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Abstract: Fuzzy arithmetic based α -cuts, where the result of the α -cuts represent an 
interval. The arithmetic can be understand as an interval arithmetic of the α -cuts. Instead 
of dealing with intervals we are dealing with left and right hand sided soft inequalities 
which define the interval. We offer a new calculation procedure of arithmetics, when these 
soft inequalities meet certain properties (i.e. strict monotonously increasing function 
represent the inequality). We show that the result of linear combinations of linear is also 
linear and the linear combination of sigmoid is also sigmoid function (i.e. they are closed 
under linear combination). We give the result of other operation, too. The soft inequalities 
define an interval by using proper conjunctive and disjunctive operator. We give such 
operations, too. 

Keywords: fuzzy arithmetic, sigmoid function, triangular membership function, membership 
function, distending function 

1 Introduction 

The idea the fuzzy quantities could be arithmetically combined according to the 
laws of fuzzy set theory is due to Zadeh [14]. Soon after, several researchers 
worked independently along these lines, such as Jain [5], Mizumoto and Tanaka 
[9, 10], Nahmias [11], Nguyen [12], Dubois and Prade [1]. It was only further on 
recognized that the mathematics of fuzzy quantities are an application of 
possibility theory, an extension of interval analysis as well as of the algebra of 
many-values quantities (Young [13]). 

Fuzzy interval extends and updates the overview of Dubois and Prade [2]. Several 
theoretical details and applications can be found e.g., in monographs of Kaufmann 
and Gupta [6, 7], and Mares [8]. In 1987, teher was a special issue of Fuzzy Sets 
and Systems (Dubois and Prade [3]) devoted to the fuzzy intervals domain, and 
more recently another one has appeared (Fullér and Mesiar [4]). 



J. Dombi Pliant Arithmetics and Plian Arithmetic Operations 

 – 20 – 

In real world applications we often need to deal with imprecise quantities. They 
can be results of measurements or vague statements, e.g. I have about 40 dollars in 
my pocket, she is approximately 170 cm tall. In arithmetics we can use xa <  
and bx <  inequalites to characterize such quantities, e.g. if I have about 40 
dollars then my money is probably more than 35 dollars and less than 45 dollars. 

Fuzzy numbers can also be used to represent imprecise quantities. Pliant numbers 
are created by softening the xa <  and bx <  inequalities, i.e. replacing the crisp 
characteristic function with two fuzzy membership functions and applying a fuzzy 
conjunction operator to combine the two functions. We refer to the softened 
inequalities as fuzzy inequalities. 

We call the distending function corresponding to the ax <  interval the left side 
of the fuzzy number and denote it as lδ . Similarly we refer to the distending 

function corresponding to the bx <  interval as the right side of the fuzzy number 
and denote it as rδ . 

We will use the following terminology: function representing the soft inequality 
called distending function. The word pliant means flexible instead of using 
distending we use soft inequalities and additive pliant is when 

1=)()( xfxf dc +  (at nilpotent operator case) and multiplicative pliant if 

1=)()( xfxf dc  (at strict monotone operator case). 

Naturally one would like to execute arithmetic operations over fuzzy numbers. 
Fuzzy arithmetic operations are generally carried out using the α -cut method. In 
Section 2 we propose a new and efficient method for arithmetic calculations. The 
next two sections discuss the arithmetic operations and their properties for two 
classes of fuzzy distending functions. Section 3 investigates additive pliant 
functions, i.e. distending functions represented as lines. Section 4 presents 
multiplicative pliant functions, i.e. distending functions based on pliant 
inequalities. Finally, Section 5 examines which conjunction operators are suitable 
for constructing fuzzy numbers from additive and multiplicative pliant. 
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2 Fuzzy Arithmetics 

Fuzzy arithmetic operations are based on the extension principle of arithmetics. In 
arithmetics we can find the result of an arithmetic operation by measuring the 
distance of the operands from the zero point than applying the operation on these 
distances. Fig. 1 presents this idea in case of addition. 

 
Figure 1 

Arithmetic addition 

In fuzzy arithmetics we deal with fuzzy numbers. Fuzzy numbers are mappings 
from real numbers to the [0,1] real interval. Operations are executed by creating 
an α -cut for all [0,1]∈α  and using the arithmetic principle to get the resulting 
value for each α  value. Fig. 2 demonstrates fuzzy addition with fuzzy numbers 
represented as lines. The dotted triangle number is the sum of the two other 
triangle numbers. 

