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Abstract: Fuzzy-based control systems are popular in practical applications where 

imprecision, subjectivity, and uncertainty can arise in the data and in the evaluation 

process, and it needs to be addressed. One possible solution is the fuzzy approach. 

However, computational requirements of these models can be extremely high, mainly 

defuzzification part of the Mamdani-type control. Whatever great advantages the Mamdani 

model has, it is closer to the human way of thinking compared to the Sugeno model, which 

is another popular controller. In the case where a short reaction time is required, the 

computational needs should be reduced. Here, we propose modified Mamdani models for 

this purpose. This new model is much faster while all the advantageous properties of the 

original Mamdani model are retained, and in some ways, it is better. 
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1 Introduction 

Fuzzy-based control models are frequently used in engineering tasks and in 

medical related applications [1]. Because of this, they can be built up in a user-

friendly way, i.e. we can apply linguistic terms for the hard-to-quantify 

parameters. The Mamdani control is closer to the human way of thinking, but it 

has high computational requirements. For this reason, the application of the model 

in real-time and adaptive systems is limited. Computational requirements of the 

Takagi-Sugeno system is much lower. For this reason, it is very popular in 

optimization and adaptive tasks, but its limitation compared to the Mamdani 

control that intuition can be less built into the system. For the latter reason, it was 

not examined in detail in this paper, only a brief comparison is performed. 

In the literature, there are several different techniques available for reduces the 

computational requirements in Mamdani-type control [2], such as the HOSVD-
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based model, which eliminates the redundancy from the system [3]; genetic 

algorithms are used for generalization of the antecedents [4]; and, to minimize the 

number of rules and membership functions of the fuzzy system fuzzy subtractive 

clustering [5] or the combination of the inputs or antecedent sets [6] are the most 

popular approaches. Using a hierarchical structure of the model instead of a 

single-stage system also decreases the computational needs because the number of 

the rules increases exponentially with the number of the input parameters. In 

hierarchical systems, this increase is only linear because the problem is broken 

down into sub-problems. In this way, there are fewer input parameters at the 

different stages, leading to sub-systems that operate with fewer rules [7]. 

In this study, two significant modifications of the conventional Mamdani control 

system are introduced. One of them is the Mamdani-like structure with a 

discretized output, where the order of the evaluation steps is swapped, while the 

second is an arithmetic-based model, which is based on a linear combination of 

the membership function components. The aim of the study is to find an algorithm 

that can retain the advantages of the conventional control model, yet significantly 

reduce the computational requirements. The authors examined the proposed 

methods in a hierarchical patient surveillance system, where physiological 

parameters are monitored in real-time. 

2 Mamdani-Type Control System 

In the Mamdani system natural language rules are used, where the rules are given 

in the following form: IF condition THEN consequence. Let the input parameters 

be x1, x2, …, xn from the universe of discourse X1, X2, …, Xn, respectively. In 

this case, the output parameters yϵY can be calculated by using the following type 

of rules:  

IF  is  and … and  is  THEN y is , 

where  is the antecedent  belongs to input k, is the fuzzy set that 

is assigned to the consequent set of the rules, ; and  is the 

number of the antecedent sets belonging to input j. The rule premises can be 

obtained from all the possible combinations of the fuzzified values of the inputs. 

2.1 Fuzzification 

The system inputs are generally obtained as crisp values. In order to handle 

inherent uncertainty, a fuzzy value should be made from them by applying the 

fuzzification method. In this step the degree of fit of the input should be 
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determined on the antecedent set, i.e. the extent to which current inputs belong to 

the fuzzy sets, which are used to characterize them [8]. In the case of triangular 

membership functions and crisp inputs, the fuzzified value can be calculated using 

Eq. (1) and it is illustrated in Fig. 1. 
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where ai, bi, ci are the membership function parameters. Visually it looks like this: 

 

Figure 1 

Fuzzification for triangular membership function 

2.2 Firing Strength Calculation 

During the evaluation the fuzzified values of all the input factors should be taken 

into account. For this reason, these values should be connected by a fuzzy operator 

for each rule, based on its antecedent to get the rule strength, which specifies the 

influence level of the given rule antecedent [9]. The operator selection depends on 

the task. In the case of a product operator, it can be calculated using Eq. (2) and its 

result is shown in Fig. 2. The product formula is 


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where m is the number of the inputs,  is the fuzzified value of antecedent 

k of input j. And a visualization of it is 

 

Figure 2 

Firing strength calculation using product operator 
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2.3 Fuzzy Implication 

After the rule strength has been determined for each rule we need to find the 

extent to which the rule-consequent is involved in the final result [10]. Different 

operators can be used depending on the task. In Fig. 3. the result of a product 

implication can be seen, which can be calculated using 

iBiB μwy
i
  (3) 

where wi is the firing strength of rule i and  is the consequent set belonging to 

rule i. Visually, it looks like this: 

 

Figure 3 

Fuzzy implication using product operator 

2.4 Aggregation 

After the implication has been calculated for each rule, the partial conclusions are 

obtained. These fuzzy sets should be aggregated via Eq. (4) to get the system 

result using an averaging operator [11]. Fig. 4 shows an example using the 

aggregation method with a sum operator. If the membership functions form a 

Ruspini-partition, i.e. , then it is not necessary to weight the sets 

obtained by using the firing strength [12]. 

