 10 0.057209 0.238095 2.342923

2 177 FAerO [3, 3, 3, 3, 2, 2, 2] 6 12 0.069758 0.285714 2.641186
178 FAdtO [3, 3, 3, 3, 2, 2, 2] 6 12 0.069758 0.285714 2.641186

3 213 FK?}W [4, 4, 2, 2, 2, 2, 2] 12 20 0.242178 0.952381 2.813607
214 F8?}W [4, 4, 2, 2, 2, 2, 2] 12 20 0.242178 0.952381 2.813607

4 244 F?v8w [4, 4, 4, 2, 2, 2, 2] 16 24 0.217713 1.14285 3.074856
269 FA ∼o [5, 3, 3, 3, 2, 2, 2] 16 24 0.217713 1.142857 3.074856

5 274 F@VTW [4, 4, 3, 3, 2, 2, 2] 12 22 0.173179 0.809524 3.030322
275 F@UuW [4, 4, 3, 3, 2, 2, 2] 12 22 0.173179 0.809524 3.030322
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6 321 FIe8w [4, 3, 3, 3, 3, 2, 2] 8 16 0.142857 0.476190 3.000000
322 FJaHw [4, 3, 3, 3, 3, 2, 2] 8 16 0.142857 0.476190 3.000000

7 348 FBY∧? [3, 3, 3, 3, 3, 3, 2] 2 6 0.046069 0.142857 2.903212
349 FHU∧? [3, 3, 3, 3, 3, 3, 2] 2 6 0.046069 0.142857 2.903212

8 471 Fie8w [4, 3, 3, 3, 3, 3, 3] 4 6 0.034553 0.142857 3.177410
472 FjaHw [4, 3, 3, 3, 3, 3, 3] 4 6 0.034553 0.142857 3.177410

9 438 FBY∧G [4, 4, 3, 3, 3, 3, 2] 8 16 0.093211 0.476190 3.236068
439 FHU∧G [4, 4, 3, 3, 3, 3, 2] 8 16 0.093211 0.476190 3.236068

10 450 FKMiw [4, 4, 4, 3, 3, 2, 2] 10 22 0.210999 0.809524 3.353856
451 FKLkw [4, 4, 4, 3, 3, 2, 2] 10 22 0.210999 0.809524 3.353856

11 444 FHU[w [4, 4, 4, 4, 2, 2, 2] 8 24 0.346431 1.142857 3.489289
469 FKWyw [4, 4, 4, 3, 3, 3, 1] 8 24 0.346431 1.142857 3.489289

12 500 F?]}w [5, 5, 5, 3, 2, 2, 2] 24 36 0.399856 2.285714 3.828427
536 F@U∧w [6, 4, 4, 4, 2, 2, 2] 24 36 0.399856 2.285714 3.828427

13 543 FBY|o [4, 4, 4, 4, 4, 2, 2] 8 20 0.217180 0.952381 3.645751
544 FB]lg [4, 4, 4, 4, 4, 2, 2] 8 20 0.217180 0.952381 3.645751

14 604 FIefw [6, 3, 3, 3, 3, 3, 3] 18 18 0.217180 1.285714 3.645751
613 FJaNw [6, 3, 3, 3, 3, 3, 3] 18 18 0.217180 1.285714 3.645751

15 609 FkUhw [4, 4, 4, 3, 3, 3, 3] 6 12 0.074653 0.285714 3.503224
610 FkYXw [4, 4, 4, 3, 3, 3, 3] 6 12 0.074653 0.285714 3.503224

16 656 FG]}w [5, 5, 5, 3, 3, 3, 2] 20 30 0.268873 1.571429 3.983159
665 FHU∧w [6, 4, 4, 4, 3, 3, 2] 20 30 0.268873 1.571429 3.983159

17 695 FKNNw [6, 4, 4, 3, 3, 3, 3] 20 24 0.203000 1.238095 3.917286
697 F8NNw [6, 4, 4, 3, 3, 3, 3] 20 24 0.203000 1.238095 3.917286