 
Figure 2 

Fuzzy addition with α -cut 

This way we can have all the well-known unary ( x− , 2x ) and binary operations 
( yx + , xy , ymodx ) available as fuzzy operations. However the calculation of 
fuzzy operations with α -cut is tedious and often impractical. In this paper a new 
efficient method is proposed which is equivalent with the α -cut. 
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Fuzzy numbers are often composed of two strictly monotone functions, i.e. the left 
side denoted as lδ , and the right side denoted as rδ  of the fuzzy number. Fuzzy 
operations can be carried out by first applying them to the left sides than to the 
right sides of the operands. 

This separation allows us to treat fuzzy numbers as strictly monotone functions 
when dealing with fuzzy arithmetic operations. In the following we omit the 
subscript from lδ  and rδ  and simply write δ  with the inherent assumption that 
we shall only do arithmetic operations with functions representing the same side 
of fuzzy numbers. 

Lemma 2.1  Let nδδδ ,,, 21 …  ( 1≥n ) be strictly monotone functions 

representing soft inequalities and let F  be an n -ary fuzzy operation over them. 
If 

),,,,(= 21 nF δδδδ …  

then 

( )( ) ⇐
−−−− )(,,,=)(

111
2

1
1 zFz nδδδδ …  (1) 

{ }.)(,),(),(minsup=)( 2211
=),,2,1(

n
znxxxF

xxxz δδδδ …
…

 

Proof. It can be easily verified that the method is equivalent with the α -cut.  □ 

Fig. 3 visualizes the equivalence for the addition of lines. The left side shows the 
result of lines added together using α -cut with the result presented as the dotted 
line. On the right side we have simply added together the inverse functions of the 
two operands. The result is also presented as a dotted line. It can be seen from the 
figures that the result of the α -cut is indeed the inverse of the result in the right 
hand side figure. 

 
Figure 3 

Left: α -cut addition, right: inverse of addition 
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We can state a theorem regarding the properties of fuzzy operations. 

Theorem 2.2  Let nδδδ ,,, 21 …  ( 1≥n ) be strictly monotone functions 

representing fuzzy inequalities and let F  be an n -ary fuzzy operation over them. 
If 

( )11
2

1
1 ,,, −−−

nF δδδ …  

is strictly monotone then F  has all the properties as its non-fuzzy interpretation.  

Proof. It can be derived from Eq. 1 in Lemma 2.1.  □ 

3 Additive Pliant 

Triangle fuzzy numbers are commonly used to represent approximate values. A 
triangle fuzzy number has one line on each side. We can add triangle fuzzy 
numbers by first adding their left lines and than adding their right lines together. 

Lemma 2.1 let us derive a general formula for adding lines. 

Definition 3.1 We say that a line )(xl  is given by its mean value if 

2
1)(=)( +− axmxl  

as shown in Fig. 4. 

 
Figure 4 

Line given by its mean value a  and tangent αtan=m  

The inverse of )(xl  denoted as )(1 yl −  can be calculated easily 

.2
1

=)(1 a
m

y
yl +

−
−  
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3.1 Addition 

Theorem 3.2  Let 
2
1)(=)( +− iii axmxl  ( },{1, ni …∈ ) lines given by their 

mean values. The fuzzy sum of il  lines denoted as l  is also a line and can be 
given as 

2
1)(=)()(=)( 1 +−⊕⊕ axmxlxlxl n…  

where 

.=1=1
1=1=

i

n

ii

n

i
aaand

mm ∑∑  

Proof. Using Lemma 2.1 gives us 

( ))()(=)( 11
1

1 ylylyl n
−−− ++…  

 =2
1

=2
1

=
1=1=1=

i

n

ii

n

i
i

i
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i
a

m

y
a

m

y
∑∑∑ +

⎟⎟
⎟
⎟

⎠
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⎝
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⎜
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 i

n

ii

n

i
a

m
y ∑∑ +⎟

⎠
⎞

⎜
⎝
⎛ −

1=1=

1
2
1=  

From here we have 

.
2
1

1
1=)(

1=

1=

+⎟
⎠

⎞
⎜
⎝

⎛
−∑

∑
i

n

i

i

n

i

ax

m

xl  

Substituting 
m
1

 and a  into the equation we get the desired result 

( ) .
2
1=)( +− axmxl  

□ 
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3.2 Multiplication by Scalar 

Theorem 3.3  Let 

2
1)(=)( +− axmxl  

line given by their mean values. 

