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Abstract: Two unimodal deep networks and one multimodal deep network are created to 

test for possible mechanisms of sensory integration that may shed more light on how 

sensory integration is carried out in biological organisms. One unimodal network is 

provided with pictures and the other with mel-spectrograms created from sounds. Adapted 

pre-trained VGG16 network was used for unimodal networks. After training consisting of 

30 epochs and repeated for 100 runs the unimodal networks achieved an average accuracy 

of 0.57 and 0.73 respectively. The multimodal network received processed features from 

both unimodal networks and after training consisting of 30 epochs and repeated for 100 

runs outperformed both unimodal networks with the average accuracy of 0.79. Next, noise 

was applied to the test data to see how unimodal and multimodal networks compare in 

noisy environments. Unimodal networks achieved an average accuracy of 0.63 and 0.69 

respectively. Again, the multimodal network outperformed both unimodal networks with an 

average accuracy of 0.73. Pre-trained networks were used and limited training data were 

provided to the networks to simulate conditions similar to animal brains. 
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1 Introduction 

Biological organisms evolved to make use of different modalities ‒ types of 

stimuli that they react to ‒ such as visual, audio, chemical and others. Sensory 

integration in living organisms is an important tool that enables animals to better 

differentiate between objects and get information in noisy environments [1]. 

Though many studies have been done on neurophysiology of multimodal 

integration, mostly in invertebrates such as Drosophila [2] or wolf spider [3], we 

still do not know precisely how such integration is done on a neuronal level, not 

even in simple organisms like C. Elegans [4]. Computational modelling may 

provide insights into these processes as it allows for experiments that are not 

possible with living brains either because they are not feasible or ethically viable 

[5]. 
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Deep neural networks thank, in part, their popularity because they are able to 

identify patterns in a way similar to how human brains do. They are successful in 

recognising pictures, sounds, and other data [6]. However, most applications are in 

the domain of one modality (visual, audio, or other). When two or more unimodal 

networks are to be combined into a multimodal network to improve classification 

results there are more approaches that can be used. Probably the simplest approach 

is to do a weighted average of network results [7]. Most deep neural networks 

used for classification have a top softmax layer that represents probabilities that 

the object provided to the network belongs to a certain class. Probabilities from 

unimodal networks are then weighted and averaged to provide final probabilities. 

While this approach can improve classification it does not use all the advantages 

that multimodal integration has over unimodal classification. The power of 

multimodal integration using deep neural networks lies in the fact that data that 

were not used in one modality can be useful when combined over more 

modalities. Features that have not been used in simple classification tasks can be 

utilised in connection with features from other networks [7]. A more effective 

approach seems to lay in building a multimodal deep network that takes as its 

inputs features produced by unimodal networks [7]. This network is then trained 

on the multimodal data and should classify the objects more precisely. Typically a 

dense layer is used for integrating the inputs [8], although other approaches are 

tested such as using lateral connections and self-organisation [9], fully 

convolutional neural networks [10], or sequential late fusion [11]. 

In this study, we aim to explore how two unimodal networks can be fused into a 

multimodal network using deep neural networks and compare the performance of 

unimodal and multimodal networks. We would like to bring new evidence to how 

these networks perform in comparison with one another and how do they respond 

to noisy stimuli. In this study, in contrast with other studies mentioned above, we 

use pre-trained deep neural networks. Such a setup has two similarities to the 

neural systems of living organisms. First, living organisms have pre-wired neural 

systems that evolved during their phylogenesis. Second, pre-wired (or pre-trained) 

networks are able to learn even from a few examples as in natural settings it would 

be very disadvantageous to be able to learn only from thousands of examples. 

2 Methodology 

2.1 Architecture 

Keras toolbox (keras.io) running under TensorFlow (tensorflow.org) in Python 

environment has been used for simulation experiments. 