Here, 


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where wi is the firing strength of the rule-premise i,  is the result of the 

implication method for rule i, and n is the number of rules. Visually, it looks like 
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Figure 4 

Sum aggregation 

2.5 Defuzzification 

In the case where a crisp output is needed, which characterizes the system result 

best, the complex shaped function obtained should be defuzzified. There are 

several different defuzzification methods available for, of which the centroid 

method is the most common and physically appealing of all the defuzzification 

methods [13]. Fig. 5 shows the results of the defuzzification process using the 

centre of gravity method, which can be defined by 
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where  is the aggregated consequent set. 
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Figure 5 

Centre of gravity (COG) defuzzification  

3 Mamdani-like System with Discretized Output 

3.1 Basic Principles of the Modifications 

In the original Mamdani model aggregation and defuzzification are the evaluation 

steps, which increase the computational needs to the greatest extent. The idea of 

our reduction approach came from this fact. The first part of the evaluation (i.e. 

fuzzification, firing strength calculation, fuzzy implication) is the same as that in 

the original model, but the order of the aggregation and defuzzification is 

swapped. After the fuzzy implication step, each rule-consequent set is first 

defuzzified, then it is followed by aggregation. This modification might appear to 

further increase computational needs, because defuzzification is the 

computationally most intensive task and in this version, it should be performed as 

many times for as many rules there are. However, the high computational needs of 

the defuzzification in the original model is caused by the complex shape of the 

function, which is obtained after the aggregation. In contrast, in the modified 

model, simple shaped functions should be defuzzified, whose computational needs 

are negligible. And, during the aggregation significantly fewer operations are 

required because in this case crisp values should be aggregated instead of fuzzy 

sets. Detailed properties and a proof of the equivalency can be found in [17]. 
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3.2 Defuzzification 

In this modified version of the original Mamdani-type control, defuzzification is 

performed for each rule consequent set separately. These sets are piecewise linear 

(i.e. triangular, trapezoidal) fuzzy sets. As can be seen from Eq. (6) this simplified 

form significantly reduces the computational needs, for a triangular membership 

function. 

Here, 
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where ai, bi, ci, are the membership function parameters. 

In the case of a symmetric function, the calculation is even simple, because in the 

case of triangular function the defuzzified value is just equal to bi. In the case of 

symmetric trapezoidal function, it can be calculated using 

2
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The defuzzification method for the simplified model is shown in Fig. 6 below. 

 

Figure 6 

Defuzzification in the Mamdani-like system with discretized output  

3.3 Aggregation 

After defuzzified values have been obtained for all the rules, the final conclusion 

of the system should be drawn. For this reason, these crisp values should be 

aggregated as a weighted sum of them, where the weight factor is the firing 

strength of the rules, as follows 
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Figure 7 

Aggregation in the Mamdani-like system with discretized output 

4 Arithmetic-based Control 

4.1 Basic Principles of the Method 

The traditional Mamdani-type control is again used here as a basis for our 

simplification approach. Even the order of the evaluation steps is the same as in 

the traditional model (Subsection 2.1-2.5); only the step of fuzzy implication is 

omitted, while aggregation is modified. The basic idea is to manage the left and 

right-hand sides of the functions instead of aggregating the entire consequent sets. 

In this case, the result of the aggregation can be got as the linear combination of 

these parts of the functions, left and right-hand sides separately [14]. 

Consequently, the computational needs can be significantly reduced, due to using 

crisp parameters to represent the membership functions. The proposed method is 

equivalent to the α-cut, but it is more effective. Detailed properties and a proof can 

be found in [15]. 
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4.1 Aggregation 

After the firing strength calculation (2), the values obtained should be normalized 

like so: 
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The left- end right-hand side of the aggregated consequent set can be represented 

by the following pair of equations 
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where  and  are the slopes of the membership function, , 

 and . 

A linear combination of the rule consequences can be obtained, for both sides of 

the functions, as follows: 
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After the aggregation, the simple-shaped function obtained can be defuzzified 

using Eq. (6). The way of aggregation and defuzzification work is shown in Fig. 8 

below. 
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Figure 8 

Aggregation and defuzzification in the arithmetic-based control process 

5 Comparison of the Computational Needs 

5.1 Mamdani-type Control vs. Mamdani-like System with 

a Discretized Output 

When comparing the computational needs of these methods, it should be kept in 

mind that the first steps of the evaluation (i.e. fuzzification, firing strength 

calculation, implication) are the same. Consequently, their computational needs do 

not have to be taken into account because they are the same. This significant 

reduction can be achieved due to the swapping of the order of the aggregation and 

defuzzification. 