18 701 FbY|o [4, 4, 4, 4, 4, 3, 3] 4 10 0.064171 0.238095 3.778457
702 Fb]lg [4, 4, 4, 4, 4, 3, 3] 4 10 0.064171 0.238095 3.778457

19 748 FImvw [6, 4, 4, 4, 4, 3, 3] 18 22 0.156325 1.000000 4.156325
750 FJenw [6, 4, 4, 4, 4, 3, 3] 18 22 0.156325 1.000000 4.156325

20 501 F?∼v [4, 4, 4, 3, 3, 3, 3] 12 12 0.035530 0.285714 3.464102
851 F]∼∼w [6, 6, 6, 5, 5, 5, 5] 12 12 0.035530 0.285714 5.464102

21 810 FFzfw [6, 4, 4, 4, 4, 4, 4] 12 12 0.086567 0.571429 4.372281
812 FLvfw [6, 4, 4, 4, 4, 4, 4] 12 12 0.086567 0.571429 4.372281

Fig. 11. The smallest pair of connected graphs of order 7 with identical irregularity
indices CS,Var, irr and irrt (the pair 1 in Table 2)
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We would like to note that there is no triple of graphs of order 7 with identical
irregularity indices CS,Var, irr and irrt.

5 Conclusion and open problems

We have studied four established measures of irregularity of a graph. In par-
ticular, we have considered the problem of determining pairs or classes of
graphs for which two or more of the purposed measures are equal. Some re-
lated results in the case of bidegreed graphs were presented in [17]. Here we
have extended that work for tridegreed graphs and graphs with arbitrarily
large degree set.
In the investigations here, it was assumed that considered graphs are of the
same order, or they even have same degree sets. With respect to that, there
are several interesting extension of the work done here.
It would be of interest to determine graphs of same order which have different
degree sets, but their corresponding irrt and irr indices are identical. A graph
pair of such type with 5 vertices is illustrated in Figure 12. Also, it would be

Fig. 12. A tridegreed and a four degreed planar graphs with identical irrt = 14 and
irr = 10 irregularity indices

of interested to find classes of graphs of different order with equal irregularity
measures. Most of the result presented have involved only pairs of graphs.
Extending those results to larger classes of graphs seems to be demanding but
interesting problem. Finally, considering other irregularity measures could
offer new insights in the topic.
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[9] D. Dimitrov, R. Škrekovski, Comparing the irregularity and the total irregu-
larity of graphs, Ars Math. Contemp., to appear.

[10] C. D. Godsil, Are almost all graphs cospectral?, slides from a 2007 talk.
[11] C. D. Godsil, B. D. McKay, Constructing cospectral graphs, Aequationes Math.

25 (1982) 257–268.
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[14] P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs. 9.
bounding the irregularity of a graph, in Graphs and Discovery, DIMACS Ser.
Discrete Math. Theoret. Comput. Sci 69 (2005) 253–264.

[15] M. A. Henning, D. Rautenbach, On the irregularity of bipartite graphs, Discrete
Math. 307 (2007) 1467–1472.

[16] H. Hosoya, U. Nagashima, S. Hyugaji, Topological Twin Graphs. Smallest Pair
of Isospectral Polyhedral Graphs with Eight Vertices, J. Chem. Inf. Comput.
Sci. 34 (1994) 428–431.

[17] T. Réti, D. Dimitrov, On irregularities of bidegreed graphs, Acta Polytech.
Hung. 10 (2013) 117–134.

[18] Sage Mathematics Software (Version 5.11), (2013), www.sagemath.org/.
[19] J. J. Seidel, Graphs and two-graphs, Proc. Fifth Southeastern Conf. on Com-

binatorics, Graph Theory and Computing, Congr. Num. X, Utilitas Math.,
Winnipeg Man. (1974) pp. 125–143.

[20] A. Yu, M. Lu, F. Tian, On the spectral radius of graphs, Linear Algebra Appl.
387 (2004) 41–49.

- 57 -