As was mentioned in the introduction, the aim is to inspect how a multimodal 

network working with two sets of features from unimodal networks perform in 
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comparison to unimodal networks. The model consists of two unimodal deep 

neural networks and one multimodal deep neural network. The first unimodal 

network is designed for the classification of visual data and the second unimodal 

network is designed for the classification of audio data converted to mel-

spectrograms. To allow for faster training and lower the need for large samples we 

use Imagenet network [12] embedded into Keras environment as VGG16 for both 

unimodal networks. The embedding allows us to use the network directly and 

modify it easily for our purposes. The top classification layer was removed and 

substituted with a set of dense, dropout and dense layer with softmax activation to 

allow it to adapt to our data. The layers were frozen for training except for the top 

three layers to allow transfer learning on our dataset. As inputs we use 150*150*3 

RGB images and each network outputs a vector of length 8192 that represents 

high-level features of the input image. 

We concatenate the output vectors into a 16384 vector to represent both 

modalities and feed this vector into a multimodal network. The architecture of the 

multimodal network consists of an input layer, a dense layer with 1024 fully 

connected neurons, a drop-out layer, and a softmax classification layer. A block 

diagram is shown in Figure 1. 

 

Figure 1 

Block diagram of used architecture 

2.2 Data 

We use two modalities of data and three categories that are the same in each 

modality. We use data from two public databases. For visual data we use 

photographs from UnSplash (unsplash.com) and for audio data, we use audio 

samples from NSynth [13] that are converted into mel-spectrograms. We use three 

categories ‒ voice ‒ with a sound sample of singing and a photograph of a singing 
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person/s; guitar ‒ with a sound sample of a guitar sound and a photograph of a 

guitar and flute ‒ with a sound sample of a flute and a photograph of flute/s. The 

distribution of data is shown in Table 1. 

Table 1 

Distribution of data 

 

Sample picture and sample mel-spectrogram are found in Figure 2a and 2b. 31 

samples of every modality are used for training and 31 samples for testing. For an 

experiment with noisy data, we use the same samples with added Gaussian noise 

(zero-mean white noise with variance 0.01). For an example of a noisy picture and 

noisy mel-spectrogram, see Figure 2c and 2d. 

Figure 2 

Sample data. a) picture, b) mel-spectrogram, c) noisy picture, d) noisy mel-spectrogram 
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2.3 Training 

Unimodal and multimodal networks are trained using RMSprop optimizer, for loss 

we use sparse categorical crossentropy, the number of epochs is 30. Figure 3 

shows the development of averaged training accuracy (acc; 

https://github.com/keras-

team/keras/blob/68dc181a5e34d1f20edabe531176b3bfb50001f9/keras/engine/trai

ning.py#L375) and training loss (sparse categorical crossentropy; 

keras.io/api/losses/) across 100 runs. 

 

Figure 3 

Average training accuracy and training loss 

Training graph shows that multimodal network achieves better accuracy and lower 

loss over time and outperforms both unimodal networks. 

3 Results 

First, we tested both unimodal and multimodal networks to see whether 

multimodal network outperforms the unimodal networks. As deep neural networks 

use stochastic processes we repeated training and measured accuracy for 100 runs. 

We found the average accuracy for the first unimodal network (audio) to be 0.57, 

for the second unimodal network (visual) 0.73, and for the multimodal network 
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0.79. Graph of individual runs is shown in Figure 5. Multimodal network 

performed better than any single unimodal network. 

 

Figure 4 

Accuracy of unimodal and multimodal networks over 100 runs. First unimodal network - blue, second 

unimodal network - red, multimodal network - orange 

Next, we were curious about how the network behaved under noisy inputs. As we 

mentioned in the Introduction, multimodal networks should enhance recognition 

when inputs are noisy. 

We used the same networks, parameters, and training data as in the previous 

experiment. Before testing the networks we added Gaussian noise to the inputs. 