The scalar multiplication of the lines is: 

2
1)(=)( +′−′ axmxlc  

where 

c
mmcaa == ′′  

Proof. Using Lemma 2.1 gives us 

.2
1

=)(1

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
−

− a
m

y
cxl  

From here we have 

.
2
1)(=)( +− cax

c
mxl  

3.3 Subtraction 

Calculations for subtraction yields 

( ) .
2
1)(11

1==)( 21

21

21 +−−
−

aax

mm

llxl  

Note: l  does not exist when 21 = mm . 

It is an important property that the result of the operation is also a line, i.e. the 
operation is closed for lines. 
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3.4 Multiplication and the thn  Power 

Now let us calculate 21= ll ⊗δ , the product of 1l  and 2l . 

( )
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⎜⎜
⎜
⎜
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⎛
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y
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+
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⎠
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From here we have 

( ) ( ) .
2
1

2
1

4
1=)( 2211

2
221121 ++−−+ amamamamxmmxδ  

Fig. 5 shows the result of multiplying two lines. The parameters were 

4=,
5
1= 11 am  and 6=,

3
1= 22 am . The multiplication function is shown as 

the dotted curve. 
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Figure 5 

Multiplication of lines 

The result is not a line. We need to remain in the world of lines to be able to carry 
out further arithmetic operations. This can be achieved by approximating the result 
with a line, e.g. using the least squares method. 

Let us calculate the thn  power of 
2
1)(=)( +− axmxl . 

( ) .2
1

=)(=)( 11

n

n a
m

y
yly

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
−

−−δ  

From here we get 

( ) .
2
1=)( +− axmx nδ  

An approximation method should also be used here to get a line function from the 
result. 

3.5 Properties of Operations 

Theorem 3.4  Addition is commutative and associative over lines. 

Proof. The properties can be easily seen from the construction of 
m
1

 and a  in 

Theorem 3.2. □ 

Theorem 3.5  Multiplication over lines is commutative, associative and 
distributive over addition. 

Proof. Theorem 2.2 guarantees that these properties holds. □ 
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4 Multiplicative Pliant 

Let us start by introducing a special fuzzy inequality, the pliant inequality and 
examine its most important properties. 

4.1 Pliant Inequality Model 

Definition 4.1 A pliant inequality is given as a sigmoid function of 

)(=
1

1=}<{
)(

)( x
e

xa aax

λ

λλ σ−−+
 

where a  is the mean value, i.e. 
2
1=)(

)(
aa

λ
σ . 

 
Figure 6 

Pliant inequality with 0.7=λ  and 4=a  parameters 

The following properties can be seen from the figure 

<a x  then 
1{ < } > ,
2

a xλ  

a x=  then 
1{ < } = ,
2

a aλ  

a x>  then 
1{ < } < .
2

a xλ  

Definition 4.2 The inverse function of )(
)(

xa

λ
σ  is denoted as ( ) )(

1)(
xa

−λ
σ  and 

can be calculated easily. Let 
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,=
1

1=)( )(

)(
ωσ λ

λ

axa e
x −−+

 

then 
)()( =)(1=1 axax ee −−−− ++ λλ ωωω  

)(=1 axe −−− λ

ω
ω

 

)(=1ln ax −−⎟
⎠
⎞

⎜
⎝
⎛ − λ

ω
ω

 

( ) .1ln1=)(=
1)(

ax a +⎟
⎠
⎞

⎜
⎝
⎛ −

−

−

ω
ω

λ
ωσ

λ
 

Definition 4.3 The first derivative of )(
)(

xa

λ
σ  is denoted as ( ))(

)(
xa

λ
σ . The 

following properties hold  

( ) ;4=|
)(

=)( =

)(

)(
λ

σ
σ

λ

λ

ax

a

a dx

xd
a  

depending on λ , if 

0λ >  then ( )'( ) ( )a xλσ  is strictly monotone increasing, 

0λ =  then ( )'( ) ( ) 0,a xλσ ≡  

0λ <  then ( )'( ) ( )a xλσ  is strictly monotone decreasing. 

When we apply an arithmetic operation to pliant inequalities we need to make sure 
that the operation is meaningful, i.e. the pliant inequalities represent the same 
sides of the fuzzy numbers. The following criteria formulates this requirement. 