In the traditional Mamdani-type model, fuzzy sets should be aggregated, then the 

complex shaped function obtained should be defuzzified. In practice, this means 

that aggregation must be performed with an equidistant division of the input 

range. Let Y be the input domain , the set, which contains its 

equidistant base points , where N is the 

number of the base points of the equidistant division and the distance between two 

points is . Aggregation should be performed for 



Acta Polytechnica Hungarica Vol. 17, No. 3, 2020 

 – 35 – 

these points using Eq. (4), thus the number of operations requirements of this step 

is  multiplicative and  additive operations. During the 

defuzzification, the trapezoidal rule is applied like so: 
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where  , i=1, …, n+1. The number of operations 

needed for the COG method, which is defined in (5) is N+1 additive and 3 

multiplicative operations (since aggregated values are given in the base points). 

This is equal to the computational needs of the denominator of the formula, while 

in the nominator N+1 additive and N+3 multiplicative operations are needed. 

Hence, the overall formula requires 2(N+1) additive and N+6 multiplicative 

operations. 

In the Mamdani-like structure with discretized output, the centre of gravity of each 

simple-shaped rule consequent is calculated. Using Eq. (6) the number of 

operations needed is 2 additive, and 1 multiplicative operation for each rule 

consequent. Then, these crisp values should be aggregated as their weighted sum, 

where the weight factor is the firing strength of the rules defined by Eq. (8). Its 

computational needs are  additive, and n multiplicative operations. 

A summary of the above is shown in Table 1. 

Table 1 

Comparison of the computational needs for the traditional and discretized Mamdani-type control 

processes 

Operation 
Traditional 

Mamdani 

Discretized 

Mamdani 

Aggregation 
Additive n-1 2n 

Multiplicative N*n n 

Defuzzification 
Additive 2(N+1) 2(n-1) 

Multiplicative N+6 n 

Sum 
Additive n-1+2(N+1) 4n-2 

Multiplicative N*(n+1)+6 2n 

Although the Takagi-Sugeno system was not addressed, a brief comparison was 

made for the sake of completeness regarding the computational requirements. The 

results are shown in Table 2. Takagi-Sugeno is a standard method, where the rule 

consequents can be generated as a function of input values using 

 n1i,...,i x,...,xg
n1

, and the rules can be represented in the following form [18]: 

x1 is 
1i1,A  and … and xn is 

nin,A  THEN y is  n1i,...,i x,...,xg
n1

. 
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As a result of the above the computational requirements of the function should be 

examined, instead of the defuzzification step, which is omitted. 

Table 2 

Comparison of the computational needs for the Takagi-Sugeno and discretized Mamdani-type control 

processes 

Operation 
Takagi 

Sugeno 

Operation 

type 

Discretized 

Mamdani 
Operation 

Aggregation 
2(n-1) Additive 2n 

Aggregation 
n Multiplicative n 

Output 

function 

2n Additive 2(n-1) 
Defuzzification 

3n Multiplicative n 

Sum 
4n-2 Additive 4n-2 

Sum 
4n Multiplicative 2n 

The results in the table clearly show that the number of operations needed for the 

traditional Mamdani control system is significantly higher than in the case of its 

discretized version, for both additive and multiplicative operations. 

5.2 Mamdani-like Structure with Discretized Output vs. 

Arithmetic-based Control 

Comparing the two methods, it should be mentioned that in the arithmetic-based 

algorithm fuzzy implication is not a separate step, and the firing strength is used 

during the aggregation process to weight the parameters of the functions. For this 

reason, the number of operations needed for fuzzy implication cannot be defined 

for this approach. Another important issue is defuzzification. In both cases, 

simple-shaped functions should be defuzzified. As a consequence, the number of 

operations needed for defuzzification do not have to be taken into account because 

their computational needs are the same. 

In the case a Mamdani-like system with a discretized output, during the 

implication the above-defined equidistant division is used. The function values 

should be multiplied by the firing strength of the given rule (3), hence it requires 

N*n multiplicative operations. In the arithmetic-based method, we also need to 

aggregate crisp values as in the discretized Mamdani model. However, here 

  (12), and the slope of the functions (13) should be 

aggregated. Based on these equations, the computational needs of the aggregation 

are  additive, and 4n multiplicative operations. 

After summarizing the operational needs of the methods, it can be seen that the 

arithmetic-based method provides a slightly worse result for additive operations, 
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but discretized Mamdani structure has significantly higher computational needs 

for multiplicative operations. It may be deduced from the above that the 

arithmetic-based method has fewer computational needs overall. 