We used zero-mean white noise with a variance 0.01. Again, we repeated training 

and testing for 100 runs and measured the accuracy of the networks. We found the 

average accuracy for the first unimodal network (audio) to be 0.63, for the second 

unimodal network (visual) 0.69, and for the multimodal network 0.73. Graph of 

individual runs is shown in Figure 5. Again, the multimodal network 

outperformed both unimodal networks although its performance was not as good 

as on the data without noise. The accuracy for the second unimodal network 

(visual) also decreased. Unexpected was a slightly better performance of the first 

unimodal network (audio) for noisy inputs. This may be due to stochastic 

fluctuation or to some, yet unknown, aspect of the interaction of deep neural 

networks with spectrogram data. 
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Figure 5 

Accuracy of unimodal and multimodal networks with noisy test data over 100 runs. First unimodal 

network - blue, second unimodal network - red, multimodal network - orange 

We created the confusion matrices for both unimodal and multimodal networks 

and for both not-noisy and noisy test data. In the tables, we summed the 

classification results for 100 runs. The results are shown in Table 2. 

Table 2 

Confusion matrices 

Unimodal network - sound; not-noisy 

Input/Prediction Flute Guitar Voice 

Flute 32 16 12 

Guitar 0 19 121 

Voice 0 0 110 

Unimodal network - picture; not-noisy 

Input/Prediction Flute Guitar Voice 

Flute 26 32 2 

Guitar 4 102 34 

Voice 0 13 97 

Multimodal network; not-noisy 

Input/Prediction Flute Guitar Voice 

Flute 47 13 0 

Guitar 7 93 40 

Voice 0 0 110 
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Unimodal network - sound; noisy 

Input/Prediction Flute Guitar Voice 

Flute 42 8 10 

Guitar 0 62 78 

Voice 0 2 108 

Unimodal network - picture; noisy 

Input/Prediction Flute Guitar Voice 

Flute 26 30 4 

Guitar 2 91 47 

Voice 0 14 96 

Multimodal network; noisy 

Input/Prediction Flute Guitar Voice 

Flute 46 14 0 

Guitar 2 72 66 

Voice 0 1 109 

Confusion matrices confirm our previous results. A multimodal network shows 

better classification results than any of unimodal networks using both not noisy 

and noisy test data. Upon closer inspection, we see that the worse performance of 

the unimodal network for sounds was primarily caused by misclassification of 

class Guitar in a not-noisy situation. We may only speculate that the classification 

of mel-spectrograms is a more complex task and adding the noise somehow tipped 

the algorithm towards better performance. This issue remains open for further 

research. On the other hand, this result underscores the fact that the advantage of 

multimodal networks is the fact that even if some of the unimodal networks do not 

work perfectly, their drawbacks are compensated using data from other unimodal 

networks when integrated into a multimodal network. 

Conclusions 

Sensory integration is an advantage for living organisms as it enables them to 

better classify objects and extract data from noisy environments. Deep neural 

networks are in many respects similar to biological ones and thus can help us to 

obtain insights using experiments that would otherwise be not feasible. In this 

study, we wanted to test whether a multimodal network integrating inputs from 

two unimodal networks representing two modalities can outperform these 

networks. Besides, we wanted to test whether such performance is possible using 

only a limited number of stimuli as is the norm in living systems. We also feel that 

it is important that our study has been done using open-platform software and data 

and we described the details of architecture and training parameters so that this 

study can be used for inspiration and subsequent research for other scientists. 

Our results show, that the multimodal network outperformed both unimodal 

networks. Furthermore, it outperformed them also when tested on noisy data. 
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Our simulations show that the superior performance of the multimodal network 

does not have to hold for every single run. One may argue that this would make 

the multimodal network unusable in natural settings. We, however, think that it 

may well be possible that biological networks may also work this way ‒ the 

robustness of the network does not lay in how it performs every single run, but the 

research indicates that brains operate in a statistical fashion [14]. When an animal 

sees an image or hears a sound, the activity of visual/audio neurons does not stop 

immediately, but reverberates and thus enables the animal to make use of the 

statistical properties of neural signal [15]. 

We feel that such interconnections between neuroscience and computational 

modeling may be fruitful for both research fields and may bring further insights 

into how animal (and human) brains work. 
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