Criteria 4.4  If 
)()2(

2

)1(

1
,,, n

naaa
λλλ σσσ …  are inputs to an n -ary fuzzy arithmetic 

operation then 

)(sgn==)(sgn=)(sgn 21 nλλλ …  

must always hold. 
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4.2 Addition 

Theorem 4.5  Addition is closed over pliant inequalities and the addition function 
can be given as 

1=
)()()1(

1
≥⊕⊕ na

n
naa

λλλ σσσ …  

where 

.=1=1
1=1=

i

n

ii

n

i

aaand ∑∑λλ
 

Proof. We prove by induction, if 1=i  then the statement is trivially true. Now let 
us assume that it holds for 1= −ni  and prove it for ni = , 

)()()(

)(

)1(

1

)1(

1
== n

naa
n

na

a

n
naa

λλλ

λσ

λλ σσσσσδ ⊕⊕⊕⊕ ′
′

′
′

−
−������ 
������ 	�

…  

where 

.=1=1 1

1=

1

1=
i

n

ii

n

i
aaand ∑∑

−−

′
′ λλ

 

Now by using Lemma 2.1 we have 

( ) ( ) =)()(=)(
1)(1)(1 zzz n

naa

−−′
′

− + λλ σσδ  

=1ln11ln1= n
n

a
z

za
z

z
+⎟
⎠
⎞

⎜
⎝
⎛ −

−
+′+⎟

⎠
⎞

⎜
⎝
⎛ −

′− λλ
 

=)(1ln11=
1

1=

1

1=
ni

n

ini

n

i
aa

z
z

++⎟
⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
− ∑∑

−−

λλ
 

 .1ln1= a
z

z
+⎟
⎠
⎞

⎜
⎝
⎛ −

−λ
 (2) 

If 01
1=

≠∑
i

n

i λ
 then )(1 z−δ  is a strictly monotone function and inverse of a 

pliant inequality. Therefore )(xδ  is a pliant inequality with λ  and a  
parameters: 
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( ) ).(=
))((1

1=)(=)(
)()()1(

1
x

axe
xx a

n
naa

λ

λ
λλ σσσδ

−+
⊕⊕ −…  (3) 

If 0=1
1=

i

n

i λ∑  then the addition function does not exist since az =)(1−δ  is a 

constant thus has no inverse. □ 

4.3 Multiplication by Scalar 

Theorem 4.6  Let given )(
)(

xa

λ
σ  sigmoid function. 

The scalar multiplication of the sigmoid function is: 

)(=)( )()(
xxc aa

λλ
σσ ′

′  

where 

caa
c

== ′′ λλ  

Proof. Using Lemma 2.1 gives us 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟
⎠
⎞

⎜
⎝
⎛ −

−
−

a
x

xcxa
1ln1=)(

1)(

λ
σ

λ
 

From here we have 

)()(

)(

1
1=

1

1=)( axcax
c

a e
e

x ′−′−−−

′
′ +

+
λλ

λσ  

□ 

4.4 Subtraction 

We can derive subtraction from addition and negation. 

Lemma 4.7  Negation is closed over pliant inequalities and the negation function 
can be given as 

)()(
= λλ
σσ −

−aa  
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Proof.  Let 
)(

=
λ

σδ a  

by using Lemma 2.1 we have 

( ) =)(=)(
1)(1 ⎟

⎠
⎞

⎜
⎝
⎛−

−
− zz a

λ
σδ  

).(1ln1=1ln1= a
z

za
z

z
−+⎟

⎠
⎞

⎜
⎝
⎛ −

−
−−⎟

⎠
⎞

⎜
⎝
⎛ −

λλ
 

Therefore 

).(=
1

1=)(=)( )(
))()((

)(
x

e
xx aaxa

λ
λ

λ
σσδ −

−−−−−+
 (4) 

□ 

Theorem 4.8  Subtraction is closed over pliant inequalities and the subtraction 
function can be given as 

.= 2

1

1

1

21

)2(

2

)1(

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
λλλλ σσσ aaaa  

Proof. Let 
)2(

2

)1(

1
= λλ σσδ aa  

by using Lemma 2.1 and Lemma 4.7 we have 

( ) ( ) ==
1)2(

2

1)1(

1

1 −−− − λλ σσδ aa  

( ) ( ) ==
1)2(

2

1)1(

1
⎟
⎠
⎞⎜

⎝
⎛−+

−− λλ σσ aa  

( ) ( ) ==
1)2(

2

1)1(

1

−−
+ λλ σσ aa  

( )( ) ,=
1)2(

2

)1(

1

−
⊕ λλ σσ aa  

therefore 

( ) ( ).= )2(

2

)1(

1

)2(

2

)1(

1

λλλλ σσσσ aaaa ⊕  (5) 
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Substituting Eq. 4 and Eq. 3 into Eq. 5 we get the desired result 

( ) .== 2

1

1

1

21

)2(

2

)1(

1

)2(

2

)1(

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−
−⊕

λλλλλλ σσσσσ aaaaaa  (6) 

□ 

Note: The function does not exist in case of 0=21 λλ − . 