Table 3 

Comparison of the computational needs of the discretized Mamdani-type and arithmetic-based control 

Operation Discretized 

Mamdani 

Arithmetic-based 

Implication 
Additive - - 

Multiplicative N*n - 

Aggregation 
Additive 2n 4(n-1) 

Multiplicative n 4n 

Sum 
Additive 2n 4(n-1) 

Multiplicative (N+1)n 4n 

6 A Case Study 

The above-described methods were examined in a patient surveillance system, 

where physiological parameters were monitored in real-time. In these kinds of 

systems, a short reaction time is essential to avoid any serious consequences 

caused by the inappropriately chosen form, or intensity of the motion [16]. In real-

time systems use of conventional Mamdani control is limited, due to its high 

computational requirements. However, with a modified algorithm one can retain 

its advantages, and also ensure a faster reaction time. 

6.1 Model Structure 

In the system, input parameters are selected patient-by-patient, based on a 

personal profile. This means that the number of the monitored parameters and 

their ranges can be defined specifically for patients and sports. A schematic 

structure of the model is shown in Fig. 9. The aim of the system is to assess the 

risk level of the current activity, based on the measured physiological values in the 

“Medical condition” group; the characteristics of the sport activity are its duration, 

frequency, and intensity under the “Activity” group; and in the case of an outdoor 

activity, the environmental conditions are listed in the third main group. An 

evaluation is performed hierarchically, i.e. risk levels of the different groups are 

calculated separately for each group, then these values form the input parameters 

of the summarizing group at the next level, where the overall risk is obtained. Due 

to the hierarchical structure, the system can be easily modified or expanded, where 

necessary. 
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Figure 9 

Model structure 

6.2 A Comparison of the Control Models 

During the study the heart rate, systolic and diastolic blood pressure of the patients 

were examined for 576 different input value combinations, for a 50-year old 

female patient. 

First, the results of the different algorithms were compared to demonstarte the 

interchangeability of each. The compatibility of the conventional Mamdani 

control and the Mamdani-like control with a discretized output has already been 

shown mathematically [17]. For the two discretized solutions, the results of 

Mamdani-like structure and arithmetic-base model are shown in Fig. 10. 

Quantifying the comparison of the result: the average difference, the maximum 

difference, the standard deviation, and the correlation-coefficient were also 

calculated (see in Table 4). The figure and the metrics tell us that the output values 

in both systems are almost the same, the difference between them being 

negligible, supporting the former mathematical proof. 

Here, the computational speed of the different methods is also considered in a 

standard desktop environment. The algorithms were implemented in a RAD 
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Studio multi-platform, multi-device environment. The running time for the 576 

different cases are as follows: 8.017 s for the conventional Mamdani control, and 

4.309 s for Mamdani-like control, 4.283 s for the arithmetic-based model. This 

means that the average evaluation time of the current input for the different 

algorithms is 14 ms, 7.5 ms, and 7.4 ms, respectively. From the above, we may 

infer that the computational speed is approximately the same as in the case of the 

Mamdani-like control and arithmetic-based models, while the conventional 

Mamdani control requires almost twice as much CPU time. As can also be seen 

from the mathematically described computational requirement (Table 1, 3). 

 

Figure 10 

Comparison of the Mamdani-like and arithmetic-based control results 

Table 4 

Comparison of the results of the discretized Mamdani-type and arithmetic-based control for 576 

different cases 

Average difference 0.0022 

Maximum difference 0.0455 

Standard deviation 0.0091 

Correlation-coefficient 0.9993 

Conclusions 

Fuzzy control systems are widely used in medical-related applications because of 

their  advantageous properties. That is, linguistic terms can be incorporated into 

the model, it can handle the subjectivity in the data and in the evaluation process, 

and its operation is very close to human thinking. However, the applicability of 

the conventional Mamdani control is limited by its high computational 

requirements in real-time and adaptive systems. In this study, possible 

modifications of the conventional Mamdani model were suggested, such as the 
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Mamdani-like structure with a discretized output and the arithmetic-based model. 

The main contribution of the paper is that the proposed models maintain the basic 

“philosophy” of the Mamdani-type controller while utilizing the properties of the 

triangular and trapezoidal membership functions technical modifications were 

suggested that drastically reduce the computational needs in comparison with that 

of the original method that is formulated for general form membership functions. 

Computational requirements of the different approaches were compared 

mathematically in general, for any-shape function. Besides that computational 

speed was also compared in a patient monitoring system. Based on the analysis 

both the Mamdani-like system and arithmetic-based model have lower 

computational needs than the conventional Mamdani model.  There is no 

significant difference between the two discretized models, and both can enhance 

the features of the conventional model by decreasing the computational 

requirements and CPU time required. 
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