4.5 Multiplication and the 
thn  Power 

Now let 
)2(

2

)1(

1
= λλ σσδ aa ⊗ . By using Lemma 2.1 we get 

( ) ( ) =)()(=)(
1)2(

2

1)1(

1

1

⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡ −−− zzz aa

λλ σσδ  

=1ln11ln1= 2
2

1
1

⎥
⎦

⎤
⎢
⎣

⎡
+⎟
⎠
⎞

⎜
⎝
⎛ −

−⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −

−
a

z
za

z
z

λλ
 

21
2

1

1

22

21

1ln1
ln

1= aa
z

zaa
z

z
+⎟
⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
−

+⎟
⎠
⎞

⎜
⎝
⎛ −

λλλλ
 

 21
21

22112

21

1ln1
ln

1= aa
z

zaa
z

z
+⎟

⎠
⎞

⎜
⎝
⎛ −+

−⎟
⎠
⎞

⎜
⎝
⎛ −

λλ
λλ

λλ
 (7) 

Unfortunately this is not an inverse pliant inequality and it is not monotone. To 

obtain the roots of the function we set ( ) 0=)(
1)1(

1
za

−λσ  to get 
110 1

1= ae
z λ+

 

and we set ( ) 0=)(
1)2(

2
za

−λσ  to get 
221 1

1= ae
z λ+

. 

A complete analysis of 1−δ  would require checking both the 0>21λλ  and 

0<21λλ  cases. However by Criteria 4.4 we only need to examine the first case. 

Let 0>21λλ . In this case 0<)(1 z−δ  when )),(),,(( 1010 zzmaxzzminz∈ . 

By using the first derivative we get 
)2211(

2
1

1

1=
aa

min

e
z

λλ +
+

. Let us transform Eq. 

7 to get z  on the left side of the equation 
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xaa
z

zaa
z

z =1ln1
ln

1
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22112

21

+⎟
⎠
⎞

⎜
⎝
⎛ −+
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⎜
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2
11ln1
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 (8) 

We need to check two cases here. First, let ](0, minzz∈ . In this case )(1 z−δ  is 
strictly monotone decreasing (thus has an inverse) and the left side of Eq. 8 is 
positive therefore 
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11ln 2

2211212211 aaxaa
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From here we have 
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For ( ) )()2(

2

)1(

1
xaa

λλ σσ ⊗  this gives us 
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which is not a pliant inequality though rather similar. The domain of )(' xδ  is 
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For the second case we have ,1)[ minzz∈ . Now )(1 z−δ  is strictly monotone 
increasing (thus has an inverse) and the left side of Eq. 8 is negative. Now we 
have 
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For ( ) )()2(

2

)1(

1
xaa

λλ σσ ⊗  we get 
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The domain of '′δ  is ),
2

1[
2

2211

21

∞⎟
⎠
⎞

⎜
⎝
⎛ −

−∈
λλ

λλ
aax . 

Note that here iλ  and ia  play the analogous roles of im  and ia  in additive 
pliant multiplication. 

Functions 'σ  and '′σ  shall be used if we need to multiply pliant inequalities from 
the positive range of the x  axis. If 0<, 21 λλ  then 'σ  should be used because it 

maps the positive part of 
)1(

1

λσ a  and 
)2(

2

λσ a . If 0>, 21 λλ  then '′σ  should be 

used. 

Fig. 7 demonstrates multiplication of 
)1(

1

λσ a  and 
)2(

2

λσ a  pliant inequalities. The 

parameters of the operands were 4=0.9,= 11 aλ  and 7=0.8,= 22 aλ  
respectively. The result is shown as the dotted curve. 
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Figure 7 

Multiplication of pliant inequalities 

The calculations show that multiplication is not closed for pliant inequalities. 
Nevertheless we can approximate the result well with a pliant inequality. We 

construct this function to take the value 
2
1

 at 21aa  and let the tangent here be the 

same as of the multiplication function. For the tangent we have 

1

2

2

1

1
4
1

λλ
aa

+
, and 

our approximation function is 
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⎜
⎜
⎜
⎜
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⎛

+
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aaaa  

Fig. 8 shows the approximation of the multiplication in Fig. 7. The approximating 
pliant inequality is plotted as the dotted curve. 

 
Figure 8 

Approximation of pliant multiplication 
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We can use the approximation function for large values of 21, aa  or large values 

of |||,| 21 λλ . In this case the function values are small for 0<x  thus the 
approximation is better. 

Let us calculate the thn  power of 
)(λ

σ a . This case 

[ ] n
n

a a
z

zz ⎥
⎦

⎤
⎢
⎣

⎡
+⎟
⎠
⎞

⎜
⎝
⎛ −

−
− 1ln1==)(

)(1

λ
σδ

λ
 

and then 

( ) .1
1=)(

an xe
x

−−+ λ
δ  

We can approximate the power function with a pliant inequality similarly to the 

multiplication function. Let the approximating power function take 
2
1

 in na  and 

let the tangent be the same here as of the power function. For the tangent this 

gives 14
1

−nna
λ

 and our approximation function is 

( ) .14
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)( ⎟⎟
⎠
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⎛
−

≈
nna

na

n

a

λ
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4.6 Division 

Let 
)2(

2

)1(

1
= λλ σσδ aa . By using Lemma 2.1 we get 
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1ln1
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σ
δ
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 (9) 

Note that the function is undefined when the divisor equals zero, i.e. 

)22(0 1
1= ae

z λ+
. The function )(1 z−δ  is strictly monotone decreasing in 

)(0, 0z  and strictly monotone increasing in ,1)( 0z . The limit of the function in 
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0  and in 1 is 12/λλ . This means that the function does not take any value twice 

thus has an inverse and its domain is all real numbers except 12/λλ . Let us 
transform Eq. 9 to get z  on the left side of the equation 
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From here we have 

( ) .

1

1=)(=)(
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)2(
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)1(

1 axa
x

aa

e

xx
−

−
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+ λλ
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The result is not a pliant inequality. Fig. 9 presents the division of 
)1(

1

λσ a  with 

)2(

2

λσ a . The parameters were the same as in the multiplication example. 
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Figure 9 

Division of pliant inequalities 

Based on the approximation of the multiplication function we can use the 
following pliant inequality to approximate division. 

.22
1

14

2

2
1

)2(

2

)1(

1

λ
λ

λλ σσσ a

a
a

a
aaa

−

≈  

 
Figure 10 

Approximation of pliant division 

4.7 Properties of Operations 

Theorem 4.9  Addition is commutative and associative over pliant inequalities. 

Proof. These properties can be easily seen from the construction of 
m
1

 and a  in 

Theorem 4.5. □ 
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Theorem 2.2 guarantees that multiplication over pliant inequalities is 
commutative, associative and distributive over addition. Now we prove these 
properties for the approximation of multiplication. 

Theorem 4.10  The approximation of multiplication over pliant inequalities  is 
commutative, associative and distributive over addition. 

Proof.  Commutativity 
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Associativity 
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Distributivity 

We shall use the following equality 
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From here we have 
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□ 

5 Pliant Numbers and Operator Families 

Pliant numbers can be decomposed to left hand side and right hand side fuzzy 
inequalities. In the previous sections we have used this decomposition to 
investigate two classes of suitable functions and their related arithmetic 
operations. After we have calculated the result of an arithmetic operation we need 
to combine the left hand side and the right hand side results using a fuzzy 
conjunction operator. 

In this section we examine some classic fuzzy conjunction operators to investigate 
which ones are the most suitable for lines and  pliant inequalities. 

5.1 Pliant Numbers and Linear Function 

Let us assume we would like to calculate the sum of two pliant numbers 
represented with lines. To this end we add the left lines and the right lines 
separately. Before applying conjunction we need to cut the results so they map to 
the [0,1] interval. This can be achieved using the cut function defined as 

( ).,0),1(maxmin=][ xx  

Fig. 11 presents a sample left and right line with the cut function applied. 

The final step of addition is to construct the pliant number using a conjunction 
operator. Two cases should be considered here depending on how the two left and 
right hand side functions overlap. 
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Figure 11 

Cut function applied to lines 

If the two functions do not intersect each other before they reach one then any 
conjunction operator can be used since any ),( yxc  conjunction satisfies 

xxc =)(1,  and xxc =,1)(  which guarantees that the lines remain intact. 

Now if the two functions intersect each other before they reach one then we need 
to make sure that the conjunction operator does not distort the lines. Here we can 
also distinguish two cases depending whether the left line and the right line has the 
same absolute tangent or not. The left side of Fig. 12 shows a left line with 

4=,
4
1= am  and a right line with 6=,

4
1= am −  parameters. The right side 

of the figure shows the same left line, but a different right line with parameters 

6=,
6
1= am − . 

 
Figure 12 

Lines with same and different absolute tangents 
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Let us now create a pliant number from these two linesets using the algebraic 
product ( )ba ⋅  as shown in Fig. 13. 

 
Figure 13 

Product conjunction with same and different absolute tangent lines 

As it can be seen from the figure the algebraic product conjunction distorts the 
lines around the point of their intersection. 

Let us now apply the classic minimum conjunction. 

 
Figure 14 

Minimum conjunction with same and different absolute tangent lines 

Fig. 14 shows that the minimum conjunction simply cuts everything above the 
intersection point but leaves the remaining line segments undistorted. 

Let us see what happens if we use the Lukasiewicz or bounded operator. 
( 1][ −+ yx ). 
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Figure 15 

Bounded conjunction with same and different absolute tangent lines 

As it can be seen from Fig. 15 the results are different from each other. On the left 
side of the figure the lines had the same absolute tangent which resulted in a 
trapezoid form while on the right side the lines had different absolute tangents 
which resulted in a cut-off point on the line with a greater absolute tangent value. 

The results from the minimum and the Lukasiewicz conjunction resulted in lines 
which makes them a good choice for creating pliant numbers from additive pliant. 

5.2 Pliant Numbers with Pliant Inequalities 

Let us assume we would like to calculate the sum of two pliant numbers 
represented with pliant inequalities. This case we need to add two left hand side 
pliant inequalities together and add two right hand side pliant inequalities together. 
We can depict the operation using the following notation. 
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aaaaaa
λλλλλλ

=22

22

11
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where 

.=,=11=1,11=1 2121
2121 rrrlll
rrrlll

aaaaaaand ++++
λλλλλλ

 

The subscripts denote the left and the right hand side operands respectively, 
superscripts denote the two pliant numbers and the results are denoted without 
superscripts. Theorem 4.5 defines the relationship between the parameters. 

The final step of the addition is to construct the pliant number using a conjunction. 
Two cases should be considered here depending on how the two left and right 
hand side functions overlap. 
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First if the two functions do not intersect each other before they approach one then 
any conjunction operator can be used since any ),( yxc  conjunction satisfies 

xxc =)(1,  and xxc =,1)(  which guarantees that the shape of the curves will 
not be distorted. Fig. 16 presents this situation. 

 
Figure 16 

Two pliant inequalities 

Now if the two functions intersect each other before they approach one then we 
need to make sure that the conjunction operator does not distort the shape of the 
curves. This is shown in the left side of Fig. 17. 

 
Figure 17 

Two pliant inequalities, conjunction with ),( yxmin  
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The right side of Fig. 17 shows the result of using the ),( yxmin  conjunction. As 
it can be seen from the figure this operator cuts the functions sharply. Fig. 18 
shows the result of conjunctions using the algebraic operator ( ba ⋅ ) and the 
Lukasiewicz operator ( 1][ −+ yx ). 

 
Figure 18 

Conjunction with algebraic product and Lukasiewicz operator 

While these conjunctions result in a smooth curve, they squash the operands along 
the y -axis. The averaging Dombi operator is given as 

.
11

2
11

1=),(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+−+
y

y
x

x
yxc  

Let us now use the averaging Dombi operator to construct the pliant number. 

 
Figure 19 

Conjunction with the Dombi operator 
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This case the result is a smooth curve that reaches its maximum value at the 
intersection of the curves. The averaging Dombi operator also retains the 
parameter values of the two functions as the following calculations show. 
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σ

σ
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( )
.

2
11

1=
)()( raxrlaxl ee −−−− ++ λλ

 

This enables us to easily decompose the result for further arithmetic operations. 
These properties makes the Dombi operator a good choice for constructing pliant 
numbers based on pliant inequalities. 
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